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scale. Several different global climate models, downscaling methods, and emission scenar-
ios were used to develop extreme temperature and precipitation indices at the local scale
in the Hamilton region, Ontario, Canada. Uncertainty associated with historical and future
trends in extreme indices and future climate projections were also analyzed using daily
precipitation and temperature time series and their extreme indices, calculated from grid-
ded daily observed climate data along with and projections from dynamically downscaled
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Trend datasets of CanRCM4 and PRECIS, and the statistically downscaled CIMP5 ensemble. A bias
Downscaling correction technique was applied to all raw daily temperature and precipitation time series
Precipitation prior to calculation of the indices.

Temperature All climate models predicted increasing trends for extreme temperature indices, maxi-

mum 1-day and 5-day precipitation (RX1day and RX5day), total wet day precipitation
(PRCPTOT), very heavy precipitation days (R20mm), Summer Days (SU), and Tropical
Nights (TR) and decreasing trend for Forest Days (FD) and Ice Days (ID) in 2020s, 2050s,
and 2080s compared to present. CanRCM4 model did consistently project values in the
upper range of the CMIP5 ensemble while the PRECIS ensemble was more in-line with
the CMIP5 mean values. This difference may however be a function of different emission

scenarios used.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Characterizations of historical and future trends in climate, along with their uncertainty are frequently used at the local-
scale to understand of how climate change influences the frequency and intensity of extreme weather. This information is
regarded as critical to assessing and developing strategies for managing and mitigating the impacts of climate change on
local communities (IPCC, 2012). Many climate change impact assessment and risk management tools recommend that
decision makers employ some form of quantitative downscaled climate projection in order to characterize changes in the
frequency and intensity of extreme weather events for various future time horizons relevant to the business areas in
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question (Engineers Canada, 2015; Field et al., 2014; ICLEI, 2010; IPCC, 2012; PNW Tribal Climate Change Project, 2013;
Swanston and Janowiak, 2012). These estimates can be used in “top-down” or “bottom-up” climate change assessment
and response frameworks (Bhave et al., 2014; Brown and Wilby, 2012; Brown et al., 2012; Wilby et al., 2014) and relied upon
heavily in the development of the “probability” or “likelihood” within a typical risk score used in adaptation decision making
(e.g., Engineers Canada PIEVC). The characterization of trends and uncertainty in climate extremes is also useful in the
derivation of time series for input to process models used in wide array of planning and management sectors, such as the
hydrologic models used in flood risk management (e.g., Seidou et al., 2012; Wilby and Keenan, 2012), ecological impact mod-
els (e.g., Bar6 et al., 2014; Candau and Fleming, 2011; Matthews et al., 2014), water allocation and source protection (EBNFLO
Environmental and AquaResource Inc., 2010; Pasini et al.,, 2012; Zhou et al., 2010), and crop yield models (e.g., Kang et al.,
2009), to name a few. As such, having a sense of how strongly we may detect these trends despite uncertainty associated
with climate model outputs is critical for developing reliable decision support tools.

Despite the importance of having information on future climate trends, there is no definitive guidance, for Canadian juris-
dictions in particular, on which datasets, downscaling methods and extreme indices may be used. Charron (2014) provides
some guidance on the types of datasets available, but individual users are still faced with the challenge of selecting the
specific datasets and indices to use in their planning processes. Extreme indices also tend to exhibit greater uncertainty than
averages (Yao et al., 2013), and this adds an additional challenge to the development of information for use in climate change
assessment and planning.

The ensemble approach to climate model analysis is widely recognized as being a reliable and efficient way of elucidating
local trends associated with climate change while also characterizing uncertainties associated with projecting future climate,
particularly for use in hydrologic modeling (Honti et al., 2014; Velazquez et al., 2012). There are however, many possible
ways of constructing an ensemble of future climates that captures the full range of uncertainty associated with greenhouse
gas emission scenarios, global circulation model (GCM), and downscaling methods. Each of these potential elements within
an ensemble (e.g., emission scenario, GCM, and downscaling) greatly influences the outcome of an individual time series,
which might also vary by location and time horizon of interest. To effectively assess future climate trends in light of this
uncertainty, it is often advised that users construct and analyse an ensemble that incorporates data from a range of GCMs,
downscaling methods, and emission scenarios (EBNFLO and AquaResource, 2010; IPCC, 2014).

Utilization of ensemble or multi-model datasets for future climate projections has the advantage of capturing full range of
possible climate change scenarios. It also has the advantage of accounting for minimizing the effect of possible biases asso-
ciated with individual models and can therefore provide the user with the most robust analysis of overall trends in climate
(IPCC-TGICA, 2007; Tebaldi and Knutti, 2007). Such an analysis ensemble enables a robust assessment or projection uncer-
tainty, considering the variability in the global climate models, downscaling methods, and emission scenarios.

The purpose of this study is to illustrate the level of uncertainty associated with trend analysis on extreme weather fre-
quency and intensity indices at the local scale to determine if reliable trends can be detected, and if so what are their ranges.
This analysis was applied to a study area in Hamilton, Ontario and results will be useful in defining the nature of future cli-
mate conditions in the local scale in the region. A range of possible future greenhouse gas emission scenarios and uncertain-
ties associated with producing localized climate projections based on downscaled global climate model projections were
prepared. This information could provide a comprehensive picture of future climate trends and uncertainty that could be
used as a “likelihood” factor within climate change assessments locally. This analysis can also provide valuable information
to help guide the development of scenarios for use in process-based hydrological modeling studies in the region.

To achieve the stated goals of this study, the spatial and temporal trends in historical climate data in Hamilton and sur-
rounding area were analyzed. An ensemble of future climate projections of temperature and precipitation in the region was
constructed to analyse the trend and uncertainty of future climate projections using extreme climate indices. An ensemble of
different climate model datasets was compiled and then compared with trends in extreme temperature and precipitation
indices. Extreme indices of climate have been analyzed in another studies such as (Powell and Keim, 2015; Donat et al.,
2014; Sillmann et al., 2013; Yao et al,, 2013; Biirger et al., 2012; dos Santos et al., 2011; etc.). The general approach in these
studies was to compare historical observed trends with modelled historical trends using statistical test and graphical anal-
ysis in order to evaluate the model datasets. The focus of the current study is similar, however a more localized scale is
examined and there is an emphasis on comparison of multiple different downscaled datasets. Validation of each downscaled
dataset independently to the observed records in terms of ability to replicate statistical properties is a part of this compar-
ison, but equally important was understanding how these various downscaled datasets compare relative to one another in
the future. Currently, no such comparison is available in the literature at the local scale in the Hamilton region in Ontario.

2. Study area

The study area is centered on the City of Hamilton, located in southern Ontario, Canada at the western extent of Lake
Ontario. The geographic area analyzed for this research is the municipal boundary of the City of Hamilton, plus a 10 km buf-
fer which includes the full jurisdiction of the Hamilton Conservation Authority (Fig. 1). Annual precipitation varies between
750 and 900 mm. In the northern regions, the average air temperature ranges approximately between —7 °C (in January) and
19 °C (in July); and in the lake and southern regions, it ranges between —3 °C (in January) and 21 °C (in July). Major
physiographic features influencing the local climate are Hamilton Harbour, marking the northern limit of the city, and
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Fig. 1. Map of the study area showing the administrative boundary of the City of Hamilton and the Hamilton conservation area (HCA), along with the 10 km
surrounding area.

the Niagara Escarpment running through the middle of the city across its entire breadth, dividing the city into “upper” and
“lower” zones. The minimum elevation in the study area, near the lake Ontario, is 50 m above sea level (masl), and maximum
high point in the study area limit is 350 masl in the northern regions (City of Hamilton, http://map.hamilton.ca).

3. Methods and materials
3.1. Methodology
The basis for comparing the various downscaled datasets was three key criteria:

1. Whether downscaled datasets were successful in replicating historical trends detected in observational datasets
(determined with the Mann-Kendall test).

