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Abstract 
 
Monthly or annual 5km x 5km gridded datasets covering the UK are generated for the 
1961-2000 period, for 36 climatic parameters.  As well as the usual elements of 
temperature, rainfall, sunshine, cloud, wind speed, and pressure, derived temperature 
variables such as growing season length, heating degree days, and heat and cold wave 
durations, and further precipitation variables such as rainfall intensity, maximum 
consecutive dry days, and days of snow, hail and thunder, are analysed. 
 
The analysis process uses geographical information system (GIS) capabilities to combine 
multiple regression with inverse-distance weighted interpolation.  Geographic and 
topographic factors such as easting and northing, terrain height and shape, and urban and 
coastal effects are incorporated either through normalisation with regard to the 1961-90 
average climate, or as independent variables in the regression.  Local variations are then 
incorporated through the spatial interpolation of regression residuals.  
 
For each of the climatic parameters, the choice of model is based on verification statistics 
produced by excluding a random set of stations from the analysis for a selection of months, 
and comparing the observed values with the estimated values at each point.  This gives 
some insight into the significance, direction, and seasonality of factors affecting different 
climate elements.  It also gives a measure of the accuracy of the method at predicting values 
between station locations. 
 
The datasets are being used for the verification of climate modelling scenarios and are 
available via the internet. 
 
 
Keywords: Climate, United Kingdom, Spatial Interpolation, Regression, Gridded Datasets 
 
 
1. Introduction  
 
The Met Office has a historical database containing observations of weather elements.  
These observations come from an irregularly spaced and gradually evolving network of 
meteorological stations across the United Kingdom.   
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The aim of this project is to add value to these data by producing a consistent series of 
climatic statistics which enables comparisons to be made across space and time.  In order to 
do this, methods have been developed to create gridded datasets from the point data. 
 
There is increasing demand for gridded datasets of climate variables from fields such as 
hydrology, forestry, ecology, agriculture, climate change research, and climate model 
verification.  Consequently there have been numerous attempts made at spatial 
interpolation, using a variety of methods.  Available interpolation methods include inverse-
distance weighting, polynomial surfaces, geostatistics e.g. kriging, and smoothing splines.   
Most authors have found that topographical and other influencing factors need to be 
incorporated, and this has been done prior to interpolation through regression (Agnew and 
Palutikof, 2000; Ninyerola et al., 2000) or de-normalisation (Brown and Comrie, 2002; New 
et al., 1999), or as part of a more complex model, for example co-kriging (Goovaerts, 
2000).   
 
Vicente-Serrano et al. (2003) and Jarvis and Stuart (2001) compare several of these 
methods.  Overall, there seems to be no clear preference for any method, and different 
methods often give similar error statistics.  Results depend on the characteristics of the area 
under study, the data available, and the independent variables used.   
 
This project uses inverse-distance weighted interpolation of regression residuals, and in 
some cases prior normalisation of the data.  These methods have been developed from 
those described by Lee et al. (2000).  The United Kingdom has a wide range of conditions 
which require terrain shape, coastal and urban effects to be used in a regression model.  
 
There may be potential for improving the results further, for example by including further 
factors into the regression model.  Johansson and Chen (2003) and Kyriakidis et al. (2001) 
include predictors to model interaction with the lower atmosphere, such as wind and 
humidity, for precipitation mapping.  Daly et al. (2003) incorporate expert knowledge into 
their regression model.  The use of a locally varying (Price et al., 2000) or geographically-
weighted regression model (used for precipitation by Brunsdon et al., 2001) also merits 
further investigation.  Agnew and Palutikov (2000) used stepwise regression with a large 
range of variables, including slope and aspect, maximum and mean elevations within 
different radii and direction sectors, distance and direction to coast, and proportion of sea 
within different radii to model temperature and precipitation in the Mediterranean.  Slope 
was chosen for temperature in all seasons, but for precipitation the maximum elevation, 
usually within 100km in different directions, was more important. 
 
Most authors have only been concerned with temperature and/or precipitation, although 
New et al. (1999) created global gridded monthly datasets for a range of variables.  This 
project is notable for the range of climate elements tackled: gridded data sets at 5km by 
5km resolution over the UK have been produced for 36 monthly or annual climate 
variables, for the period 1961-2000.  This is a total of over 14,000 grids, each comprising 
9,700 values across the UK.  The start date of 1961 was chosen because there is a significant 
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increase in the availability of digitised data from this point.  An extension of the series back 
beyond 1961 is planned for some key variables. 
 
