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of the RCMs are often different than the driving GCMs and 
arguably more credible given the improved performance of 
the RCM. This also suggests that local climate forcing will 
be a significant driver of the regional response to climate 
change over Africa.
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1  Introduction

Global climate models (GCMs) are physically-based mod-
els of the important components of the climate system and 
are the main tools for generating projections of how cli-
mate may change in the future. GCM projections may be 
adequate up to a few hundred kilometres or so, however 
they capture neither the local detail nor the local forc-
ing, both of which can be important for regional climate 
as well as for impact assessments at national and regional 
levels. A widely applied and flexible method for capturing 
these local forcings and detail is to use a higher resolution 
regional climate model (RCM) driven at the edges of its 
domain of application by boundary conditions from a GCM 
(Giorgi 2007).

RCMs are also physically based models incorporating 
representations of the important processes of the climate 
system and resolve, at higher resolution, the processes, 
interactions and feedbacks between the climate system 
components over their domain of application. RCMs simu-
late dynamical flow, radiative and convective processes, 
clouds and precipitation, the land surface and the deep soil 
and the fluxes of heat and moisture between all these com-
ponents are all represented in the RCM. With a few notable 

Abstract  The Met Office Hadley Centre’s PRECIS 
regional climate modelling system has been used to gen-
erate a five member ensemble of climate projections for 
Africa over the 50 km resolution Coordinated Regional cli-
mate Downscaling Experiment-Africa domain. The ensem-
ble comprises the downscaling of a subset of the Hadley 
Centre’s perturbed physics global climate model (GCM) 
ensemble chosen to exclude ensemble members unable 
to represent the African climate realistically and then to 
capture the spread in outcomes from the projections of 
the remaining models. The PRECIS simulations were run 
from December 1949 to December 2100. The regional cli-
mate model (RCM) ensemble captures the annual cycle of 
temperatures well both for Africa as a whole and the sub-
regions. It slightly overestimates precipitation over Africa 
as a whole and captures the annual cycle of rainfall for 
most of the African regions. The RCM ensemble substan-
tially improve the patterns and magnitude of precipitation 
simulation compared to their driving GCM which is par-
ticularly noticeable in the Sahel for both the magnitude and 
timing of the wet season. Present-day simulations of the 
RCM ensemble are more similar to each other than those 
of the driving GCM ensemble which indicates that their cli-
matologies are influenced significantly by the RCM formu-
lation and less so by their driving GCMs. Consistent with 
this, the spread and magnitudes of the large-scale responses 
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exceptions (e.g. Döscher et  al. 2002; Artale et  al. 2010; 
Ratnam et al. 2008) RCMs do not model oceans explicitly 
as this would substantially increase the computing cost yet, 
in many cases, would make little difference to the projec-
tions over land where most impact assessments are con-
ducted. More information on the RCM configuration used 
in this study is given in Sect. 2.

It has long been recognised that a single model projec-
tion whilst often providing a plausible representation of cli-
mate gives no indication of the range of outcomes which 
are required when trying to assess the risks or opportunities 
of future climate change and how to respond to them. For 
this a range of projected future climate changes is required, 
preferably with some assessment of their trustworthiness. 
There are a number of ways in which an ensemble of cli-
mate projections can be generated and here we have here 
adopted a perturbed physics ensemble (PPE) approach. A 
PPE enables modelling uncertainties to be sampled sys-
tematically by perturbing uncertain parameters in a climate 
model (Collins et al. 2006).

The Met Office Hadley Centre has run a large PPE as 
part of a project entitled. Quantifying Uncertainties in 
Model Projections (QUMP) based on the HadCM3 global 
model (Gordon et al. 2000; Pope et al. 2000; Collins et al. 
2001). This ensemble, some members of which were down-
scaled over Europe, was used as the basis of the UK Cli-
mate Projections 2009 (Murphy et al. 2009). The UKCP09 
projections were generated to help inform adaptation 
options in the UK. However, data from the subset of GCMs 
downscaled are also available globally and in this paper we 
describe how these have been used to develop a set of pol-
icy-relevant climate scenarios for Africa.

The experimental set-up for the regional model simula-
tions is described in Sect. 2, including an account of some 
adjustments made to ancillary files in order to improve 
the representation of the African great lakes in the model. 
The method and subsequent selection of ensemble mem-
bers for Africa is given in Sect. 2.2. Section 4 investigates 
how well the RCM results are able to reproduce the cur-
rent climate and Sect. 5 presents the precipitation changes 
projected by the model by the 2080s over the domain. In 
Sect. 6 we summarise the model set-up, performance and 
projections.

2 � Description of models, observations and experimental 
design

2.1 � GCMS

The individual members of the QUMP ensemble are 
referred to as HadCM3Q0–16, where HadCM3Q0 is the 
unperturbed member (the parameters values are the same 

as those used by the standard HadCM3 GCM) and the 
perturbed members Q1–16 are numbered according to 
the value of their global climate sensitivity, thus Q1 has 
the lowest global average temperature response to a given 
increase in atmospheric CO2, and Q16 the highest. From 
here on, these models are referred to simply as Q0–Q16. 
To downscale a GCM ensemble of this size with an RCM 
would be highly resource intensive. We therefore employ 
a method outlined in McSweeney et  al. (2012) to sample 
from the ensemble in order to select a subset which repre-
sents a similar range of outcomes as the full ensemble.

2.2 � RCMs

The regional configuration of the Met Office Hadley Cen-
tre Climate model, HadRM3P (Jones et al. 2004), was run 
for the period from December 1949 to December 2100 for 
whole of Africa using the domain defined by the Coordi-
nated Regional climate Downscaling Experiment (COR-
DEX) project (Giorgi et al. 2009). The HadRM3P configu-
ration for these simulations has a resolution of 50 km, with 
19 vertical atmospheric levels and includes MOSES 2.2 
(Met Office Surface Exchange Scheme version 2.2), a tiled 
land surface scheme (Essery et  al. 2001) with 4 soil lev-
els. The chosen global QUMP ensemble members, which 
were selected using the methodology outlined in Sect. 2.5, 
provide the boundary conditions for the RCM simulations. 
In all of the ensemble members the SRES A1B scenario 
(Nakicenovic et al. 2000) is used to represent future emis-
sions; this scenario contains no mitigation and represents 
only one of several possible futures considered in the 4th 
assessment report of the IPCC (Meehl et al. 2007b).