2. Comparing the historical observed and modelled using standard model performance statistics e.g. RMSE and statistical
tests.

3. Comparison of the downscaled datasets in the future period using graphical methods and statistical trend analysis
(Mann-Kendall), and statistical tests comparing each dataset’s probability distribution (Kolmogorov-Smirnov test) .

Ultimately these tests were useful in determining whether trends in extreme indices could be detected despite
uncertainty associated with an ensemble of climate model projections was firstly to compare how each modelled dataset
reproduced. The local datasets compared were the World Climate Research Program’s Fifth Coupled Model Intercomparison
Project Phase 5 (CMIP5); ensemble of global climate models that were downscaled using a statistical bias correction method,
along with the CanRCM4 regional climate model from the Canadian Centre for Climate Modeling and Analysis (CCCMA) and
an ensemble of PRECIS model developed by the Ontario Ministry of the Environment and Climate Change in partnership with
the University of Regina (Table 1). Together, this array of datasets is an ensemble that represents a combination of driving
global climate models, downscaling techniques and emission scenarios that cover a sufficient range of possible future
scenarios.
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Table 1
Summary of datasets used.
Dataset & description of use in study Driving global climate Scenarios Spatial Source
model analysed resolution
Re-gridded CMIP5 ensemble: Contains 23 global All available GCMs RCP 8.5 and Daily Maurer et al. (2007),
climate models, each with several runs that have been from CMIP5 RCP 4.5 ~140 km Brekke et al. (2013)
regridded to a common grid. All members were used.
CanRCM4: Regional climate model containing one run that CanESM2 RCP 8.5 and Daily - CCCma
was used RCP 4.5 40 km
PRECIS Ensemble: Regional climate model ensemble HadCM2 A2 Daily - Wang and Gordon (2013); http://
containing 5 runs that were used 25 km ontarioccdp.ca

In the first step of analysis, gridded climate station data values for the study area were extracted (96 grid cells), then
spatial and temporal trend analysis of historical climate in the region were performed to identify climate zones within
Hamilton (trend analysis procedures described in Section 3.1). For the observed climate data, an average of the 96 grids
in the study area were used for the analysis. The climate model datasets were downscaled to the statistical characteristics
of observed precipitation and mean temperature time series from this average of 96 grids. In the next step, time series data
from climate model projections for the geographic domain under consideration were extracted. Temporal trend and uncer-
tainty analysis of the raw precipitation and temperature outputs of climate models were performed to evaluate the future
trend of climate in the region. Extreme climate indices were then calculated on both the historical observed and climate
model projections (details in Section 3.2). A statistical bias-correction technique was applied on climate model outputs to
adjust the frequency distribution of climate models outputs to observed data. This represents a simple form of statistical
downscaling commonly used in the development of local climate projection datasets (Ines and Hansen, 2006). The observed
climate data were obtained from average of 96 grids in Hamilton region. The efficiency of the bias-correction technique in
adjusting the climate model outputs to observe data is evaluated and considering the efficiency of bias-correction technique,
annual trend and uncertainty of extreme indices are analyzed.

3.2. Seasonal and annual long-term trend analysis

Trend analysis was performed using the Mann-Kendall non-parametric statistical test on the seasonal and annual long-
term trend for the historical period (1950-2011) and the future period (2012—-2100) of temperature and precipitation time
series. The Mann-Kendall test (Mann, 1945; Kendall, 1955) statistically assesses if there is a linear or non-linear upward or
downward trend of the variable of interest over time. Mann-Kendall is a non-parametric test, therefore no assumption on the
distribution of time series is required, however, there are some key assumptions associated to this test such as the require-
ment for observations, obtained over time, to be independent and identically distributed that means a very long record and
non-stationarity of the time series (Mann, 1945; Kendall, 1955). Considering the uncertainty that comes from possible
violations of this test, we applied the test on long-term seasonal total and maximum precipitation and seasonal mean
and maximum temperature.

3.3. Extreme climate indices

A subset of extreme climate indices recommended by the WMO CCI/WCRP/JCOMM Expert Team on Climate Change
Detection and Indices (ETCCDI) are defined and described in detail by Zhang et al., 2011 used in different studies (e.gBlirger
et al,, 2012; Sillmann et al., 2013, etc.) were used in this study (see http://www.climdex.org/indices for downloading the
indices from a number of global datasets). In selecting these indices, we considered indices, which most describe the extreme
values of relevance to a group of local stakeholders involved in climate change adaptation planning in the study area. For
instance, the hottest or coldest day of a year, or the annual maximum 1 day or 5 day precipitation rates; and threshold
indices, which count the number of days when a fixed temperature or precipitation threshold is exceeded, for instance, frost
days or tropical nights; and percentile-based threshold indices, which describe the exceedance rates above or below a
threshold which is defined as the 10th or 90th percentile derived from the 1961-1990 base period. The extreme climate
indices used in this study are summarized in Table 2. A statistical bias-correction technique described in Section 3.3 was
applied to the daily temperature and precipitation time series of each climate model. The annual trends of indices in
2020s, 2050s and 2080s were then compared with the observed trend in 1960s and 1990s to evaluate the potential trends.

3.4. Bias correction technique

The Bias correction technique, which is used in this study to adjust the frequency distribution of all climate models to the
observed data, was adopted from Ines and Hansen, 2006 and Samuel et al., 2012 for bias-correcting daily precipitation and
temperature.

Please cite this article in press as: Razavi, T., et al.. Climate Risk Management (2016), http://dx.doi.org/10.1016/j.crm.2016.06.002



http://www.climdex.org/indices
http://ontarioccdp.ca
http://ontarioccdp.ca
http://dx.doi.org/10.1016/j.crm.2016.06.002

T. Razavi et al./Climate Risk Management xxx (2016) XxX-Xxx 5

Table 2
Climate Extreme Indices (a subset of Core Set of Indices Recommended by the ETCCDI) used for this study.

Label Index name Definition Unit

TXx Max TX Let TXx be the daily maximum temperatures in month k, period j. The maximum daily maximum temperature °C
each month is then: TXx; = max(TXx;)

TXn Min Tn Let TXn be the daily maximum temperature in month k, period j. The minimum daily maximum temperature °C
each month is then: TXny; = min(TXny;)

TNx Max TN Let TNx be the daily minimum temperatures in month k, period j. The maximum daily minimum temperature °C
each month is then: TNx,; = max(TNxy;)

TNn Min TN Let TNn be the daily minimum temperature in month k, period j. The minimum daily minimum temperature °C
each month is then: TNny; = min(TNny)

FD Frost days Let TN be the daily minimum temperature on day i in period j. Count the number of days where TNij<0°C  Days

ID Ice days Let TX be the daily maximum temperature on day i in period j. Count the number of days Days

SuU Summer days Let TX be the daily maximum temperature on day i in period j. Count the number of days where TXij >25_C Days

TR Tropical nights Let TN be the daily minimum temperature on day i in period j. Count the number of days where TNij >20 C  Days

RX1lday Max 1day Precipitation Let PR;; be the daily precipitation amount on day i in period j. The maximum 1 day value for period j mm
are: RX1dayj = max (PRij)

RX5day Max 5 day Let PRy; be the precipitation amount for the 5 day interval ending k, period j. Then maximum 5 day values for mm

Precipitation period j are: RX5day; = max (PRy;)
SDII Simple daily Let PRy; be the daily precipitation amount on wet days, PR > 1 mm in period j. If W represents number of wet mm
intensity v

days in j, then: SDII; = SDII; = (>~ PRyjw
w=1

R10mm Heavy precipitation Let PR;; be the daily precipitation amount on day i in period j. Count the number of days where PR;; > 10 mm Days

days

R20mm Very heavy Let PR;; be the daily precipitation amount on day i in period j. Count the number of days where PR;; > 20 mm Days
precipitation

CDD Consecutive dry Consecutive wet days Let PRij be the daily precipitation amount on day i in period j. Count the largest number of Days
days consecutive days where PRij <1 mm