Twenty-four of the climate variables have been produced with funding from the UK Climate 
Impact Programme (UKCIP), and are freely available for research purposes via the Met 
Office web site.  The data sets are being used for the verification of climate change 
scenarios, as well as the creation of areal climatic series against which the recent climate can 
be compared. 
 
 
2. Data 
 
The density of the station network varies between elements, from an average over the 40 
year period of one station per 59 x 59 km2 over the UK for pressure, cloud and wind (70 
stations), to 29 x 29 km2 for sunshine (290 stations), 24 x 24 km2 for hail, thunder, and 
grass minimum temperature (430 stations), 21 x 21 km2 for maximum and minimum 
temperature (540 stations), and 7 x 7 km2 for rainfall (4400 stations).   
 
The density of the network varies gradually throughout the period 1961-2000, as can be 
seen in Figure 1.  The density of the rainfall network increases to a peak in 1974 before 
decreasing gradually.  For temperature, the density is quite stable, peaking in 1994, and for 
sunshine the peak is in 1970, followed by a steady decline in station numbers. 
 
There are considerable spatial variations, with comparatively sparse networks in certain 
areas, especially those which are sparsely populated, e.g. the Scottish Highlands.  Figure 2 
shows an example of the network of stations used, in this case the temperature network 
(climate stations reporting daily) for January 2000, and the subset of stations which also 
recorded pressure (synoptic stations reporting hourly). 
 
The daily observations made at these stations have passed through a rigorous quality 
control procedure, with substitutions made for poor quality and some missing data.  Basic 
range and consistency checks have been applied to hourly data.  These data have then been 
used to calculate monthly and annual climate averages, totals, and extremes for a range of 
variables. These statistics have been loaded to an Oracle database of climate statistics and 
used as the source of input data for the gridding process. 
 
The annual statistics were derived from temperature (T) or rainfall data using the following 
definitions: 
• Growing season length = period (days) bounded by daily T_mean > 5 °C and < 5 °C 

(after 1st July) for ≥ 6 days. 
• Heating Degree Days = ∑ 15.5 – daily T_mean for T_mean < 15.5 °C. 
• Growing Degree Days = ∑ daily T_mean – 5 for T_mean > 5 °C. 
• Heat Wave duration = ∑ days with daily T_max – 1961-1990 daily normal > 3 °C for ≥ 6 

consecutive days. 
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• Cold Wave duration = ∑ days with 1961-1990 daily normal - daily T_min > 3 °C for ≥ 6 
consecutive days. 

o Heat Wave and Cold Wave durations are calculated separately for summer and 
winter half-years. 

• Consecutive Dry Days = Maximum number of consecutive days with rainfall < 0.2 mm. 
• Rainfall Intensity = Total rainfall on Raindays ≥ 1 mm / Number of Raindays ≥ 1 mm.  
 
For rainfall variables, stations were not used for gridding if they have any missing data in the 
month, because of the high daily variability of rainfall.  For other elements, station months 
with up to two missing days were used in the analysis. 
 
All available monthly data is used in the analysis in order to make maximum use of the 
information available and ensure that the most accurate possible representation of the 
climate can be made for each month.  Thus, unlike some studies where a constant set of 
long-period stations is used (Ninyerola et al. 2000), this study also makes use of data from 
stations with short and intermittent records.  Consequently, the network of stations used 
changes slightly each month, and the methods used are designed in order to minimise the 
impact of these changes on the consistency of the datasets through time. 
 
 
3. Methods 
 
3. 1 Gridding 
 
The production of the monthly and annual grids is carried out using functionality 
programmed into the ESRI ArcView 3.2 GIS.  Code has been written in Avenue (the ArcView 
scripting language) and Visual Basic that allows the user to take a set of irregularly spaced 
point data (i.e. station observations) and create a regular grid of values from them. 
 