2.3 � Observations

Validating models’ simulations against observations can be 
a challenging exercise in Africa. Data coverage is generally 
sparse and the observational record often show significant 
discontinuity in times. While there is no simple solution to 
this lack of data we tried to address the issue by looking at 
a number datasets which use different techniques and data 
sources. The observed datasets used are detailed Table 1.

2.4 � The African Great Lakes

The African Great Lakes are an important feature of Africa 
and are crucial in representing the climate of the region. In 
HadRM3P and MOSES2.2 there is no specific lake model 
and therefore the model makes certain assumptions when 
the lakes are set to be inland water or sea points. A limita-
tion of this particular configuration of the regional model 
is that lakes are assumed to be at sea level, and lake sur-
face temperatures are interpolated from the nearest sea 
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point. This results in a warm bias in the lake surface tem-
peratures, and subsequently excessive evaporation. In order 
to alleviate the problem in these simulations, two actions 
are taken; first the Great Lakes are set to land points in the 
domain orography which means that they are at the correct 
height above sea level, but are maintained as water by the 
land-sea mask. Secondly, the lake surface temperatures in 
the SST ancillary files must be corrected from the values 

that were interpolated from sea points, using lake surface 
temperature observations.

We use the (night-time) climatological lake mean tem-
peratures for each month for Lake Nyasa (Malawi), Tan-
ganyiki and Victoria from the ARCLake project v1.1.2 
(MacCallum and Merchant 2010, 2011), covering the 
period 1995–2009. The biases in the ancillaries are cal-
culated from the difference between the observed annual 

Table 1   Observational datasets used for validation of regional model simulations for Africa

Dataset Variables used Resolution Source References

CRU 3.0 1.5 m temperature 0.5° monthly, 1900–2006 land only Gridded station data  Mitchell and Jones (2005)

ERA40 850 hPa winds 2.5° monthly 1979–1996 Reanalysis  Uppala et al. (2005)

CMAP Precipitation 2.5° monthly 1979–1998 Gridded station data merged with 
satellite data

 Xie and Arkin (1997)

CPC-FEWS Precipitation 0.1° daily 1983–present (this paper uses 
1983–2012)

Gridded station data merged with 
satellite data

 Love et al. (2004)

GPCP Precipitation 2.5° monthly 1979–2010 Satellited and station data  Adler et al. (2003)

Fig. 1   The annual variation of the ARCLake observations (black); the original lake surface temperature ancillaries for two of the model ensem-
ble members (red and yellow); and the lake surface temperature ancillaries after bias corrected to observations (blue and light blue)
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temperature cycle and the model annual temperature cycle 
over a baseline period (1961–1990) for the unperturbed 
QUMP run (Q0), rounded to the nearest 0.5  K. These 
biases are then applied to each model run over their entire 
time period, which assumes all model runs have a common 
bias. This process is illustrated in Fig. 1; the black curve 
shows the annual cycle of observations and the yellow 
curve shows the annual cycle of the original Q0 ancillary. 
Once bias corrected to the observations (light-blue), the 
model ancillary is much closer to the observed ARCLake 
mean temperatures. As an example, the uncorrected (red) 
and corrected (dark-blue) annual cycle from another model 
run (Q2) is also included, illustrating that the correction 
derived for Q0 also improves the lake surface temperatures 

in this model run. A key assumption made here is that 
the bias correction applied will remain relevant into the 
future, i.e. that the difference between the true lake mean 
temperatures (as provided by ARCLake) and the tempera-
tures interpolated from the nearest sea point will remain 
the same in a future climate. However, given that the bias 
between the model ancillaries and the lake mean tempera-
tures from ARCLake is large, almost 3° in some cases, the 
application of the bias correction is necessary to ensure 
that the current and near future climate is represented 
correctly.

2.5 � Selection of driving GCM runs

In order to reduce the computational requirements, only 
a sub-set of the 17-member QUMP ensemble was down-
scaled from the global models. To identify the most 
informative selection we adopt the procedure outlined in 
McSweeney et al. (2012).

First we eliminate the ensemble members that perform 
poorly in simulating the key features of the current African 
regional climate.

Once this operation is completed we select, from those 
remaining, the sub-set that best captures the range of 
responses in temperature and precipitation simulated by the 
17 QUMP ensemble members.

In order to select the most appropriate sample the broad 
range of climatic regimes that occur across Africa must 
be considered. For this reason, as well as validating the 
QUMP ensemble projections against temperature and pre-
cipitation data for the whole of Africa, we also present 
results for nine geographical sub-regions that were chosen 
to represent the different climatic regimes across Africa. 
The climatic regions are shown in Fig. 2.

The coordinates that have been used to define the Africa 
region and the other climatic sub-regions are illustrated in 
Fig. 2 and given in Table 2.

2.5.1 � Validation of the African climate simulations

To validate the performance of the models, we compared 
the observed and simulated annual cycles of temperature 
and precipitation ( Fig.  3, and the geographical patterns 
of precipitation and 850  hpa winds in the simulations to 
those in observed datasets for the period 1961–1990 (not 
shown). The annual cycle of temperature for the whole of 
Africa suggests that the models capture the seasonal cycle 

Fig. 2   Regions selected for validating QUMP ensemble members 
across different climatic regions of Africa. Moving left to right along 
each row, the panels show: Africa, Northern Africa, West Sahel, 
Central Sahel, East Sahel, Western Tropical Africa, Horn of Africa, 
Southern Africa, and Kenya

Table 2   The Western longitude (W), Eastern longitude (E), Northern 
latitude (N) and Southern latitude (S) of the sub-regions

Region W (°) E (°) N (°) S (°)

Africa −20 60 36 −35

Northern Africa −20 40 36 20

West Sahel −20 0 20 10

Central Sahel 0 20 20 10

East Sahel 20 40 20 10

West Tropical Africa −20 27.5 10 −10

Horn of Africa 27.5 52 15 −15

Southern Africa 10 42 −10 −35

Kenya 33 43 5 −5

Fig. 3   The annual variation of temperature over land (left) and pre-
cipitation (right) for Africa, North Africa and West Sahel. The black 
line shows the observed values (CRU 3.0 and CMAP) while the col-
oured lines show the model outcomes. The plots for all the regions of 
Africa used in the analysis can be found in the supplementary infor-
mation

▸
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Fig. 4   Comparison of observed (top left) and simulated precipitation (all other boxes) for Africa during JJAS. The observations were averaged 
over the period 1979–1998 (and were regridded to the QUMP grid) and the simulation data over the period 1961–1990
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Fig. 5   Comparison of observed (top left) and simulated precipitation (all other boxes) for Africa during DJF. The observations were averaged 
over the period 1979–1998 (and were regridded to the QUMP grid) and the simulation data over the period 1961–1990
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of temperature realistically, although the majority slightly 
over-estimate temperatures between May and September 
(Fig. 3, top left).

