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Abstract. HadISDH.2.0.0 is the first gridded, multi-variable

humidity and temperature in situ observations-only climate-

data product that is homogenised and annually updated. It

provides physically consistent estimates for specific humid-

ity, vapour pressure, relative humidity, dew point tempera-

ture, wet bulb temperature, dew point depression and tem-

perature. It is a monthly mean gridded (5◦ by 5◦) product

with uncertainty estimates that account for spatio-temporal

sampling, climatology calculation, homogenisation and irre-

ducible random measurement effects. It provides a tool for

the long-term monitoring of a variety of humidity-related

variables which have different impacts and implications for

society. It is also useful for climate model evaluation and re-

analyses validation. HadISDH.2.0.0 is shown to be in good

agreement both with other estimates and with theoretical

understanding. The data set is available from 1973 to the

present.

The theme common to all variables is of a warming world

with more water vapour present in the atmosphere. The

largest increases in water vapour are found over the trop-

ics and the Mediterranean. Over the tropics and high north-

ern latitudes the surface air over land is becoming more sat-

urated. However, despite increasing water vapour over the

mid-latitudes and Mediterranean, the surface air over land is

becoming less saturated. These observed features may be due

to atmospheric circulation changes, land–sea warming dis-

parities and reduced water availability or changed land sur-

face properties.

1 Introduction

Atmospheric humidity is a term used to describe the amount

of water vapour in the atmosphere. Water vapour is deemed

an Essential Climate Variable both at the surface and aloft,

recognising its importance for observing and characterising

climatic system changes (Bojinski et al., 2014). There are a

number of different measures used to describe it:

– Relative humidity (RH), expressed as a percentage

(%rh). The amount of water vapour in the air compared

to how much water could potentially be held as a vapour

at that temperature.

– Dew point temperature (Td), wet bulb temperature (Tw)

and dew point depression (DPD), expressed in units of

temperature (◦C) Tw: the amount of evaporative cooling

of a thermometer in a moistened wick. Air that is not

saturated will evaporate water from the wick, cooling

the “wet bulb” thermometer.

Td: the temperature at which the air becomes saturated

at that current level of water vapour, measured by artifi-

cially cooling a surface until water condenses onto it.
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DPD: the amount the air has to be cooled by to reach its

dew point temperature.

If Td or Tw is equal to the dry bulb temperature or DPD

is zero, then the air is saturated.

– Vapour pressure (e) expressed in hPa. The partial pres-

sure exerted by water vapour alone.

– Specific humidity (q) and mixing ratio (r) expressed in

g kg−1:

q: the ratio of the mass of water vapour to the mass of

moist air.

r: the mass of water vapour compared to the mass of dry

air.

Atmospheric humidity plays a key role in both the energy

and hydrological cycles. At the surface, it plays an impor-

tant role in the energy budget through evaporation, removing

and storing heat that can be transported elsewhere in the at-

mosphere and later released through condensation. It is key

to the hydrological cycle as a source of water for precipita-

tion. Although changes in humidity may not directly cause

changes in precipitation, the specific humidity is related to

the amount of rainfall in heavy precipitation events (Tren-

berth, 1999). The relative humidity at the surface can greatly

affect the thermal comfort of humans and livestock. At high

temperatures, higher relative humidity reduces the evapora-

tive cooling ability of the body resulting in greater thermal

stress. At low temperatures, higher relative humidity leads

to more efficient conduction of cool air temperature to the

body via contact with clothes and skin. Finally, water vapour

evaporated at the surface is often transported aloft where it

behaves as a very effective greenhouse gas. Indeed, water

vapour is the dominant greenhouse gas in the Earth’s climate

system. However, water vapour has a short residence time of

only a couple of weeks, and fluctuations in water vapour can-

not directly lead to long-term changes in the Earth radiation

balance, although they can produce feedbacks in response to

other mechanisms.