CWD Consecutive wet Let PRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days days
days where PRij > 1m

R95p Very wet days Let PRy be the daily precipitation amount on a wet day w (PR > 1 mm) in period i and let PR, o5 be the 95th mm

percentile of precipitation on wet days in the 1961-1990 period. If W represents the number of wet days in the
period, then R95,; = >"W_, PR,,; where PRy; > PRunos
R99p Extremely wet days Let PR,,; be the daily precipitation amount on a wet day w (PR > 1 mm) in period i and let PRyng9 be the 95th mm
percentile of precipitation on wet days in the 1961-1990 period. If W represents the number of wet days in the
period, then: R99,; = S| PR,,; where PRy; > PRwnoo
PRCPTOT Total wet-day Let PRij be the daily precipitation amount on day i in period j. If I represents the number of days in j then mm
precipitation PRCPTOT; = 3! _, PR;

3.5. Bias correction for precipitation

This method works by removing bias from the precipitation frequency and density distribution for each of the 12 months
of future climate model data according to observed historical values, separately. Correcting any of these two precipitation
components (frequency and density) will also correct the monthly total precipitation. To correct the frequency of
precipitation of each month, the empirical distribution of the raw daily climate model was truncated above a threshold
value. The threshold value (Xtr) was compute for each month using Eq. (1):

Xtr = Fycyy (Faps (X)) (1)

where F and F~! indicate cumulative distribution function (CDF) and its inverse. The minimum observed precipitation

amount (X) for a day to be considered as wet is 1 mm. To correct the precipitation intensity a two-parameter gamma
distribution was fit to the truncated daily climate model and observed precipitation for each month. Then the CDF of the
truncate daily climate model precipitation was mapped to the CDF of the observed and finally the corrected model
precipitation on day i was calculated by substituting the fitted gamma CDFs into the following equation:

X = FEJbS(Fl.RCM(Xi))7 Xi >~X~, 2)
0, X; < X,

where x; is the bias-corrected precipitation value and F; gcmxi) is the CDF of daily rainfall intensity above calibrated threshold
X and Fyops is the observed data distribution. The equal time periods of 30-years future and historical climate projections
and historical observed time series described earlier are used, herein.

3.6. Bias correction for temperature

The procedure is similar to precipitation bias correction but without any frequency correction and using a normal
distribution instead of the gamma distribution. Similarly, daily climate model temperature distribution is mapped onto
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the observed distribution for each of the 12 calendar months. The CDF of normal temperature distribution was first
calculated for observed and model data, then climate model data are mapped on to the observed data. Similar to
precipitation, equal periods of historical and future projections of observed and climate models were used in the equations.

3.7. Historical observed climate datasets

Historical daily precipitation, minimum temperature (Tmin) and maximum temperature (Tmax) observation records
from 1950 to 2011 were obtained from following two sources (see Fig. 1):

1. Hamilton Airport Weather Station (1950-2011) (Environment Canada, 2014); and

2. The gridded historical weather data set from the McKenney et al., 2011 developed by the Natural Resources Canada
and Environment Canada at 0.0833 degree grid resolution (approx. 8-10 km). These gridded climate data are derived
from spatially and temporally interpolated daily temperatures and precipitation from Environment Canada weather
stations over the 1951-2011 period. In total 96 grids were located in study area.

3.8. Climate models

Three distinct future climate model datasets were used in this analysis in order to compare a variety of climate forcing
scenarios and downscaling techniques. These datasets included 83 raw re-gridded global climate model outputs from an
ensemble of 36 GCMs used in the Fifth Coupled Model Intercomparison Project (CMIP5), a run from the CanRCM4 regional
climate model, and a 3-member ensemble from the PRECIS regional climate model. The CMIP5 ensemble and CanRCM4 run
were driven by two Representative Concentration Pathway (RCP) scenarios, representing radiative forcing of 4.5 W/m?
(RCP4.5) and 8.5 W/m? (RCP8.5). The PRECIS ensemble was driven by the Special Report of Emission Scenarios’ (SRES) A2
GHG emission scenario, representing a future of high emissions. The SRES and RCP emission scenarios were derived in
different ways and are therefore not directly related, however Rogelj et al. (2012) and Stocker (2013) have compared these
different vintages of scenarios. Evident from this comparison is the fact that RCP8.5 and SRES A2 have similar trends and
magnitudes of radiative forcing, which ultimately result in similar, although not identical, ranges of global atmospheric
warming. Table 1 provides a summary of the datasets employed and Section 3.8.1 through 3.8.3 contains additional detail.

3.8.1. The fifth phase of coupled model intercomparison project (CMIP5)

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) made use of a new set of
greenhouse gas emission scenarios and new generation of GCMs produced through the Fifth Coupled Model Intercomparison
Project (CMIP5) (Taylor et al., 2012).

The Climate and Hydrology Projections archive produced by the U.S. Department of the Interior's Reclamation Bureau
(http://gdodcp.ucllnl.org/downscaled_cmip_projections/dcplnterface.html) contains a series of different downscaled climate
projections over the contiguous United States (U.S.) and southern Canada using two downscaling techniques: (1) monthly
Bias Correction and Spatial Disaggregation, and (2) daily Bias Corrected and Constructed Analogues. Additionally, this dataset
has raw re-gridded GCMs output from all models and runs used in the CMIP5 ensemble. This latter dataset was used by
extracting the time series for the three grids closest to Hamilton Airport station and subsequent Inverse Distance Weighted
(IDW) weighting. The official model and group names of this archive are given in Appendix A. Combination of GCMS
(access1-0, bcc-csm1-1, canesm2 - r1) and different number of runs and two scenarios of RCP 4.5 (moderate forcing emis-
sion scenario) and RCP 8.5 (high forcing emission scenario) from the ensemble were used in this study. The purpose of using
this dataset was to capture a large range of projections associated with the global climate model ensemble, subsets of which
are used in local downscaling.

3.8.2. CanRCM4

The Canadian Center for Climate Modelling and Analysis (CCCma) has developed a number of climate models to study
climate change and variability and to understand the various process, which govern the climate system, and to make quan-
titative projections of future long-term climate change. The Canadian regional climate model (CanRCM4) is driven by the
second generation of Canadian earth system model (CanESM2). RCP 4.5 and RCP 8.5 scenarios of this model are used in this
study.

3.8.3. PRECIS modeling system

Ministry of Environment and Climate Change of Canada generated 5-member PRECIS ensemble modeling dataset.
HadCM3 (developed by Hadley Centre of Met Office, United Kingdom model) was dynamically downscaled to resolution
of 25 km x 25 km (Wang and Gordon, 2013) driven by different boundary conditions (i.e. HadCM3Q0, Q3, Q10, Q13, and
Q15). The statistics (percentiles and averages) of climate data including precipitation and maximum/minimum temperature
are available at the Ontario Climate Change Data Portal (OCCDP, http://www.ontarioccdp.ca/). In this study three outputs
from PRECIS ensemble dataset were used. Given the analysis required, the raw time series outputs were used, as opposed
to the percentiles.
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4. Results and discussion
4.1. Historical observed trends

The observed historical climate for the variables of annual total and maximum precipitation and annual mean and
maximum temperature for the period of 1950-2011 are shown in Fig. 2. These datasets represent the basis for calculation
of the extreme indices and therefore exploring them to determine what trend can be elucidated is an important first step in
understanding the overall climatic trends and baseline variability in the region. It is largely this variability that is used to
characterize uncertainty in climate over the historical period.