Most models also capture the different seasonal cycles 
of temperature in the sub-regions although for some there 
is a greater spread in the simulations (e.g. Southern Africa 
in October), Model Q16 tends to be consistently the warm-
est model, and lies apart from the other models, and Q4 the 
coolest. The temperatures for Central Sahel, Fig. 4 (top left) 
and East Sahel, Fig.  4 (middle left) are generally under-
estimated by most of the models for the period between 
April and June. In general the ensemble captures the annual 
cycle of rainfall for many of the regions of Africa shown 
here (Fig. 3, right column), however again there are differ-
ences in spread between ensemble members for different 
regions.

The simulations capture the main rainy season in the 
Sahelian regions in JAS, although the rainy season begins 
2–3 months too early in most of the models for Central and 
East Sahel, and the range of magnitudes of wet-season rain-
fall is large. Rainfall in the western Tropical region arrives 
in the correct seasons, but is systematically too large, to 
a varying degree depending on the particular  ensemble 
member. The simulations of precipitation for some of the 
sub-regions do not compare that well with observations, 
for example the northern Africa region seasonal cycle is 
not captured at all (Fig.  3, middle right) and though the 
two wet seasons observed in Kenya (Fig. 5, bottom right) 
are simulated by the ensemble, the first [March, April, 
May, (MAM)] is under-estimated by all of the ensemble 
members and the second [September, October, November 
(SON)] is over-estimated by some.

However, modelling the climate of Africa is a challenge, 
as highlighted in the IPCC 4th assessment (Solomon et al. 
2007) , which noted excess rainfall over southern Africa 
of over 20  % on average in 90  % of the GCMs assessed 
and a tendency for the Inter-Tropical Convergence zone to 
be displaced towards to equator. In addition, several of the 
GCMs had no representation of the West African Monsoon 
at all (Meehl et al. 2007b). Also, given that the amounts of 
precipitation that occur in some of these sub-regions is very 
small it is helpful to compare the geographical patterns of 
precipitation with observations.

For the seasons June, July, August and September (JJAS) 
and December, January, February (DJF) the large scale pat-
terns are generally captured by all the ensemble members 
(Figs.  4, 5) however many over-estimate the magnitude 
over central southern Africa particularly during DJF. In 
Fig. 4 the lower sensitivity models (Q1–Q5) tend to match 
the magnitude of the observed DJF precipitation climatol-
ogy more closely than the higher sensitivity models (Q15 
and Q16). The timings, and geographical location of wet 
periods and regions, however, are realistic.

Figures 4 and 5 show the precipitation for Africa for the 
seasons JJAS and DJF respectively. The large scale patterns 
are generally captured by all the ensemble members, how-
ever many over-estimate the magnitude of the precipitation 
over central southern Africa particularly during DJF. In 
Fig. 5 the lower sensitivity models (Q1–Q5) tend to match 
the magnitude of the observed DJF precipitation climatol-
ogy more closely than the higher sensitivity models (Q15 
and Q16). The timings, and geographical location of wet 
periods and regions, however, are realistic. 

The circulation simulated by the model at 850 hPa has 
been compared with ERA40 (Uppala et al. 2005). As with 
the precipitation maps the models generally reproduce 
prevailing circulation patterns, including the direction of 
the trade winds (both north-east and south-east) (see sup-
plementary information for more details). During JJAS 
the region of higher wind-speeds over the Horn of Africa 
(referred to as the ‘Somali Jet’) are also captured. How-
ever there is some variation between the ensemble mem-
bers in the magnitude of the Somali Jet, with Q2, Q3, Q6 
and Q7 matching the observations more closely than the 
other ensemble members. The direction of the DJF trade 
winds are also captured in most of the ensemble members 
e.g. Q8, Q9, Q11 and Q13; however the magnitude of the 
winds over the Sahel and southern Africa are slightly over-
estimated in most of the ensemble members. Of all the 
ensemble members Q3 is the closest match to the observed 
climatology for the magnitude of DJF wind-speed. The 
near-surface temperature and sea surface temperature pat-
terns (not shown here) in general compare well with the 
CRU observations and HadISST datasets respectively. 
However some of the ensemble members, particularly 
the higher sensitivity ones (Q9–Q16) do overestimate the 
temperatures in regions where temperatures are high. The 
mean sea level pressure patterns (also not shown) for the 
ensemble members also compare well with observations. 
Our validation of the 17 models shows that while all the 
models capture the broad seasonal and geographical pat-
tern in key climate features, the range in magnitudes of 
features such as seasonal rainfalls, and the realism of those 
magnitudes, varies from across the models. However, it is 
not straightforward to identify a subset of models that per-
form better or worse across the whole region—models that 

Fig. 6   Plots for the QUMP ensemble showing projected change in 
precipitation versus change in the temperature for all Africa, North 
Africa and West Sahel. The panels show the spread in projected out-
comes during DJF, MAM, JJA, SON and annual (ANN). The data 
point labels (Q#) identify the models and the red data points indicate 
the selected sample. The box and whisker symbols that appear on 
the two axis of each individual plot represent the median, the inter-
quartile difference and the absolute range of the ensemble along that 
dimension. Black box and whisker refer to QUMP while blue has 
been used for the CMIP3 ensemble

▸
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do least well in some regions tend to be the most realistic 
in another. Our approach, therefore, is to select the sub-set 
based mainly on representing the spread of future climate 
outcomes across the regions. When making this decision, 
however, we take into account the shortcomings of some of 
the models. For example, where two models project similar 
characteristics of change in the future, we can use the vali-
dation information to choose to include the better perform-
ing model. On this basis Q1, Q3, Q4, and Q16 were dis-
carded and not considered further in this analysis because 
the seasonal cycle of both precipitation and temperature do 
not compare as well with observations as other ensembles 
in the largest number of regions. In the following analysis 
we consider the spread of models with respect to tempera-
ture and precipitation changes to make the final selection of 
ensemble members (see Sect. 2.5.2).