The method is a two-stage process of multiple regression of the climate variable (which may 
be normalised first) with geographic factors as the independent variables, followed by 
interpolation of the model residuals.  The regression surface and the interpolated residual 
surface are then added together to get the final gridded datasets, which are de-normalised if 
necessary.   
 
Many meteorological elements exhibit dependencies on geographic features, especially 
topography.  Two options are available for reducing or removing geographic effects prior 
to interpolation, either or both of which can be used. 

• normalisation i.e. either subtracting the long-term average (LTA) from the raw 
values, or dividing the raw values by the LTA (for rainfall and sunshine); 

• conversion to regression residuals i.e. creating a model of geographic effects using 
regression analysis and then subtracting the regression estimate from the raw values. 
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3. 2 Regression 
 
There are a range of geographic and topographic quantities available to include as 
independent variables in the regression analysis, as follows: 

• easting and northing (to capture spatial variations); 
• terrain elevation (to capture altitude effects); 
• the mean altitude over a 5km radius centred 10km to the north, east, south and west 

of the station, or alternatively the mean altitude within a 5km radius of the station (to 
capture terrain shape effect); 

• the percentage of open water within a 5km radius of the station (to capture coastal 
effects); 

• the percentage of urban land use within a 5km radius of the station (to capture 
urban effects). 

 
Several different methods were tested to represent the shape of the terrain surrounding 
each point.  Slope and aspect and the mean difference in altitude compared with the 
surrounding area in all directions, generally gave less significant results.  The inclusion of 
altitudes offset in four directions allows the aspect and exposure of the location to be taken 
into account, and the parameters can vary according to prevailing conditions.  Different 
radii were considered, but the 5km radius at 10km distance gave the best results in most 
cases.  Different radii were also considered for the sea and urban factors.   
 
3. 3 Interpolation 
 
Two versions of inverse-distance weighted (IDW) interpolation were used to interpolate the 
regression residuals onto a regular grid; 

• standard IDW averaging; 
• custom IDW averaging (uses a modified weighting function with an option not to go 

to infinity when station and grid point coincide, and includes an adjustment for 
variations in station density); 

 
In both cases, the value for each grid cell is calculated as a weighted average of values from 
surrounding stations.  The standard and custom versions of the IDW method use different 
methods to determine the radius within which stations are used.  The standard version has 
a minimum sample of 12 points, and the radius parameter r is extended to meet this 
requirement if necessary.  The custom version takes all stations within the radius r; 
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where n is the number of stations in the set, fi are the data values at the stations, and wi are 
the weight functions assigned to each station, where; 
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where p is the power parameter, di is the distance from the station to the interpolation grid 
centre, and m is a scaling parameter, and ui is a density weighting parameter. 
 
In each case the user can control the parameters of the interpolation e.g. the power of the 
IDW relationship, the radius, and the scaling parameter, as well as whether to include the 
density weighting function, and whether to allow infinite weights.  If the density function is 
not used then ui = 1, and otherwise it is obtained from a density surface created using an 
Avenue function which adds together kernel density functions (extending to r km) fitted 
over each station. 
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where the ki are the values of the kernel function from each station. 
 
3.4 Optimisation 
 
In order to select the regression model and interpolation method to be used for each 
climate variable, several different methods were tested. The initial hypothesis was a model 
based on prior knowledge of the topographical and geographical factors affecting each 
climate variable, and the statistical distribution of the variable.  Subsequent test runs were 
altered by adding or removing regression variables, changing the interpolation settings, or 
changing the input data (actual or anomaly). 
 
The optimisation analyses were carried out with a 10% random sample of stations excluded 
from the analysis as if they were missing.  Estimated values for these stations were then 
interpolated from the final grid, and compared with the corresponding observed values.  
Each test was made using twelve months in the period 1961-2000, a random sample 
including one for each month of the year.  Annual statistics used six randomly selected 
years. 
 
Various statistics were automatically calculated, both for the set of withheld stations, and for 
the analysis stations.  These were used to compare the analysis profiles, with particular 
importance attached to the root mean square error (RMSE) of the verification stations (the 
error of the predicted value at the station location from the observed value at the station).  
The Mean Error (ME) was used to detect any bias in the estimates. 
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4. Results 
 
4. 1 Choice of Methods 
 
Long Term Average grids for the 1961-1990 period were available for most variables (the 
methods used to create these are described by Hollis and Perry (submitted for publication), 
and it was generally found to be preferable to normalise the data (i.e. create anomalies 
from average) prior to its analysis, in order to generate a smoother surface to analyse.  This 
was especially the case where the variable showed complex geographical patterns.  For 
some variables, long term average grids were not yet available, and for others normalisation 
was not necessary: in these cases, actuals were analysed.   
 