Evident in Fig. 2 is the fact that the two historical datasets explored (gridded versus station observations) differ in how
they capture extreme events. The gridded historical dataset tends to mute the extreme values captured in the station-based
data. This is not unexpected, as the gridded data, even for any given cell in the region, represents a weighted-average based
on the spline technique used in the development of the gridded dataset as is described in McKenney et al. (2011). From a
graphical analysis of Fig. 2, it is also evident that the extreme values recorded in the station data are at the upper end, if
not exceeding the spatial variability associated with the gridded data. Fig. 2 also shows the range of spatial variability in tem-
perature and precipitation in the region. For example, the difference between the grid with lowest and highest annual total
precipitation is approximately 100 mm and this range for mean annual temperature is 2 °C. This range can be considered
significant, but does likely reflect key physical processes that influence the climate locally in the study area. According to
Fig. 3, the average of historical total precipitation near the Lake Ontario has been less than that above the Niagara Escarp-
ment and western regions where there is a higher elevation. Higher maximum 1-day precipitation was also recorded closer
to the lake and mountain region compared to western area. Mean annual and maximum temperature were higher near the
lake and in south part and lower in northern area with high elevation.

Seasonal and annual total, maximum 1-day and 5-day precipitation, mean and max seasonal temperature values are eval-
uated in terms of significant trend using Mann-Kendall test and the results are presented in Table 3. This analysis suggests
that at 5 percent significance level increasing trends in total annual and seasonal precipitation in Winter (DJF), Spring
(MAM), and Summer (JJA) were detected using the station data. Statistically significant annual and seasonal temperature
increases in Fall (SON) were detected in both the gridded dataset and the station data. Consistent with the graphical analysis
is the fact that statistical tests showed significant results more frequently in the station data compared to the gridded data-
set. Based on the analysis offered from Figs. 2 and 3 and Table 2, it is evident that while gridded historical datasets offer a
very useful product for understanding spatial variability and its contribution to uncertainty in climatic trends, it is important
to acknowledge that these datasets may consistently underestimate the extremes actually experienced at the local scale.

4.2. Trends in climate model datasets

Daily temperature and precipitation time series were extracted for the climate model dataset grids closest to Hamilton
Airport station using CMIP5 and CanRCM4, then Inverse Distance Weighted (IDW) average were calculated. For the PRECIS
dataset, three runs of the grid cell containing Hamilton airport station were collected and analyzed. The annual total precip-
itation, maximum 1-day precipitation, mean and maximum temperature for each climate data set in its projection period are
demonstrated in comparison with the observed climate data obtained by averaging the 96 grid values inside the area in
Figs. 4-6. We used the gridded instead of station dataset to account for the geographic variability in the whole study area
and minimize the difference between the spatial resolution of observation and climate models. The climate model datasets
in Figs. 4-6 are not yet bias-corrected in order to analyse the influence of the raw datasets on finding the trend.

Fig. 4 illustrates annual total/mean and maximum values of precipitation and temperature for all the individual models in
CIMP5 ensemble used in this study (83 members) along with its 10th and 90th percentiles (uncertainty bounds) in the pro-
jection time frame (1950-2098). For annual total precipitation and maximum 1-day precipitation, the two scenarios of RCP
4.5 and RCP 8.5 have very similar pattern and boundaries. Observed total precipitation lies in the lower boundary (between
the median and 10th percentile) of the historical modelled data for both scenarios while observed maximum 1-day precip-
itation lies in the lower and upper limits of the ensemble. For annual mean temperature the observed and modelled values
tend to demonstrate agreement, with the median of the ensemble historical models for both scenarios. The increasing trend
for annual total precipitation and mean temperature for both scenarios is visible from the graphs especially for annual mean
and maximum temperature, and these results are consistent with those of the Mann-Kendall test results (Table 4) that found
significant increasing trend for annual mean and maximum temperature and total precipitation predicted by average of
CIMP5 ensemble.

Fig. 5 shows the total and maximum annual precipitation and mean and maximum annual temperature values from
CanRCM4 model in its projection time period (1950-2100). For annual total and maximum 1-day precipitation the historical
modelled and observed values have generally good agreement except for peak values which historical model has sharper
peaks and for future projection RCP 8.5 scenario indicate sharper peak values compared to RCP 4.5. For mean and maximum
annual temperature, the historical modelled temperature is higher than the observed by approximately 3 °C for the annual
mean and 8 °C for annual maximum temperature. Annual mean and maximum temperature using this model indicate an
increasing trend, which is in line with Mann-Kendall test results (Table 4).
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Fig. 2. Historical temperature and precipitation temporal trend in Hamilton region using CANGRD data set (black thick line is the mean).

Fig. 6 shows the annual precipitation and temperature values using three members of PRECIS ensemble modeling system
in its projection time period (1960-1990, 2015-2095). Observed annual total precipitation lies in the range of historical
modelled values of three ensemble members while observed annual 1-day maximum precipitation is lower than the
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Fig. 3. Spatial pattern of historical precipitation and temperature (1950-2011) using gridded observed climate data (McKenney et al., 2011) in Hamilton

region (Schematic maps).

Table 3

Seasonal and Annual long-term trend analysis result of historical climate data (1950-2011) using Mann-Kendall test at 5 % significance level.

Variable Historical datasets Seasonal trends Annual trends
Winter (DJF) Fall (SON) Sumer (JJA) Spring (MAM)

Total precipitation (mm) McKenney et al. (2011) No trend No trend No trend No trend No trend
Hamilton Airport Station Increasing Increasing Increasing No trend Increasing

Max 1-day precipitation (mm/day)  McKenney et al. (2011) No trend No trend No trend No trend No trend
Hamilton Airport Station No trend No trend No trend No trend No trend

Max 5-day precipitation (mm/day)  McKenney et al. (2011) No trend No trend No trend No trend No trend
Hamilton Airport Station No trend No trend No trend No trend No trend

Mean temperature (°C) McKenney et al. (2011) No trend No trend No trend Increasing Increasing
Hamilton Airport Station No trend No trend No trend Increasing Increasing

Max temperature (°C) McKenney et al. (2011) No trend No trend No trend No trend No trend
Hamilton Airport Station No trend No trend No trend No trend No trend

historical modelled values. Observed annual mean and maximum temperature are generally lower than the three historical
modelled values while one of the ensemble members indicates unusual high values that cause some inhomogeneities. This
problem might be due to the wrong initial values or restart problems for this particular PRECIS run. Mann-Kendall test per-
formed on future projection of annual total and maximum precipitation and annual mean and maximum temperature at 5%
significance level (Table 4) suggest that in the long term future period (~2012-2100) scenario RCP 8.5 of CanRCM4 and
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Fig. 4. Annual temperature and precipitation trend using CMIP5 ensemble with uncertainty bounds (10th and 90th percentiles - black marginal lines) and

observed climate data (light blue line) obtained from CANGRD data set. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

average of the CIMP5 ensemble for both scenarios predict significant increasing trend of annual total precipitation. For 1-day
and 5-day maximum precipitation, only average of CIMP5 ensemble predicts increasing trend while for mean and maximum
annual temperature all climate models predict significant increasing trend.

4.3. Influence of bias correction on climate models data sets

Due to different grid size of observed and climate models, and since there are differences between the historical model
and observed time series in the annual precipitation and temperature trends (Figs. 4-6), the bias correction technique
described earlier is applied to the daily precipitation and temperature time series of climate models to adjust their frequency
and distribution to the gridded observed time series. Statistical bias-correction is usually used in local climate change impact
studies such as hydrologic modeling or trend analysis to adjust for scale difference between climate models and observed
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Fig. 5. Annual precipitation and temperature trend using CANRCM4 model - Observed climate data obtained from CANGRD data set (black lines are the
observed graphs).

climate data from stations or gridded products (e.g., Sharma et al., 2007; Samuel et al., 2012; Biirger et al., 2012). Although
bias correction effectively reduces the statistical error present in the raw climate model datasets, this does not necessarily
mean that users should place greater confidence in the accuracy of that information (Ehret et al., 2012). Bias correction is
essentially a mathematical procedure to render the dataset more statically consistent with the observed data, and essentially
amounts to “calibration” of the model results after the fact. The errors removed through bias-correction are the result of the
way physical processes are captured in the original climate models, their boundary and initial conditions, the large spatial
scale of grid cells, and the effects of the numerical algorithms used for solving the partial differential equations within the
model. These can be considered fundamental sources of uncertainty that bias correction accounts for, but which do not
necessarily make results more accurate or precise. The aim of applying bias-correction in this study was to evaluate the influ-
ence of bias correction on climate model downscaling and account for the uncertainty introduced through its application.