2.5.2 � Choosing a selection to represent the spread 
in QUMP outcomes

The final selection of ensemble members for Africa 
involves identifying the models which represent the range 
of the full ensemble in their change in precipitation (∆P) 
and temperature (∆T) for Africa and the key climatic sub-
regions (see Table  2) for the A1B scenario between the 
1970s and the 2080s. We average over 30 year time peri-
ods centred on these decades, in order to partially com-
pensate for natural climate variability. This analysis takes 
the form of scatter plots which are shown for each region 
and season in Figs. 6, 7 and 8. There is no particular model 
that consistently shows the largest change in precipitation 
for all regions throughout the year e.g. for Kenya in DJF 
(Fig.  8, top) the largest change in precipitation is seen in 
Q14 but this model is not always the wettest model for the 
other seasons for this region; for example, Q14 is close 
to the ensemble mean for Kenya in JJA (Fig. 8, 3rd row). 
Q14 is also one of the driest models for some sub-regions, 
for example, some seasons (MAM, JJA, SON) in the West 
Sahel (Fig.  6 3rd column). On this basis the extremes of 
the ensemble distribution are classified in terms of which 
models consistently have the largest positive or negative 
change in precipitation across all the sub-regions and sea-
sons. Therefore using this scoring system Q9 represents 
one of the wettest and Q0 represents one of the driest mod-
els in the range of the ensemble (but this does not mean 
these are the wettest and driest models in all sub-regions 
and seasons).

2.6 � Temperature

Although the models are numbered 1–16 according to their 
global temperature response, regional responses will vary. 
Temperature response is more consistent across the regions 

and the seasons than the precipitation response, with, as 
expected, the higher response models tending to capture 
the warmer end of the range (Q13, Q14, and Q16 tend to 
have the largest temperature response across the regions 
and seasons) while the lower-response models, tend to indi-
cate smaller temperature responses (Q1, Q2, Q3 tend to be 
coolest). Therefore on the basis that, of the lower response 
models, Q1 and Q3 do not validate as well as Q2 (and 
Q0 which also has a low regional temperature response) 
Q0 and Q2 are selected to represent the colder end of the 
range. At the warmer end of the range, Q16 has already 
been discounted on the basis of validation results, thus Q13 
and Q14 are selected to represent this part of the range.

2.7 � Rainfall

There is no particular ensemble member that consistently 
shows the largest change in precipitation for all regions 
throughout the year e.g. for Kenya in winter (DJF) the larg-
est change in precipitation is seen in Q14 but this model 
does not then feature as the wettest model for the other sea-
sons for this region; for example, Q14 is close to the ensem-
ble mean for southern Africa and one of the driest models 
for western tropical Africa. On this basis the extremes of 
the ensemble distribution are classified in terms of which 
models consistently have the largest positive or negative 
change in precipitation across all the sub-regions and sea-
sons. Therefore using this scoring system Q9 captures the 
wettest and Q0 captures the driest end of the ensemble 
range (but this does not mean these are the wettest and dri-
est models in all sub-regions and seasons). On the basis of 
this analysis we conclude that a sample which reproduces 
important characteristics of current the African and Kenyan 
climates and represents the spread in projected outcomes 
produced by the QUMP ensemble consists of the following 
models: Q0, Q2, Q9, Q13 and Q14.   

3 � Comparison between QUMP and CMIP3

As discussed in Sect.  1, QUMP is a perturbed-physics 
ensemble based on a single GCM. In order to investi-
gate whether the projections from the QUMP ensemble 

Fig. 7   Plots for the QUMP ensemble showing projected change in 
precipitation versus change in the temperature for East Sahel, West-
ern tropical Africa and the Horn of Africa. The panels show the 
spread in projected outcomes during DJF, MAM, JJA, SON and 
annual (ANN). The data point labels (Q#) identify the models and 
the red data points indicate the selected sample. The box and whisker 
symbols that appear on the two axis of each individual plot represent 
the median, the inter-quartile difference and the absolute range of 
the ensemble along that dimension. Black box and whisker refer to 
QUMP while blue has been used for the CMIP3 ensemble

▸
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represent the full range of climate futures, according to 
current knowledge, it is useful to examine it in the context 
of a multi-model ensemble such as CMIP3 (Meehl et  al. 
2007a). Figures 6, 7 and 8 show both temperature and pre-
cipitation response of each ensemble member and its com-
parison with CMIP3 ensemble. In general, the spread of the 
projected temperature changes are of a comparable size, 
but with the QUMP distribution shifted to slightly higher 
values. The temperature projections in QUMP therefore do 
not sample the lower values of temperature changes suf-
ficiently. This may be due to the generally high climate 
sensitivity of HadCM3 family of models. The two sets of 
projected precipitation changes show even greater disa-
greement. In the majority of regions and seasons, the range 
of CMIP3 projections is significantly outside the range of 
QUMP projections, e.g. East Sahel in JJA, where QUMP 
predicts wetter conditions across the ensemble, while the 
CMIP3 projections include both wetter and drier climates. 
Note also that, in many cases, the QUMP projections are 
outside the range of CMIP3 projections (e.g. West Sahel in 
JJA), indicating the importance of considering both MME 
and PPE ensembles.

4 � Validation of RCM results

The RCM ensemble in general captures the annual cycle of 
temperatures well both for Africa as a whole and the sub-
regions (Fig. 9).