Regression was always used, even when the data had first been normalised.  This is because 
there are usually broad spatial trends even in the normalised monthly data which can be 
removed by regression on latitude and longitude.  There may also be monthly variations in 
the strength and pattern of other geographic effects.  Thus the quantity which was 
interpolated was residuals obtained from a regression analysis of either actual or normalised 
data. 
 
4.2 Regression Model 
 
Cross-polynomial terms in easting and northing were used for all variables to model the 
pattern of spatial variation over the UK.  For elements with a sparse network of stations, a 
low power of 1 (3 parameters) or 2 (5 parameters) was used, to avoid unrealistic 
extrapolation of the surface.  Terms up to a power of 3 (10 parameters) were used when 
greater flexibility in the spatial trend surface was required, e.g. for rainfall and temperature.   
 
When normalised data was used, any additional terms were often of little significance, 
because most of the topographical variations were being described through the climate 
average.  It was difficult to determine whether topographical effects introduced to the 
temperature anomalies were real effects, or were simply adding noise to the result.  It was 
decided for the most part (rainfall, days of rain, pressure, thunder and maximum and 
minimum temperature) to use only the spatial terms.  For ‘days of frost’ however, except 
for the summer months, altitude, coastal and urban effects were found to reduce the grid 
error at test stations by a small amount (about 0.1 days).  For sunshine, the coastal effect 
was used for the summer months. 
 
The elements for which actual data was used have more intuitive regression models.  
Growing season length, and growing degree days have a strong altitude dependency, and 
quadratic altitude terms were used.  Heat wave and cold wave durations have especially 
strong coastal effects.   
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Topographic effects on cloud cover were difficult to model due to the lack of high-altitude 
stations.  However, altitude was shown to make a significant improvement to the model in 
summer and autumn months, and the coastal effect was important except for in the 
summer months. 
 
Altitude and terrain shape variables were obviously very important for days of snow lying 
and falling, as well as for rainfall intensity and the greatest annual 5-day rainfall total. 
 
The independent variables used in the regression model for each element, and an indication 
of whether the data was normalised first, can be seen in Table 1.   
 
4.3 Interpolation Methods 
 
The power of the weighting function with distance has a significant effect on the result: 
decreasing the power has the effect of smoothing the interpolation surface around stations 
with high residuals, while increasing the power brings the surface closer to the actual 
station values.  Inverse distance cubed was used as the weighting function for most 
variables, as this gave a good degree of closeness to the observed data, while taking 
surrounding values into account.  Maximum, minimum, mean, and grass minimum 
temperature were analysed using a power of 2, as a means of reducing localised variations 
that were unable to be modelled.  For these variables, as well as for cloud cover, the use of 
the squared weighting gave a slightly lower grid RMSE for the verification stations, while 
increasing the grid RMSE for the analysis stations, compared with a power of 3. 
 
The radius was set at between 100 and 150 km for most variables.  Precipitation variables, 
with their higher spatial variability, were analysed using a lower radius of between 50 and 
75 km.  The test grid RMSE was fairly insensitive to small changes in radius. 
 
The custom IDW method gave lower test grid RMSE values than the standard method for 
most temperature variables, as well as wind speed, pressure and thunder, while the 
standard method performed better for other elements, including precipitation and 
sunshine.  The density weighting function was used with the custom method, but did not 
have a significant impact on the results.  Infinite weighting at station locations was only 
removed for maximum, minimum and mean temperature; for other variables, the surface 
was forced to pass through the station values (depending on how close the station location 
is to the grid centre). 
 