Increasing specific humidity has been observed over most

of the land surface and the well-observed parts of the ocean

over recent decades (Dai, 2006; Berry and Kent, 2011; Wil-

lett et al., 2013b). Given the increase in surface temperatures

over the last century across most of the Earth’s surface (Hart-

mann et al., 2013), this is largely expected because of the

Clausius–Clapeyron relationship. In regions where availabil-

ity of water is not a limiting factor, the air will increase its

water vapour storage at a rate of ∼ 7 % for every 1K rise in

temperature (Held and Soden, 2006). Since early in the 21st

century, a decrease in the relative humidity and a plateauing

in the specific humidity has been observed (Simmons et al.,

2010; Willett et al., 2013b). This is simultaneous with an ap-

parent relative flattening in the rate of recent global (land, air

and sea) surface temperature rise (Cohen et al., 2012; Hart-

mann et al., 2013; Kosaka and Xie, 2013), although this is

less clear for global land surface air temperature and also

warm extremes of temperature (Seneviratne et al., 2014). Po-

tential mechanisms for these features in humidity have been

discussed in the literature (e.g. Brutsaert and Parlange, 1998;

Joshi et al., 2008; Rowell and Jones, 2006; Simmons et al.,

2010). Much of the moisture over land is transported from

the oceans where it was originally evaporated. Although the

oceans cover just over 70 % of the Earth surface, ∼ 85 % of

atmospheric water vapour is evaporated from oceans with

∼ 15 % coming from evaporation and transpiration over land

(Ahrens, 2000). If the air over the ocean surface warms more

slowly than that over the land, the water-holding capacity

of air will also increase more slowly over the ocean. There-

fore, it is plausible that water vapour over the oceans has not

increased at a rate high enough to sustain constant relative

humidity (and hence proportionally increasing specific hu-

midity) over the warmer land mass (Simmons et al., 2010).

Large-scale changes in the atmospheric circulation and re-

duced moisture availability over land may also play a part

(Joshi et al., 2008).

Given the varied ways in which humidity is important to

life on Earth, and the recently noted but incompletely un-

derstood changes, a comprehensive monitoring product for

water vapour and temperature over the land surface is of

high value. Few products are currently available and none

provides a complete suite of humidity variables. Although

all humidity variables can be readily derived from temper-

ature and dew point temperature, the equations are nonlin-

ear. So, to avoid errors, any multi-variable humidity climate

data product has to be built from the original measurements

(e.g. hourly station data) upwards for each individual vari-

able, rather than from time-averaged variables at any aver-

aged scale (such as daily or monthly).

Reanalysis products are available for land surface tem-

perature and dew point temperature at subdaily resolution.

Other humidity variables are easily derived from these. ERA-

Interim land surface specific humidity is in very good agree-

ment with observations and considered to be a reasonable

estimate (Simmons et al., 2010; Willett et al., 2014a). How-

ever, there are problems with homogeneity due to chang-

ing data streams and imbalances in the water budget, which

are common to many reanalyses (Lorenz and Kunstmann,

2012; Bosilovich et al., 2013). While neither observation-

only products nor reanalyses are perfect, the availability of

multiple methodologically independent estimates is crucial

to understanding the structural uncertainties (Thorne et al.,

2005).

The monthly mean gridded HadISDH (currently version

1.0.0.) is the only live (updated annually), land surface

observation-only product and at present it is only available

for specific humidity. This is a multi-national project led by

the Met Office Hadley Centre. It provides quality-controlled

and homogenised gridded monthly mean anomalies, actual

values, climatological averages and uncertainty estimates,
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gridded at 5◦ by 5◦ resolution from 1973 onwards (Willett

et al., 2013b).

Herein, HadISDH is expanded to include a full suite of

humidity variables, as listed above, alongside the simul-

taneously observed land-surface air temperature. This new

version is now referred to as HadISDH.2.0.0 with individ-

ual variables known as HadISDH.landq.2.0.0 for example.

Monthly mean 5◦ by 5◦ grids for the land surface are pro-

vided from 1973 onwards (to the end of 2013 at time of pub-

lication), and will be updated annually. Like HadISDH.1.0.0,

HadISDH.2.0.0 is quality controlled at the hourly level, av-

eraged to monthly means and then homogenised to remove

non-climatic data artefacts from the series. Care has been

taken to ensure physical consistency across the variables

where possible. Monthly mean anomalies are created rela-

tive to the 1976 to 2005 period, chosen to maximise station

coverage, and then gridded. Recognising that errors remain

in the data to some extent, the uncertainty model designed

for HadISDH.landq.1.0.0 is expanded to estimate uncertainty

for all variables. To the authors’ knowledge, HadISDH.2.0.0

will be the first operational purely in situ multi-variable land-

surface humidity product, and also the first to provide an es-

timate of uncertainties in the data for all variables. This prod-

uct is designed for assessing changes over large scales. While

the data are intended primarily for scientific research, they

are freely available to all at www.metoffice.gov.uk/hadobs/

hadisdh.