The performance of HadRM3P has been evaluated in 
the context of several papers analysing the performance of 
multiple RCMs driven by the quasi-observed ERA-Interim 
reanalyses as part of the CORDEX programme. This has 
shown that it simulates the precipitation well over Africa 
(Nikulin et al. 2012) and its performance is compares well 
with other RCMs (Kim et  al. 2014) including at regional 
level (e.g. over West Africa, Gbobaniyi et al. 2014). In all 
regions, the RCM ensemble fits the observations better 
than the QUMP ensemble and the spread has been reduced, 
which is consistent with the selection criteria for the driv-
ing QUMP members, since we discarded those that were a 
poorer fit. In general, N1 is the coolest and N2 is the warm-
est ensemble member. The RCM ensemble has a cold bias 

May–September in the East Sahel and West Sahel regions, 
which appears to be inherited from the driving QUMP 
members. One feature that emerges more clearly in the 
RCM ensemble than the QUMP ensemble is that, while the 
GCM ensemble generally has a warm bias in Kenya with 
respect to observations, it has a cold bias during OND, dur-
ing the second of the two rainy seasons (the short rains).

The RCM ensemble shows a substantial improvement 
over the QUMP ensemble in many regions (Fig.  9), in 
reproducing the seasonal cycle of precipitation (the plots 
for the other regions are available in the supplementary 
information) This is particularly noticeable in the Sahe-
lian regions, where the RCM reproduces both the magni-
tude and timing of the wet season better. The magnitude of 
the peak in the East Sahel region (not shown) is still over 
estimated in the model and the wet season in the model is 
still early compared to observations, but to a much lesser 
extent than in the GCMs. In general, the RCM ensemble 
overestimates precipitation over Africa as a whole (Fig. 9, 
top right). In some regions, this positive bias is particularly 
pronounced, e.g. Western Tropical Africa April–June, the 
Horn of Africa October–December and Kenya October–
December. The case of Kenya is particularly interesting, 
since there is an accompanying dry bias in the March-May 
rainy season (the long rains) with the result that the model 
maximum occurs during the earlier rainy season. This is in 
contrast to the observations which show the greater pro-
portion of precipitation occurring in the later rainy season. 
This is possibly linked to the warm bias in the model in the 
long rains and the cold bias in the model during the short 
rains.

Figures 10 and 11 show the geographical patterns of pre-
cipitation in the RCM ensemble for JJAS and DJF respec-
tively. CPC-FEWS (Love et  al. 2004) observations (aver-
aged over 1982–2012) are also shown. Whilst this is a quite 
different time-period from the one that has been used in the 
analysis of climate model outputs, the high-resolution of 
the dataset can provide a useful benchmark for evaluation 
the regional model simulations.

The RCM ensemble is better at reproducing the JJAS 
precipitation (Fig. 10) than the QUMP ensemble. Both the 

Fig. 8   Plots for the QUMP ensemble showing projected change in 
precipitation versus change in the temperature for southern Africa 
and East of Lake Victoria. The panels show the spread in projected 
outcomes during DJF, MAM, JJA, SON and annual (ANN). The data 
point labels (Q#) identify the models and the red data points indicate 
the selected sample. The box and whisker symbols that appear on 
the two axis of each individual plot represent the median, the inter-
quartile difference and the absolute range of the ensemble along that 
dimension. Black box and whisker refer to QUMP while blue has 
been used for the CMIP3 ensemble

Table 3   Full run name of the regional model simulaitons, the name 
that was used to refer to these simulaitons in the text and the member 
of the QUMP ensemble member that has been used to drive them

RCM full name RCM short name Driving QUMP run

akyjy N0 Q0

akyuy N1 Q2

akzcy N2 Q9

akzja N3 Q14

akzjb N4 Q13

◂
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magnitudes and spatial patterns are well represented in 
comparison with QUMP, although some features, such as 
the observed peak in precipitation over the Cameroon high-
lands, are still not captured by the RCM ensemble.

As discussed in Sect.  2.5, the QUMP ensemble repre-
sented the spatial patterns of DJF rainfall well, but over-
estimated its magnitude over central Southern Africa. The 
RCM ensemble performs significantly better over land—it 
reproduces both the spatial pattern and the magnitude well, 
as illustrated in Fig. 11.

The RCM has introduced a larger positive bias in precip-
itation over the Western Indian Ocean in DJF, consistently 

over the ensemble. Lake Victoria and Lake Malawi are vis-
ible in Fig. 11 in the model results (and, to a much lesser 
extent, in the observations). We have investigated the case 
of Lake Victoria in detail and found the precipitation in 
the short rains to be significantly over-estimated over Lake 
Victoria in the RCMs both with respect to the CMAP data 
and CPC-FEWS data shown here and CRU and GPCP (not 
shown). As it is explained in a separate paper (Williams 
et  al. 2014) this issue appears to be very localised to the 
lake itself and therefore of little relevance to the land out-
side the Lake Victoria basin.

Finally, comparison of RCM winds at 850 hPa (supple-
mentary material) with those in the GCM simulations shows, 
as expected, they follow closely those of the driving GCMs. 
Thus, as with the GCMs, these compare well with observa-
tions but it also demonstrates consistency of the large-scale 
circulation in the RCMs with their driving GCMs.  

Fig. 9   The annual variation of temperature over land (left) and pre-
cipitation (right) for Africa, North Africa and West Sahel. The black 
line shows the observed values (CRU 3.0 and CMAP) while the col-
oured lines show the model outcomes

Fig. 10   Comparison of 
observed and simulated pre-
cipitation in the RCM for Africa 
during JJAS. The CPC-FEWS 
observations were averaged 
over the period 1983–2012 and 
the simulation data over the 
period 1961–1990

◂
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5 � RCM projections for the A1B scenario

Figure  13 shows the spatial patterns of the projected 
changes in African precipitation over the RCM ensemble. 
In general, the RCM ensemble projects an increase in pre-
cipitation over central Africa, which is particularly pro-
nounced in N2 and N3 see Table  3. There is also a gen-
eral decrease across the ensemble over the West half of 
the Western Sahel region in JJA, accompanied by a band 
of increase on the coast further south. This is particularly 
interesting in the context of the CMIP3 results, which 
showed a robust decrease in precipitation in this region (see 
e.g. figure 8 in Buontempo et al. 2010). In the RCM runs, 
this decrease over the Western Sahel in JJA is accompa-
nied by a band of increase on the coast further south. In 
three of the five runs, there is also a decrease in this sea-
son in the Gulf of Guinea. This band-like structure points 
to a change in the West African Monsoon system, which, as 

noted above, is a system which current climate models find 
very difficult to model. There is also a decrease in precipi-
tation over Lake Victoria, particularly from March through 
to November. However, as we noted earlier, there was also 
a strong positive precipitation bias over the lake, which 
needs to be further understood before interpreting the pre-
cipitation projection in this location and which has been 
addressed in a separate publication (Williams et al. 2014).