4.4 Grid Accuracy 
 
The verification statistics also give a good indication of the accuracy of the gridding process 
at estimating values of each climate variable at locations where we do not have observed 
data.  Table 2 shows the average value of the RMS Error of the grid estimates for test 
stations, using the best method for each variable.  It also shows variation across the test 
period, showing especially the strong seasonality present in some variables. 
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The RMSE has also been expressed as a percentage of the range of grid values over the UK, 
averaged across the test months/years.  Using this measure, the lowest errors are for MSL 
Pressure, Heating Degree Days, and Mean Temperature.  These are all fairly smoothly 
varying quantities, and the analysis is able to closely predict values at points between 
stations.  Precipitation also has a low percentage error of 3.6, although this may be partly 
due to the highly skewed distribution of values inflating the range. 
 
Heat wave and cold wave duration, and days of hail, thunder, and ground frost were 
especially difficult to model, with a high degree of spatial variability which was not covered 
by the geographical or topographical variables used in the regression. 
 
4.5 Regression Results 
 
Table 1 shows the data and regression variables used in the analysis of each climatic 
parameter (in addition to the spatial terms, easting and northing, which are used for all 
elements).  It also shows the average R2 values for each climatic parameter over the 40-year 
period, indicating how much of the variation in the actual or anomaly data is explained by 
the variables used in the regression analysis.  This will generally be lower when anomaly 
data is used, because normalisation by the long term average removes much of the 
explainable variation. 
 
The highest R2 values were achieved for mean sea level pressure, daytime maximum and 
minimum temperatures, and heating and growing degree days, with over 90% of the 
variation explained by the model.  These elements also had low verification RMSE as a 
percentage of the range, and are smoothly varying or have strong geographic 
dependencies.  The lowest R2 values were for ground frost and thunder (from anomaly 
data), and hail and cold wave duration (from actual data).  Ground frost data is subject to 
inconsistencies caused by different measuring periods (0900 to 0900 or dusk to 0900) and 
soil type.  Along with cold wave duration, it is also a ‘days exceeding a threshold’ variable, 
which is subject to increased random variations.  Days of hail and thunder are also difficult 
to model as they occur in small quantities, and without a strong geographical pattern. 
 
 
5. Output 
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Inspection of regression residuals from the analysis led to some dubious data values being 
investigated further through inspection of maps of the gridded datasets, and an 
investigation of the daily data from which the monthly values were derived.  Erroneous data 
was removed and the affected months / variables were re-run.  A sample of the final maps 
was inspected to check that the patterns and levels of the variables fitted with our 
knowledge of the UK climate.  The datasets were converted to ASCII grid format and those 
for 24 variables were made available on the internet.  Figure 3 shows some examples of the 
maps produced.  The first map shows the number of days of hail for March 1995 (a month 
when hail was especially common) and is an example of a variable which was difficult to 



  

model; there are apparently random variations over England and Wales, with very high 
levels of hail in the western and northern fringes of Scotland, but low levels over the rest of 
Scotland.  The map of rainfall intensity for 1978 shows a similar pattern to that of rainfall, 
with a strong orographic effect.  Variations in annual Heating Degree Days (map for the 
year 2000 shown) were very well modelled, and the strong altitude effect as well as the 
urban effect for London and Manchester can be seen.  The strong coastal effect can be seen 
in the temperature range map for August 1995 (this month had large temperature ranges, 
especially in central and southern England).  
 
For each month and variable, the grid values within each of ten climate districts were 
averaged, as well as for the countries of the UK, and the UK as a whole.  These areal 
averages provide a series against which the most recent month’s weather can be put into 
context.  Looked at over the period from 1961 onwards, they can also provide an 
interesting summary of temporal patterns in the climate, including seasonality, trends, and 
random variability.  Figures 4 and 5 show a time series of growing season length and 
rainfall intensity by country.  Linear regression models for each of the ten climate districts 
show increasing trends in growing season length and rainfall intensity, with increases in 
growing season length over the 40-year period varying from 0.4 days per year (N Scotland) 
to 1.0 days per year (SE England), and increases in rainfall intensity between 0.002 mm per 
rainday per year (NW England and N Wales) and 0.026 per rainday per year (W Scotland).  
The graphs show a high degree of year-to-year variability, especially for growing season 
length, although there has been a fairly steady increase since the particularly short growing 
season of 1979. 
 