Another potential consideration when using bias correction relates to the coherence between climate variables. Many
statistical downscaling and bias-correction methods are applied independently to different climate variables, while
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Table 4

Mann-Kendall test results at 5% significance level for future projection of annual precipitation and temperature.

Variable & scenario

Average CIMP5 (2012-2098)

CanRCM4 (2012-2100) Average PRECIS (2015-2095)

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 A2
Total precipitation (mm/year) No trend Increasing Increasing Increasing No trend
Max. 1-day precipitation (mm/day) No trend No trend Increasing Increasing No trend
Mean temperature (°C) Increasing Increasing Increasing Increasing Increasing
Max. temperature (°C) Increasing Increasing Increasing Increasing Increasing
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dynamical climate models are able to represent the relationships among them in a physically based manner where laws
related to the conservation of mass, energy and momentum are preserved. By downscaling or bias-correcting dynamic model
outputs, the physical relationships within the earth-atmosphere system may no longer be preserved. The implication would
be that the resultant variables could be inconsistent with one another, and potentially physically implausible (e.g., rainfall
when humidity, temperature and pressure wouldn’t otherwise line-up to produce precipitation).

To compare the effect of bias-correction on the climate model datasets, statistical tests of Kolmogorov-Smirnov, and
RMSE of extreme climate indices were conducted on the datasets before and after bias correction with respect to historical
observed indices. Results of the Mann-Kendall test applied to the corrected and uncorrected datasets were also compared.
The Kolmogorov-Smirnov test (Table 5) indicates that the historical annual total precipitation obtained from all climate
models had similar probability distribution to the observed historical values. The variables of maximum 1-day for all the cli-
mate model datasets did not have the same probability distribution as the observed record. For the CMIP5 ensemble average,
probability distributions were the same only after bias-correction was applied. For the annual mean and maximum
temperature, the probability distribution of the climate models values before bias-correction were not similar to the
observed values but they became similar after bias-correction except for scenario 4.5 of CIMP5 ensemble. These results indi-
cate that the statistical bias-correction had a greater influence on the temperature time series compared to precipitation
time series. This is consistent with the graphical analysis of the climate model time series before bias-correction compared
to observed historical time series in Figs. 4-6.

Mann-Kendall test results (Table 6) indicate no significant trend in annual total and maximum precipitation of observed
and climate models before and after bias-correction. For annual mean temperature, this test indicates a significant increasing
trend for historical observed and climate models, before and after bias-correction, for annual maximum temperature no sig-
nificant trends in historical observed data sets were detected, but all the climate models simulate increasing trends before
and after bias-correction. Only CanRCM4 did not indicate any significant trends for annual maximum temperature. These
results indicate that the applied statistical bias-correction does not change the increasing or decreasing trend for almost
all major annual climate extreme indices. The RMSE between indices of climate models obtained before and after bias
correction and the indices of observed values for historical period of 1950-2010 for CanRCM4 and CIMP5 ensemble and
1960-1990 for PRECIS model runs are presented in Table 7. For each member of the CIMP5 ensemble the RMSE was calcu-
lated separately and the mean was finally calculated. These results show that bias correction did reduce the RMSE value of
extreme indices of temperature values such as TXx, substantially, but for precipitation indices of CanRCM4 it didn’t reduce
the RMSE values and for the CIMP5 ensemble it reduced RMSE values slightly. For three runs of PRECIS, the RMSE values of
both precipitation and temperature indices were improved after bias-correction.

This analysis indicates that the applied statistical bias correction can adjust the temperature data to the observed data set
more effectively compared to the precipitation data. This is also evident from Kolmogorov-Smirnov test results (Table 5) that
indicates the probability distribution of annual mean and maximum temperature become similar to the observed data after
bias-correction. For precipitation, the RMSE values did not show as much difference and this can also be verified by the
Kolmogorov-Smirnov test that indicates the probability distribution of annual total and maximum precipitation did not
change after bias correction (Table 5).

4.4. Trends in extreme climate indices over various periods

Temperature and precipitation extreme indices were calculated for 1951-2100 period, evaluated annually, and in time
periods of 30-years for observed historical and climate models in their projection periods, representing the typical normal
periods used in climate change risk assessment and planning. Observed climate indices of the 1990s (1981-2010) were com-
pared with the observed indices of 1960s (1951-1980) to determine whether historical trends found from the Mann-Kendall
test were also detected when normal period statistics are compared. The indices for the future projection periods of the
2020s (2011-2040 for CanRCM4 and CIMP5 and 2015-2040 for PRECIS), 2050s (2041-2070 for CanRCM4, CIMP5 and
PRECIS), and 2080s (2071-2100 for CanRCM4, 2071-2098 for CIMP5 and 2071-2095 for PRECIS) were also compared to
the observed ones of 1990s.

The trend of annual extreme indices in observed data (average of 96 grids) and future projection of climate models are
presented in Figs. 7 and 8. In Fig. 7, the bias-corrected temperature indices of all climate models are plotted and for precip-
itation indices in Fig. 8, the bias-corrected precipitation indices of PRECIS and the CIMP5 ensemble and the non-bias-
corrected indices of precipitation for CanRCM4 (considering RMSE values in Table 7) are plotted. Table 8 presents the
observed indices of 1990s and 1960s and future projections of indices by climate models in 2020s, 2050s, and 2080s before
and after bias-correction. Table 9 presents the 10th and 90th percentile uncertainty bound of future model projections of
bias corrected and non-bias corrected climate indices. According to Table 8 bias corrected and non-bias corrected indices,
reveal similar increasing or decreasing trend for most of the indices in historical period of 1990s compared to 1960s. This
is in line with the results of Mann-Kendall test for annual indices (Table 6). This analysis shows annual maximum of max-
imum temperature (TXx) indicates increasing trend over all future normal periods compared to the current period. The
observed annual TXx in 1990s increased by +0.63 °C (insignificant increase) compared to observed equal value of 1960s,
and from the bias corrected indices it can be seen that median index of the CIMP5 ensemble, CanRCM4 and mean index
of PRECIS predicted an increase of maximum +2.4, +1.4, and +4.6 °C in 2020s and +5.4, +3.6, +6 °C in 2050s and +7.7, +4.6,
and +8 °C, respectively, compared to the observed historical period of 1990s. Furthermore, Table 9 reveals that TXx is
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Table 5
The Kolmogorov-Smirnov test results at 5% significance level.
Variable Before bias correction After bias correction
Average of CanRCM4 Average of PRESIC Average of CanRCM4 Average of PRESIC
CIMP5 ensemble CIMP5 ensemble
ensemble ensemble
rcp 4.5 rcp 8.5 rcp 4.5 rcp 8.5 A2 rcp 4.5 rcp  rcp 4.5 rcp 8.5 A2
8.5
Annual total precipitation (mm) Sim.  Sim.  Sim.  Sim.  Sim. Sim.  Sim. Sim. Sim.  Sim.
Annual Max 1-day precipitation Non- Non- Non- Non- Non-sim. Sim. Sim. Non- Non- Non-sim.
(mm/day) sim. sim. sim. sim. sim. sim.
Annual Mean temperature (°C) Non- Non- Non- Non- Non-sim. Non- Sim. Sim. Sim. Sim.
sim. sim. sim. sim. sim.
Annual Max temperature (°C) Non- Non- Non- Non- Non-sim. Non- Sim. Sim. Sim. Sim.
sim. sim. sim. sim. sim.