Fig. 11   Comparison of 
observed and simulated pre-
cipitation in the RCM for Africa 
during DJF. The CPC-FEWS 
observations were averaged 
over the period 1983–2012 and 
the simulation data over the 
period 1961–1990

Fig. 12   Plots for the RCM ensemble (green, N#) and QUMP ensem-
ble (black and red, Q#) showing projected change in precipitation 
versus change in the temperature for all Africa, North Africa and 
West Sahel. The panels show the spread in projected outcomes dur-
ing DJF, MAM, JJA, SON and annual (ANN). The red data points 
indicate the sub-set of QUMP chosen to drive the RCM. The box and 
whisker symbols that appear on the two axis of each individual plot 
represent the median, the inter-quartile difference and the absolute 
range of the ensemble along that dimension. Black box and whisker 
refer to QUMP while green has been used for the RCM ensemble

▸
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Fig. 13   Plots for the RCM ensemble showing projected change in precipitation. Each row represents an ensemble member and each column 
represents a season. From left to right these are DJF, MAM, JJA and SON
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Fig. 14   Plots for the GCM ensemble showing projected change in precipitation. Each row represents an ensemble member and each column 
represents a season. From left to right these are DJF, MAM, JJA and SON
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Figure  12, compares the RCM projections to those 
in their driving GCMs and the QUMP ensemble as a 
whole. Generally, the projected temperature changes are 
very similar but the projected precipitation changes can 
show substantial differences. The All Africa precipitation 
changes  (Fig. 12, left column) in DJF and JJA for N2 are 
very different from those projected Q9. In Southern Africa 
RCM ensemble members project less drying than their driv-
ing GCMs and in Central and East Sahel, the JJA precipita-
tion in the RCM is projected to increase more. Similarly, in 
the West Sahel, RCM precipitation is projected to increase 
more (or decrease less) compared to the driving GCMs. 

6 � Discussion

The results presented here highlight two important aspects 
of the simulations. On one hand the ensemble of regional 
model simulations show a smaller bias for present day than 
the corresponding GCM simulations (Figs. 10, 11) over the 
African continent. On the other hand the climate change 
response in the RCMs appears to be different, and for many 
regions narrower in spread, than that of the driving GCM 
ensemble (Fig. 12). A similar conclusion can be reached by 
comparing Figs. 13 and 14.

We hypothesise that there are three factors which explain 
this behaviour. The first is that a single RCM is used for 
downscaling whereas the driving GCMs have different for-
mulations (i.e. they use a range of parameter values). The 
second is that the climate of Africa, at least as simulated 
in the models, is significantly influenced by (the represen-
tation of) local/regional processes within Africa. The third 
is that the GCM circulations over the oceanic regions are 
very similar and similarly for their future simulations (not 
shown). The evidence for the second statement comes from 
the similarity of RCM simulations of current climate and 
the much larger range from the GCMs.

Similar GCM circulations over the oceanic regions 
would be expected, as seen, to result in similar behaviour 
in the RCM simulations of current climate. In the case of 
the GCMs themselves, their simulations of current cli-
mate differ which must result from their different formu-
lations, i.e. despite similar circulations over the adjacent 
oceanic regions their differing representation of local and 
regional physical processes over Africa leads to different 
simulations.

This behaviour of the various models’ simulations of 
current climate would also explain why the RCM projec-
tions of future climate tend to have both a narrower spread 
and an offset range as compared to those of the driving 
GCMs.

The boundary conditions from the GCM future simu-
lations will involve perturbations to the temperature, 

humidity and wind inputs. The former two will involve 
increases, of a lesser or greater extent depending mainly 
on the climate sensitivity of the GCM. These would tend 
to induce similar responses in the various RCM projections 
but, as with their simulations of the current climate, differ-
ing responses over Africa in the GCMs.

There are several interesting questions raised by these 
results. One is whether similar behaviour would be seen 
using an RCM over a smaller domain, i.e. only part of 
Africa. The large size of the domain used in these experi-
ments gives the RCM more freedom to develop its own cli-
matology than a smaller domain would have allowed.

A second is whether any judgement can be made about 
the credibility of the RCM as opposed to the GCM projec-
tions. Given the improved simulation of current climate of 
the RCM, is it not unreasonable to argue that it is better 
able to downscale the large-scale climate change from the 
GCMs into credible future climates over Africa.

This would imply that more confidence can be put in the 
ranges of downscaled projections as credible representa-
tions of the regional implications of climate change over 
Africa. This is in addition to the downscaled projections 
generating projections at a scale more suitable for impact 
and adaptation studies.

7 � Summary

This paper outlines climate model simulations which have 
been performed over the CORDEX domain using the RCM, 
HadRM3P with the MOSES2.2 tiled land-surface scheme. 
The runs span from December 1949 to December 2100. It 
should be noted that the SRES A1B scenario was used to 
represent future emissions; this scenario contains no mitiga-
tion and represents only one of several possible futures con-
sidered in the 4th assessment report of the IPCC. The lateral 
boundary data for the five simulations were taken from a 
subset of the Hadley Centres QUMP PPE. Members of the 
QUMP ensemble were selected in order to capture the spread 
in outcomes produced by the full ensemble, whilst excluding 
any members that do not represent the African climate real-
istically. In this way, we effectively sample the uncertainty 
due to parameter estimation in the boundary data. Additional 
uncertainty due to parameter estimation in the RCM and dif-
ferences in model formulation (both in the regional and driv-
ing climate models) are not sampled. Particular attention has 
been paid to the treatment of the African Great Lakes. Since 
the configuration of the regional model did not contain a lake 
model, the lake surface temperatures must be prescribed as 
a boundary condition. In these simulations the lake surface 
temperatures were derived by interpolating SSTs from adja-
cent sea grid-boxes which were then bias-corrected using 
lake surface observations from the ARCLake project.
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The model results show a significant improvement both 
in the representation of the current spatial distribution of 
precipitation over the African continent and in the seasonal 
cycle, as compared to the QUMP ensemble. We analyse the 
projections for the 2080s for each model run for each of the 
four seasons in both the RCM and in the driving GCMs. 
The results indicate that the spread in the climate change 
in the regional model simulations is narrower than in the 
driving GCM for most of the sub-regions. We speculate 
that this behaviour underscores the importance of local pro-
cesses for determining African climate and its response to 
global climate change.