The range of variables gives a fairly complete picture of the climate.  Patterns of variables 
which are not often analysed, such as cloud cover, humidity, hail, and temperature range 
can be seen.  Temperature indices such as growing season length and growing and heating 
degree days give objective assessments of the impacts of climate change on areas such as 
agriculture, ecology and energy use.  Changes in the distribution of rainfall amounts, 
extremes, and intensity can be investigated with impacts for flood risk.  The results of any 
such analyses will not be presented in this paper, but further work will be done to analyse 
the datasets produced. 
 
 
6. Conclusions 
 
Gridded datasets can be created from station data and grids of explanatory variables, for a 
wide range of climate variables, using the described methodology which uses GIS 
capabilities to combine multiple regression and inverse-distance weighted interpolation. 
 
The values of climate variables at locations between observing stations can be estimated to 
a good degree of accuracy, producing detailed and representative maps of the UK climate.  
Spatial and temporal variability and trends in the UK climate over the last 40 years can be 
investigated using the results of the gridding, which provide a consistent set of data. 
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The accuracy varies, however, and is dependent on the nature of the variable, and the 
density and representativity of the station network.  Errors will be highest in areas of sparse 
station coverage, particularly the highlands of Scotland which are also areas of complex 
mountainous terrain.  The average proportion of variance in the data explained by the 
regression models varies between 21% (normalised days of ground frost) and 95% (mean 
sea level pressure).  The verification RMSE as a percentage of the range of values is also a 
useful guide to the level of error, and it ranges from 2.7% (mean sea level pressure) to 
19.3% (cold wave duration).  It is below 10% for 29 of the 36 variables. 
 
Localised effects on the climate such as frost hollows, and effects caused by soil type and 
forests, have not been taken into account.  Future work may include investigating the 
impact of incorporating these and other effects into the model, through the development 
and use of further gridded independent variables.  The use of a local or geographically-
weighted regression model could improve the result, and would also merit further 
investigation, as would the use of stepwise regression for choosing independent variables. 
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Figure 1: The changing density of the station network from 1961 to 2001, for precipitation, 
temperature and sunshine. 
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Figure 2: Spatial distribution of Temperature and Pressure stations, January 2000 
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Figure 3: Examples of maps produced; a) Days of Hail for March 1995, b) Rainfall Intensity 
(mm per rainday) for 1978, c) Mean Diurnal Temperature Range (°C) for August 1995, d) 
Heating Degree Days for 2000. 
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Figure 4: Country averages of Growing Season Length; time series for 1961-2000 period. 
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Figure 5: Country averages of Rainfall Intensity; time series for 1961-2000 period. 
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Table 1: Regression Variables used, and average R2 values. 

 
Element 1961-00 

Average R² 
Data 

analysed 
Altitude Terrain 

Shape 
Coast Urban 

Monthly       
Minimum Temperature 0.39 Anomaly     
Mean Temperature 0.57 Anomaly * *   
Maximum Temperature 0.53 Anomaly     
Days of Ground Frost 0.21 Anomaly * * * * 
Days of Air Frost 0.31 Anomaly * * * * 
Sunshine 0.44 Anomaly   *  
Wind Speed 0.82 Actual * * *  
Precipitation 0.44 Anomaly     
Days of rain ≥ 0.2 mm 0.57 Actual * *   
Days of rain ≥ 1mm 0.42 Anomaly     
Days of heavy rain ≥ 10mm 0.40 Actual * *   
Hours of relative humidity > 95% 0.46 Actual *  *  
Vapour Pressure 0.81 Actual *  *  
Mean Sea Level Pressure 0.95 Actual     
Cloud Cover 0.58 Actual   * * 
Days of Snow Falling 0.36 Anomaly * *   
Days of Snow Lying 0.48 Actual * *   
Daytime maximum temperature 0.93 Actual * * * * 
Daytime minimum temperature 0.92 Actual * * * * 
Night-time maximum temperature 0.83 Actual * * * * 
Night-time minimum temperature 0.87 Actual * * * * 
Concrete minimum temperature 0.74 Actual *  *  
Grass minimum temperature 0.28 Anomaly *  *  
Days of Concrete Frost 0.47 Actual *  *  
Mean Diurnal Temp Range 0.64 Actual * * * * 
Days of Thunder 0.22 Anomaly     
Days of Hail 0.24 Actual     
Annual       
Extreme Temperature Range 0.66 Actual * * *  
Growing Season Length 0.68 Actual *  *  
Heat wave Duration 0.41 Actual   * * 
Cold wave Duration 0.25 Actual * * *  
Heating Degree Days 0.92 Actual * * * * 
Growing Degree Days 0.93 Actual * * * * 
Greatest 5-day Rainfall 0.46 Actual * * *  
Rainfall Intensity 0.54 Actual * *   
Consecutive Dry Days 0.44 Actual *  *  
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Table 2: Error Statistics from the Verification Stations 
 