Notes: Sim. = Similar probability distribution based on results of the Kolmogorov-Smirnov test.
Non-sim. = Non_similar probability distribution based on results of the Kolmogorov-Smirnov test.
" The indices for each member of ensemble are first calculated and then the average is taken.

predicted to be in the range of 39.1-45.6 °C in 2020s, 40.8-47.8 °C in 2050s, and 41.1-48.1 °C in 2080s. Similarly, for min-
imum of maximum temperature (TXn), maximum of minimum temperature (TNX) and minimum of minimum temperature
(TNn), the observed historical data of 1990s indicated increase of 1, 1.5, and 0.5 °C compared to 1960s and similarly all cli-
mate models predicted increasing trends for the 2020s, 2050s, 2080s as could be seen in Table 8. Observed mean annual
number of Forest Days (FD) and Ice Days (ID) indicated decreasing trends and observed values of Summer Days (SU) and
Tropical Nights (TR) indicated increasing trend over the historical period of 1990s compared to 1960s.

All climate models predicted decreasing trends of FD and ID and increasing trends of SU and TR in 2020s, 2050s and 2080s
compared to current period of 1990s. Furthermore, for precipitation indices, observed maximum 1-day precipitation (RX1-
day) increased by 5.1 mm in 1990s compared to 1960s and climate models predict the increase of 14.5-76.8 mm in 2020s,
and increase of 10.3-98.3 mm in 2050s, and increase of 11.8-64.5 mm in 2080s. Observed maximum 5-day precipitation
(RX5day) decreased by 11.3 mm in 1990s compared to 1960s but all climate models predicted increasing trends of RX5day
in 2020s, 2050s and 2080s compared to 1990s. All climate models predict increase of R20mm by 1-3 days per year in 2020s,
2050s and 2080s. Maximum consecutive dry days (CDD) indicated decreasing trends from 1960s to 1990s and CIMP5 median
predict that trend to continue, CanRCM4 and PRECIS however predicted increasing trend compared to 1990s. All climate
models predict increasing trend for maximum Consecutive Wet Days (CWD) in 2020s, 2050s, and 2080s compared to
1990s. For R95p (very wet days) and R99p (extremely wet days) all climate models predict increasing trend in 2020s,
2050s and 2080s compared to 2020s. Annual total wet precipitation (PRCPTOT) demonstrated increasing trend in both
historical observed from 1960s to 1990s and by all climate models during 2020s, 2050s and 2080s compared to 1990s.

Annual trend of extreme temperature indices in Fig. 7 demonstrate increasing trend TXx, TXn, TNn, TNx, TR, SU and
decreasing trend of FD and ID over the long term period of 1950-2100, and the observed time series are within the uncer-
tainty bounds of climate models prediction. This trend is in line with the detected trend from normal 30-year periods
obtained from Table 8 and 9. Furthermore, annual trends of extreme precipitation in Fig. 8 demonstrate that for PRCPTOT,
R 90p and R 20 mm there is an increasing trend detected in normal 30-year periods (Tables 8 and 9). For other precipitation
indices such as RX1day, RX5day, CDD and CWD, the trend detected from normal 30-year periods is not significant or it’s not
consistent in terms of different observed historical and climate models future periods, and it cannot be visually detected
from the plot. Additional discussion on the results of indices is provided in Section 4.5.

4.5. Implications of using downscaled datasets for understanding local impacts of climate change on extremes

Changes in climate extremes are of great interest to decision makers at the local scale because they imply shifts in the
types of hazards that are often of greatest concern to communities (Cheng et al., 2012; IPCC, 2012). Despite the importance
of changes in extreme climate, end-users are often challenged to determine the most appropriate climate model dataset for
their purposes, with factors of information accuracy, uncertainty and ease-of-use/cost being primary factors. There are sev-
eral critical challenges directly related to each of these factors however, that were revealed in the case study presented
throughout this study, which will be explored further throughout this section:

1) Imprecision of downscaled climate model datasets;
2) Compounding of uncertainty due to inherent ambiguity about future emission scenarios; and
3) Added value to ease-of-use and cost of downscaling.
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Table 6

Mann-Kendall test results at 5% significance level.

Variable

Before bias correction

After bias-correction

Obs. Average of the CIMP5 CanRCM4 Average of the PRESIC
ensemble ensemble

rcp 4.5 rcp 8.5 rcp 4.5 rcp 8.5 A2

Average of the CIMP5 CanRCM4 Average of the PRESIC
ensemble ensemble

rcp 4.5 rcp 8.5 rcp 4.5 rcp 8.5 A2

Annual total precipitation (mm)

Annual Max. 1-day precipitation
(mm/day)

Annual Mean temperature (°C)

Annual Max temperature (°C)

No trend No trend No trend No trend No trend No trend
No trend No trend No trend No trend No trend No trend

Increasing Increasing Increasing Increasing Increasing Increasing
No trend Increasing Increasing Increasing Increasing Increasing

No trend No trend No trend No trend No trend
No trend No trend No trend No trend No trend

Increasing Increasing Increasing Increasing Increasing
Increasing Increasing No trend No trend Increasing
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Table 7
RMSE of annual climate indices calculated for historical climate model output and observed data, before and after bias-correction.

Extreme index

RMSE of climate indices before bias-correction

RMSE of climate indices after bias-correction

Can RCM4 CIMP5 PRECIS Can RCM4 CIMP5 PRECIS
Mean 1 2 3 Mean 1 2 3
1950-2010 1960-1990 1950-2010 1960-1990
TXx 8.9 49 3.8 10.2 4.7 22 22 3.6 3.6 34
TXn 4.6 5.2 39 4.4 34 4.1 4.8 34 37 3.2
TNx 4.0 3.5 24 6.9 3.8 1.6 2.2 1.6 23 1.6
TNn 52 6.6 4.9 6.1 5.4 5.1 4.8 5.6 4.4 4.9
FD 37.7 20.6 14.2 18.5 16.0 14.7 15.9 141 11.8 13.2
ID 28.1 28.0 219 24.4 191 173 20.7 213 234 18.9
SU 54.1 32.8 20.6 28.8 13.6 19.2 18.7 17.5 18.1 121
TR 19.2 17.6 10.1 28.9 20.5 59 59 5.8 5.5 4.1
RX1day 275 343 31.6 304 41.8 28.9 33.2 22.0 22.6 24.0
RX5day 355 46.0 38.2 43.5 56.2 38.4 45.1 26.3 29.6 30.0
SDII 1.3 3.7 23 2.2 2.5 1.1 3.1 1.0 1.0 0.8
R10mm 7.3 26.2 8.0 7.7 7.5 7.6 25.0 9.1 7.2 7.0
R20mm 4.4 6.3 5.9 4.4 5.0 4.0 53 3.6 3.1 3.2
CDD 7.0 154 7.4 103 7.0 5.8 14.2 6.7 6.5 6.4
CWD 2.3 10.5 23 2.7 23 2.1 7.1 2.2 23 2.3
R95p 133.7 120.6 261.5 134.7 170.9 152.8 117.6 174.8 125.0 1329
R99p 88.3 70.1 135.7 81.8 106.6 93.2 62.7 119.1 85.1 93.2
PRCPTOT 174.7 213.0 202.7 171.2 169.7 173.7 109.7 160.3 148.7 136.2
Minimum of TXn Frost Days(FD)

N ciMPS-rcp4.5

CIMP5-rcp8.5

10th Percentile
90th Percentile

0
= = = CanRCM4-rcpd.5 _E‘ 100
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Fig. 7. Trend of extreme temperature indices calculated using CanRCM4, CIMP5 ensemble and PRECIS models and observed climate data of CANGRD
(average of 96 grids) (black lines are the observed graphs).

At the local scale, downscaled climate model projections tended to be imprecise for both the historical and future periods,
where they demonstrated great variability among datasets in the simulated values of extreme indices for any particular year.
Generally, temperature-based indices exhibited less inter-dataset variability compared to precipitation indices over the
historical period. That being said, individual datasets within the ensemble tended to agree with respect to the direction
of trends for the extreme indices and in their overall variability compared with the historical record. Additionally, trends
over the historical period were generally projected to continue into the future.