The outputs of the RCM simulations used in this study 
have been submitted to British Atmospheric Data Centre 
(http://badc.nerc.ac.uk). The dataset is publicly available 
and free of charge for any bona fide research purposes.

Acknowledgments  Work in this paper has been carried out in sup-
port of the project “Adapting to climate change induced water stress 
in the Nile River Basin”, which was launched in March 2010 as a 
partnership between the United Nations Environment Programme 
(UNEP) and the Nile Basin Initiative (NBI), sponsored by the Swed-
ish International Development Cooperation Agency (SIDA). We 
gratefully acknowledge the providers of all data sets used in this 
paper. In particular the GPCP combined precipitation data were 
developed and computed by the NASA/Goddard Space Flight Cent-
er’s Laboratory for Atmospheres as a contribution to the GEWEX 
Global Precipitation Climatology Project. This work was also sup-
ported by the Joint UK DECC/Defra Met Office Hadley Centre Cli-
mate Programme (GA01101). We would also like to thank the two 
anonymous reviewers whose comments helped us improve the qual-
ity of the manuscript.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.

References

Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, 
Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Suss-
kind J, Arkin P, Nelkin E (2003) The version-2 global pre-
cipitation climatology project (GPCP) monthly precipitation 
analysis (1979–present). J Hydrometeorol 4(6):1147–1167. 
doi:10.1175/1525-7541(2003)004%3C1147:tvgpcp%3E2.0.co;2

Artale V, Calmanti S, Carillo A, Dell’Aquila A, Herrmann M, 
Pisacane G, Ruti P, Sannino G, Struglia M, Giorgi F, Bi X, 
Pal J, Rauscher S (2010) An atmosphereocean regional cli-
mate model for the mediterranean area: assessment of a pre-
sent climate simulation. Clim Dyn 35(5):721–740. doi:10.1007/
s00382-009-0691-8

Buontempo C, Booth B, Moufouma-Okia W (2010) Sahelian climate: 
past, current, projections. http://www.oecd.org/dataoecd/6/25/470
92928

Collins M, Tett SFB, Cooper C (2001) The internal climate variabil-
ity of HadCM3, a version of the Hadley Centre coupled model 
without flux adjustments. Clim Dyn 17(1):61–81. doi:10.1007/
s003820000094

Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, 
Webb MJ (2006) Towards quantifying uncertainty in transient 
climate change. Clim Dyn 27(2–3):127–147. doi:10.1007/
s00382-006-0121-0

Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson 
U, Graham LP (2002) The development of the regional coupled 
ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192

Essery R, Best M, Cox P (2001) Moses 2.2 technical documentation. 
Technical report 30. Hadley Centre. http://www.metoffice.gov.uk/
media/pdf/9/j/HCTN_30

Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C, Dosio A, Dhié-
diou A, Kamga A, Klutse NAB, Hewitson B, Nikulin G, Lamptey 
B (2014) Climatology, annual cycle and interannual variability of 
precipitation and temperature in CORDEX simulations over west 
africa. Int J Climatol 34(7):2241–2257. doi:10.1002/joc.3834

Giorgi F (2007) Regional climate modeling: status and perspectives. 
J Phys IV (Proc) 139(1):101–118. doi:10.1051/jp4:2006139008

Giorgi F, Jones C, Asrar GR (2009) Addressing climate change needs 
at the regional level: the CORDEX framework. WMO Bull 58(3). 
http://euro-cordex.net/uploads/media/Download

Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, 
Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice 
extents and ocean heat transports in a version of the Hadley Cen-
tre coupled model without flux adjustments. Clim Dyn 16(2–
3):147–168. doi:10.1007/s003820050010

Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jen-
kins GJ, Mitchell JFB (2004) Generating high resolution cli-
mate change scenarios using PRECIS. Met Office Hadley 
Centre, Exeter. http://www.metoffice.gov.uk/media/pdf/6/5/
PRECIS_Handbook.pdf

Kim J, Waliser D, Mattmann C, Goodale C, Hart A, Zimdars P, Crich-
ton D, Jones C, Nikulin G, Hewitson B, Jack C, Lennard C, Favre 
A (2014) Evaluation of the CORDEX-Africa multi-RCM hind-
cast: systematic model errors. Clim Dyn 42(5–6):1189–1202. 
doi:10.1007/s00382-013-1751-7

Love TB, Kumar V, Xie P, Thiaw W (2004) A 20-year daily africa 
precipitation climatology using satellite and gauge data 
(2004—84Annual\_14appclim). In: 14th conference on applied 
climatology. http://ams.confex.com/ams/84Annual/techprogram/
paper_67484.htm

MacCallum S, Merchant C (2010) ATSR reprocessing for climate 
lake surface temperature (ARC-lake): algorithm theoretical 
basis document. Technical report, University of Edinburgh. 
http://www.geos.ed.ac.uk/arclake/ARC-Lake-ATBD-v1.0

MacCallum S, Merchant C (2011) ARC-lake: data product descrip-
tion. Technical report, University of Edinburgh. http://www.geos.
ed.ac.uk/arclake/ARCLake_DPD_v1_1_1

McSweeney CF, Jones RG, Booth BBB (2012) Selecting ensemble 
members to provide regional climate change information. J Clim. 
doi:10.1175/jcli-d-11-00526.1

Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, 
McAvaney B, Mitchell JFB (2007a) THE WCRP CMIP3 mul-
timodel dataset: a new era in climate change research. Bull Am 
Meteorol Soc 88(9):1383–1394. doi:10.1175/bams-88-9-1383

Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, 
Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper 
SCB, Watterson IG, Weaver AJ, Zhao ZC (2007b) Global cli-
mate projections. In: Climate change 2007: the physical science 
basis. Contribution of Working Group I to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change, chap 
10. Cambridge University Press, Cambridge. http://www.ipcc.ch/
publications_and_data/ar4/wg1/en/ch10.html

Mitchell TD, Jones PD (2005) An improved method of constructing a 
database of monthly climate observations and associated high-res-
olution grids. Int J Climatol 25(6):693–712. doi:10.1002/joc.1181

http://badc.nerc.ac.uk
http://dx.doi.org/10.1175/1525-7541(2003)004%3C1147:tvgpcp%3E2.0.co;2
http://dx.doi.org/10.1007/s00382-009-0691-8
http://dx.doi.org/10.1007/s00382-009-0691-8
http://www.oecd.org/dataoecd/6/25/47092928
http://www.oecd.org/dataoecd/6/25/47092928
http://dx.doi.org/10.1007/s003820000094
http://dx.doi.org/10.1007/s003820000094
http://dx.doi.org/10.1007/s00382-006-0121-0
http://dx.doi.org/10.1007/s00382-006-0121-0
http://www.metoffice.gov.uk/media/pdf/9/j/HCTN_30
http://www.metoffice.gov.uk/media/pdf/9/j/HCTN_30
http://dx.doi.org/10.1002/joc.3834
http://dx.doi.org/10.1051/jp4:2006139008
http://euro-cordex.net/uploads/media/Download
http://dx.doi.org/10.1007/s003820050010
http://www.metoffice.gov.uk/media/pdf/6/5/PRECIS_Handbook.pdf
http://www.metoffice.gov.uk/media/pdf/6/5/PRECIS_Handbook.pdf
http://dx.doi.org/10.1007/s00382-013-1751-7
http://ams.confex.com/ams/84Annual/techprogram/paper_67484.htm
http://ams.confex.com/ams/84Annual/techprogram/paper_67484.htm
http://www.geos.ed.ac.uk/arclake/ARC-Lake-ATBD-v1.0
http://www.geos.ed.ac.uk/arclake/ARCLake_DPD_v1_1_1
http://www.geos.ed.ac.uk/arclake/ARCLake_DPD_v1_1_1
http://dx.doi.org/10.1175/jcli-d-11-00526.1
http://dx.doi.org/10.1175/bams-88-9-1383
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch10.html
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch10.html
http://dx.doi.org/10.1002/joc.1181


2118 C. Buontempo et al.

1 3

Murphy JM, Sexton DMH, Jenkins GJ, Booth BBB, Brown CC, Clark 
RT, Collins M, Harris GR, Kendon EJ, Betts RA, Brown SJ, 
Humphrey KA, McCarthy MP, McDonald RE, Stephens A, Wal-
lace C, Warren R, Wilby R, Wood RA (2009) UK climate projec-
tions science report: climate change projections. Technical report, 
Met Office Hadley Centre. http://eprints.soton.ac.uk/66572/

Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaf-
fin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, 
Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, 
Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, 
Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z 
(2000) Special report on emissions scenarios. Technical report, 
IPCC. http://www.grida.no/publications/other/ipcc_sr/?src=/
climate/ipcc/emission/

Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, 
Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard 
E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation clima-
tology in an ensemble of CORDEX-Africa regional climate simula-
tions. J Clim 25(18):6057–6078. doi:10.1175/JCLI-D-11-00375.1

Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact 
of new physical parametrizations in the Hadley Centre climate 
model: HadAM3. Clim Dyn 16(2–3):123–146. doi:10.1007/
s003820050009

Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2008) Simulation of 
the Indian monsoon using the RegCM3ROMS regional coupled 
model. Clim Dyn 33(1):119–139. doi:10.1007/s00382-008-0433-3

Solomon S et  al (ed.) (2007) Climate change 2007: the physical 
science basis. Contribution of Working Group I to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate 
Change, vol 4. Cambridge University Press, Cambridge

Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold Fiorino 
M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi 
K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Bal-
maseda MA, Beljaars ACM, Berg Bidlot J, Bormann N, Caires 
S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, 
Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, 
Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, 
Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasilje-
vic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J 
R Meteorol Soc 131(612):2961–3012. doi:10.1256/qj.04.176

Williams K, Chamberlain J, Buontempo C, Bain C (2014) Regional 
climate model performance in the Lake Victoria basin 1–15. 
doi:10.1007/s00382-014-2201-x

Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis 
based on gauge observations, satellite estimates, and numerical model 
outputs. Bull Am Meteorol Soc 78:2539–2558. http://www.grims-
model.org/front/bbs/paper/obs-1/CLM-OBS_1997-5_Xie_and_ 
Arkin

http://eprints.soton.ac.uk/66572/
http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/
http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/emission/
http://dx.doi.org/10.1175/JCLI-D-11-00375.1
http://dx.doi.org/10.1007/s003820050009
http://dx.doi.org/10.1007/s003820050009
http://dx.doi.org/10.1007/s00382-008-0433-3
http://dx.doi.org/10.1256/qj.04.176
http://dx.doi.org/10.1007/s00382-014-2201-x
http://www.grims-model.org/front/bbs/paper/obs-1/CLM-OBS_1997-5_Xie_and_Arkin
http://www.grims-model.org/front/bbs/paper/obs-1/CLM-OBS_1997-5_Xie_and_Arkin
http://www.grims-model.org/front/bbs/paper/obs-1/CLM-OBS_1997-5_Xie_and_Arkin

	An ensemble climate projection for Africa
	Abstract 
	1 Introduction
	2 Description of models, observations and experimental design
	2.1 GCMS
	2.2 RCMs
	2.3 Observations
	2.4 The African Great Lakes
	2.5 Selection of driving GCM runs
	2.5.1 Validation of the African climate simulations
	2.5.2 Choosing a selection to represent the spread in QUMP outcomes

	2.6 Temperature
	2.7 Rainfall

	3 Comparison between QUMP and CMIP3
	4 Validation of RCM results
	5 RCM projections for the A1B scenario
	6 Discussion
	7 Summary
	Acknowledgments 
	References