Variation across test period  
Element RMS Error 

at 
Verification 

Stations 

Standard 
Deviation

Min Max Average 
range of 

grid 
values 

over UK 

RMSE as a 
percentage 

of the 
range of 
values 

Monthly (12 test months)   
Mean Daily Minimum Temperature (°C) 0.45 0.09 0.3 0.6 9.4 4.8 
Mean Temperature (°C) 0.36 0.04 0.3 0.45 10.4 3.5 
Mean Daily Maximum Temperature (°C) 0.66 0.12 0.38 0.79 12.2 5.4 
Days of Ground Frost 2.24 0.78 0.7 3.4 17.4 12.9 
Days of Air Frost 1.4 1.12 0 3.2 15.2 9.2 
Sunshine (hours per day) 0.33 0.1 0.2 0.54 4.7 7.0 
Mean Wind Speed (knots) 1.41 0.44 1.0 2.2 25.7 5.5 
Total Precipitation (mm) 16 4.9 11 27 443 3.6 
Days of Rain ≥ 0.2 mm 1.7 0.3 1.2 2.1 20 8.5 
Days of Rain >1 mm 1.3 0.15 1.1 1.5 21.2 6.1 
Days with Heavy Rain (>10 mm) 0.78 0.22 0.3 1.2 12.5 6.2 
Hours of Relative Humidity > 95% 48 22 17 98 536 9.0 
Vapour Pressure (HPa) 0.26 0.13 0.08 0.53 5.2 5.0 
Mean Sea Level Pressure (HPa) 0.27 0.14 0.16 0.67 9.9 2.7 
Cloud Cover (%) 2.69 0.86 1.6 4.6 40.7 6.6 
Days of Snow Falling (not inc. Jul – Aug) 1.35 1.3 0 3.9 13.8 9.8 
Days of Snow Lying (not inc. Jun – Sep) 1.1 1.1 0 2.7 15.3 7.2 
Daytime maximum temperature (°C) 0.47 0.15 0.26 0.7 12.0 3.9 
Daytime minimum temperature (°C) 0.47 0.14 0.31 0.79 11.2 4.2 
Night-time maximum temperature (°C) 0.75 0.35 0.33 1.57 10.9 6.9 
Night-time minimum temperature (°C) 0.61 0.19 0.37 0.92 10.3 5.9 
Concrete minimum temperature (°C) 0.65 0.19 0.43 1.02 10.7 6.1 
Grass minimum temperature (°C) 0.85 0.17 0.46 1.05 9.8 8.7 
Days of Concrete Frost (not inc. July) 1.8 1.3 0.3 3.6 16.1 11.2 
Mean Diurnal Temp Range (°C) 0.66 0.17 0.42 0.99 6.9 9.6 
Days of Thunder 0.48 0.41 0.08 1.43 4.0 12.0 
Days of Hail 1.3 0.9 0.2 3.5 7.6 17.1 
Annual (6 test years)       
Extreme Temperature Range (°C) 2.15 0.51 1.6 2.7 23.6 9.1 
Growing Season Length (days) 19.5 6.2 11 28 270 7.2 
Heatwave Duration (days) [4 per half-year] 3.6 1.4 1.8 5.9 29.1 12.4 
Coldwave Duration (days) [4 per half-year] 2.9 1.7 0 5.8 15.0 19.3 
Heating Degree Days 106 16 80 125 3157 3.4 
Growing Degree Days 100 10 87 116 2108 4.7 
Greatest 5-day Rainfall (mm) 12.8 2.7 9.2 16.1 250 5.1 
Rainfall Intensity (mm per rain day) 0.53 0.11 0.44 0.75 12.7 4.2 
Consecutive Dry Days 3 1.2 1.4 5 29 10.3 
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