From a quantitative perspective however, the range of values shown among the climate model datasets in the historical
period tended to exceed natural variability within that same timespan when examining the full range of values (min-max
range of the CMIP5 ensemble) (Figs. 7 and 8). When removing outliers and looking at the 10-90th in the CMIP5 ensemble
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Fig. 8. Trend of extreme precipitation indices calculated using CanRCM4, CIMP5 ensemble and PRECIS models and observed climate data of CANGRD
(average of 96 grids) (black lines are the observed graphs).

however, historical variability actually tended to approach or exceed these limits, indicating that this range can likely
represent an accurate picture for the historical period. When comparing the two dynamically downscaled datasets of the
PRECIS ensemble and CanRCM4 over the historical period, it is evident that the two tended to demonstrate similar ranges
of variability as the 10th to 90th percentile range in the CMIP5 ensemble. It should be noted, however, that certain timespans
within the historical period (e.g., 1990-2011) precipitation extremes for the observed and dynamically downscaled
CanRCM4 tended to be at the low end of the CMIP5 ensemble. While this suggests that CanRCM4 did provide a more accurate
representation of this variable, this may be a function of the bias correction and not necessarily the CanRCM4 model itself.
This points to the fact that caution should be applied when relying on bias correction.

For the future periods, it is notable that the 10th-90th percentile range within the CMIP5 ensemble was almost identical
as the range shown over the historical period. Among the dynamically downscaled datasets, the CanRCM4 model did con-
sistently project values at the upper range of the CMIP5 ensemble while the PRECIS ensemble was more in-line with the
CMIP5 mean. This difference may however be a function of different emission scenarios used (RCPs vs. A2). Nonetheless,
guidance on climate model projections does suggest using as many possible scenarios as is feasible in an assessment
(IPCC, 2014), and both A2 and RCP8.5 represent high-emission conditions for the future. From an uncertainty standpoint,
future scenarios are also not necessarily accurate representations of the future but rather plausible cases. Therefore, the
numerical ranges represented should not be regarded as accurate, especially when bias correction may alter the signal
produced in raw climate model output.

This previous discussion begs the question of the costs versus benefit to end users of employing a single dynamically
downscaled dataset versus an ensemble of GCMs for extreme analysis. Given that the trends generally tended to agree
among all datasets, with some exceptions in raw time series trends (Table 4), and since the dynamically downscaled datasets
produced maximum values that were either within or only slightly exceeding that of GCMs, it is likely acceptable for users to
rely on either dataset for understanding extremes. Depending on the application and resources available to users, results of
this study suggest that relying on as many possible raw GCMs, downscaling methods and scenarios is still likely the best way
of understanding uncertainty and developing robust local information on climate trends. Ensembles do offer advantages of
being able to more specifically characterize the full distribution of plausible futures in an area, which is advantageous in both
bottom-up and top-down analyses and planning.

Regardless of which datasets users rely on, it is critical that they regard the fact that any downscaled dataset is only a
representation of historical or future conditions and that there is inherent uncertainty in the way models are conceptualized
and scenarios run. Although dynamically downscaled datasets offer a more sophisticated conceptualization of the local
climate, they are still driven by GCM boundary conditions and make additional assumptions in their parameterization, which
need to be considered by users.
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Table 8
Estimates of temperature and precipitation extreme indices for various historical and future normal periods before and after bias correction.
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Variable Observed CIMP5 ensemble (median) CanRCM4 PRECIS mean

1960s 1990s 2020s 2050s 2080s 2020s 2050s 2080s 2020s 2050s 2080s

rcp4.5 rcp8.5 rcp4.5 rcp8.5 rcp4.5 rcp8.5 rcp4.5 rcp8.5 rcp4.5 rcp8.5 rcp4.5 rcp8.5 A2

Before bias-correction
TXx(°C) 36.5 37.1 39.73 39.9 41 43 40.6 452 473 46.9 49.2 50.4 49 51 47 49 52
TXn(°C) -18 -17 -16 -16 -14 -12 -12.7 -8.1 -13.7 -85 -10 -7 -11 - -13 -9 -8
TNx(°C) 23 25 28 28 28 29 28 31 30.8 30 30 30 32 32 32 35 38
TNn(°C) -27 -27 -27 -27 -25 -21 —22 -15 -26 —26 -20 -20 -25 -25 -21 -16 -15
FD(days/year) 141 131 116 115 109 101 104 83 83 88 62 66 57 57 111 93 76
ID(days/year) 58 51 47 49 49 44 49 30 18 10 8 4 7 3 30 17 8
SU(days/year) 62 63 72 72 82 90 89 109 135 135 139 145 147 163 91 106 125
TR(days/year) 4 7 36 38 49 60 58 85 36 35 47 45 56 54 40 62 78
RX1day(mm) 60 66 55 56 60 62 57 64 146 138 164 226 126 138 175 170 162
RX5day(mm) 98 87 105 102 113 115 108 121 152 164 208 246 186 164 266 216 238
SDII(mm) 6.5 6.3 5.8 5.8 6 6.1 6.1 6.4 7.7 8.1 7.9 8 8 8.1 8 9 9
R10mm(days/year) 26 26 26 26 28 28 29 30 27 27 27 27 25 27 26 26 28
R20mm(days/year) 6 6 7 7 8 8 8 9 9 12 11 11 10 12 10 11 12
CDD(days) 31 25 22 24 24 26 25 26 43 53 24 24 39 53 37 37 37
CWD(days) 10 10 18 17 17 18 18 18 10 16 8 12 16 16 8 12 8
R95p(mm/year) 141 142 239 247 277 283 280 327 212 278 242 271 269 278 288 319 349
R99p(mm/year) 55 54 71 77 91 104 103 149 81 106 86 99 107.2 106 108 124 130
PRCPTOT(mm/year) 848 873 1001 1002 1006 996 1026 1024 916 992 952 985 922 992 878 900 936
After bias-correction
TXx(°C) 36.5 37.1 38.8 39.5 40.2 42.5 40.9 44.8 38.1 38.9 39.7 40.7 39.8 41.7 41.7 431 452
TXn(°C) -18.9 -17.9 -16.2 -17 -13.9 -13.1 -123 -9 -17.8 -13.2 -14.2 -10.7 -10.7 -8.8 -144 -10.2 -8.7
TNx(°C) 23.6 25.1 26.7 26.8 27 29 279 31.7 26.1 26 25.9 26 26 27.3 28.9 31 33
TNn(°C) -275 -27 -25.5 -253 -23.5 -22.8 -21.3 -17.9 -259 -24.7 -213 -234 -23.5 -244 —24 -18.8 -17.3
FD(days/year) 141 131 122 120 111 101 104 76 126 130 107 111 112 102 119 102 86
ID(days/year) 58 51 43 41 34 28 31 17 45 38 31 22 23 10 37 23 13
SU(days/year) 62 63 84 84 97 106 107 129 88 81 93 101 102 128 83 99 124
TR(days/year) 4 7 13 15 20 30 27 55 12 12 19 18 18 23 15 32 46
RX1day(mm) 60 66 80 81 72 88 75 85 94 130 140 158 114 131 144 163 117
RX5day(mm) 98 87 119 127 126 135 129 145 124 172 180 180 170 143 227 200 156
SDII(mm) 6.5 6.3 6.5 6.8 6.7 7 6.8 74 6.7 6.6 6.7 6.8 6.7 6.9 6.6 6.9 7.1
R10mm(days/year) 26 26 26 27 28 29 28 30 25 23 26 26 23 25 23 24 26
R20mm(days/year) 6 6 7 8 8 10 8 11 7 7 8 8 7 9 6 8 8
CDD(days) 31 25 26 25 25 29 27 27 24 24 21 24 28 21 26 30 25
CWD(days) 10 10 12 11 12 12 12 12 10 10 11 13 16 12 9 12 9
R95p(mm/year) 141 142 192 187 214 234 224 281 203 199 221 248 228 271 253 297 307
R99p(mm/year) 55 54 59 71 83 91 92 119 74 81 82 86 93 98 112 125 139
PRCPTOT(mm)/year) 848 873 881 896 913 946 927 991 899 892 925 940 891 965 871 878 888
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Table 9
Observed climate extreme indices in 1960s and 1990s and uncertainty bound of 10th and 90th percentile of bias—corrected and non-bias-corrected climate
indices in 2020s, 2050s, and 2080s.

Variable Observed Uncertainty bound of climate model projections

1960s 1990s 2020s 2050s 2080s

10th P 90th P 10th P 90th P 10th P 90th P

TXx(°C) 36.5 37.1 39.1 45.6 40.8 47.8 411 48.1
TXn(°C) -18.9 -17.9 -16.6 -13.7 -13.7 -10.1 -11.6 -8.6
TNx(°C) 23.6 25.1 26.7 303 273 30.3 28.1 32.6
TNn(°C) -27.5 -27.0 -26.0 -24.9 -233 -20.1 —24.2 -17.5
FD(days/year) 141 131 112 122 95 109 76 104
ID(days/year) 58 51 32 45 18 33 9 28
SU(days/year) 62 63 82 91 94 106 108 129
TR(days/year) 4 7 14 36 23 49 32 58
RX1day(mm) 60.9 66.0 80.5 142.8 76.3 164.3 77.8 130.5
RX5day(mm) 98.6 87.3 121.1 170.5 128.7 206.4 132.8 168.9
SDII(mm) 6.5 6.3 6.5 7.5 6.7 7.7 6.7 7.9
R10mm(days/year) 26 26 25 27 26 28 25 29
R20mm(days/year) 6 6 7 9 8 11 8 11
CDD(days) 31 25 24 34 24 28 25 35
CWD(days) 10 10 10 15 12 13 12 16
R95p(mm/year) 141.0 142.7 200.8 252.2 236.3 282.0 269.7 301.3
R99p(mmy/year) 55.9 54.7 72.5 100.3 86.6 103.6 99.8 128.1
PRCPTOT(mm)/year) 848 873 884 973 916 977 923 992

5. Conclusions

This study focussed on analyzing past and future trends in local extreme climate (temperature and precipitation) in
Hamilton region in Ontario, Canada, using a range of downscaled climate model outputs. Data analysis also included bias-
correction to elucidate how this commonly applied transformation affects finding and interpretation of trends in extreme
indices.

Results of this study demonstrated that statistical bias-correction can significantly reduce the RMSE of most of the annual
extreme indices of temperature. For the precipitation extreme indices bias correction did not improve the representation of
annual extreme indices. Bias-corrected and non-bias corrected indices indicated similar increasing and decreasing trends for
most of the indices, however there was still great variability in the range of values among datasets. No single dataset was
consistently more accurate than any other over the historical period. All climate models predicted an increasing trend for
total wet day precipitation (PRCPTOT) and maximum consecutive wet days (CWD), very heavy precipitation days
(R20mm), Summer Days (SU) and Tropical Nights (TR) and a decreasing trend for Frost Days (FD) and Ice Days (ID) in
2020s, 2050s, and 2080s compared to present.

With respect to comparing different climate model datasets, it was evident that over the historical period, the CMIP5
dataset consistently set the largest range of values. The CanRCM4 dataset projected future values in the upper range of
the CMIP5 ensemble, while the PRECIS dataset’s values were consistently lower. Ultimately, this suggests that from a
usage standpoint, no single dataset can be regarded as “better” than any other. That being said, there are distinct
advantages to previously recommended guidance in the climate modeling community of users relying on an ensemble
of climate model datasets whether using a top-down or bottom-up approach to assessing and responding to climate
extremes.

Acknowledgments

We acknowledge help and support from all individuals and organizations for this work. In particular thanks to funding
agencies including Mitcas, City of Hamilton, Hamilton Conservation Authority (HCA), Matrix Solution Inc. Part of this
work was funded by the National Science and Engineering Research Council (NSERC) through the NSERC Canadian Flood-
Net Kind support and data from the Ontario Climate Consortium (OCC), McMaster Centre for Climate Change (MCCC),
Ministry of Environment and Climate Change (MOECC) and Environment Canada (EC) are also acknowledged. We also
acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for
CMIP, and we thank the climate modeling groups (listed in Table A) for producing and making available their model
output.

Please cite this article in press as: Razavi, T,, et al.. Climate Risk Management (2016), http://dx.doi.org/10.1016/j.crm.2016.06.002



http://dx.doi.org/10.1016/j.crm.2016.06.002

20 T. Razavi et al./Climate Risk Management xxx (2016) XxX-Xxx

Appendix A
List of CIMP5 models and their ensemble datasets.
Modeling center (or Group) Institute ID Model name
Commonwealth Scientific and Industrial Research Organization (CSIRO) and CSIRO - BOM ACCESS 1.0, ACCESS 1.3
Bureau of Meteorology (BOM), Australia
Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1.1, BCC-CSM1.1(m)
Instituto Nacional de Pesquisas Espaciais (National Institute for Space INPE BESM OA 2.3*
Research)
College of Global Change and Earth System Science, Beijing Normal University GCESS BNU-ESM
Canadian Center for Climate Modelling and Analysis CCCMA CanESM2, CanCM4, CanAM4
University of Miami - RSMAS RSMAS CCSM4 (RSMAS)*
National Center for Atmospheric Research NCAR CCSM4
Community Earth System Model Contributors NSF-DOE-NCAR CESM1(BGC), CESM1(CAM5), CESM1(CAM5.1,
FV2), CESM1(FASTCHEM), CESM1(WACCM)
Center for Ocean-Land-Atmosphere Studies and National Centers for COLA and NCEP CFSv2-2011
Environmental Prediction
Centro Euro-Mediterraneo per | Cambiamenti Climatici CMCC CMCC-CESM, CMCC-CM, CMCC-CMS
Centre National de Recherches Météorologiques/Centre Européen de CNRM - CERFACS CNRM - CM5
Recherche et Formation Avancée en Calcul Scientifique CNRM - CM5-2
Commonwealth Scientific and Industrial Research Organization in CSIRO-QCCE CSIRO-MK3.6.0
collaboration with Queensland Climate Change center of Excellence
EC-EARTH consortium EC-EARTH EC-EARTH
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, LASG-CESS FGOALS-g2
Tsinghua University
LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences LASG-IAP FGOALS-g1, FGOALS-s2
The First Institute of Oceanography, SOA, China FIO FIO-ESM
NASA Global Modeling and Assimilation Office NASA GMAO GEOS-5
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM2.1, GFDL-CM3, GFDL-ESM2G, GFDL-
ESM2M, GFDL-HIRAM-C180, GFDL-HIRAM-C360
NASA Goddard Institute for Space Studies NASA GISS GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-
cC
National Institute of Meteorological Research/Korea Meteorological NIMR/KMA HadGEM2-AO
Administration
Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by MOHC (additional HadCM3, HadGEM2-CC, HadGEM2-ES,
Instituto Nacional de Pesquisas Espaciais) realizations by HadGEM2-A
INPE)
Institute for Numerical Mathematics INM INM-CM4
Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR
Japan Agency for Marine-Earth Sciences and Technology, Atmosphere and MIROC MIROC-ESM, MIROC-ESM-CHEM

Ocean Research Institute (The University of Tokyo) and National Institute
for Environmental Studies
Atmosphere and Ocean Research Institute (The University of Tokyo), and MIROC MIROC-ESM, MIROC-ESM-CHEM
National Institute for Environmental Studies, and Japan Agency for Marine-
Earth Science and Technology

Max-Planck-Institut for Meteorologie (Max Planck Institute for Meteorology) MPI-M MPI-ESM-MR, MPI-ESM-LR, MPI-ESM-P
Meteorological Research Institute MRI MRI-AGCM3.2H, MRI-AGCM3.2S, MRI-CGCM3,
MRI-ESM1
Nonhydrostatic lcosahedra Atmospheric Model Group NICAM NICAM.09
Norwegian Climate Centre NCC NorESM1-M, NorESM1-ME
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