The remainder of the paper is structured as follows. Sec-

tion 2 describes the build process for HadISDH including

source data and quality control for minimising random error.

Section 3 explains the multi-variate homogenisation process

for removing systematic error in detail. The uncertainty es-

timation model is described in Sect. 4. Additional detail to

Sects. 2, 3 and 4 can be found in the Supplement. Section 5

discusses the leading features apparent in the HadISDH prod-

uct including long-term trends and comparison with other

data-products. Product availability and user information is

covered in Sect. 6. Finally, Sect. 7 concludes.

2 Methodological steps in HadISDH processing

HadISDH uses the quality-controlled HadISD (Dunn et al.,

2012; Supplement) hourly station Td and T data as its ba-

sis, which in turn uses NOAA’s synoptic (hourly) Integrated

Surface Database (ISD) (Smith et al., 2011; http://www.

ncdc.noaa.gov/oa/climate/isd/index.php). Hence, the name

HadISDH signifies a Met Office Hadley Centre led project

utilising ISD Humidity data. The Td data most likely orig-

inate from paired wet bulb and dry bulb thermometer mea-

surements (often referred to as psychrometers) in the major-

ity of cases. In some cases, particularly in the more recent

record, an electronic sensor may have been used to output ei-

ther RH or Td, or a dew cell may have measured Td directly.

Figure 1. Flow diagram of HadISDH.2.0.0 processing from hourly

quality-controlled values to monthly mean homogenised station val-

ues.

The instrument type information is not available in an acces-

sible format for all stations.

During HadISD processing a climatology period of

1976–2005 was chosen as this maximised the sta-

tion coverage. After quality control, 3679 of the 6103

HadISD.1.0.2.2013p stations have sufficient data with which

to calculate a reasonable estimate of the monthly mean

climatology (Supplement). Additionally, 673 of the 3679

HadISDH stations have been merged from multiple stations

where they appeared to be the same station. This was done

as part of HadISD processing. The full HadISD station list

is available at www.metoffice.gov.uk/hadobs/hadisd/v102_

2013f/files/hadisd_station_info_v102.txt with variable spe-

cific lists alongside the HadISDH data product at www.

metoffice.gov.uk/hadobs/hadisdh.

2.1 Deriving the humidity variables from temperature

and dew point temperature

The hourly station data pass through several stages of pro-

cessing before being gridded, as depicted in the flow chart

in Fig. 1. The quality-controlled hourly T and Td are con-

verted to Tw, q, e and RH at each time point. All relevant

equations can be found in Table 1 and are identical to those

in Willett et al. (2013b). Specific humidity (Eq. 2) is calcu-

lated by first converting Td to e (Eq. 3). Where the calculated

Tw (Eq. 5) values are below 0 ◦C, values of e are recalculated

with respect to ice (Eq. 4). This assumes that the wet bulb

was in fact an ice bulb at that time and that the measurement
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Table 1. Equations (1) to (7) used to derive humidity variables from dry bulb temperature and dew point temperature.

Variable Equation Source Notes

Dew point depression

(DPD) in ◦C

DPD= T − Td – (1)

Specific humidity (q) in

g kg−1
q = 1000

(
0.622e

Pmst−((1−0.622)e)

)
Peixoto and

Oort (1996)

(2)

Vapour pressure with re-

spect to water (e) in hPa

(when Tw > 0 ◦C)

e = 6.1121 · fw · exp

((
18.729−

(
Td

227.3

))
Td

257.87+Td

)
fw = 1+ 7× 10−4

+ 3.46× 10−6Pmst

Buck (1981) (3) substitute T for Td to give

saturated vapour pressure (es)

Vapour pressure with re-

spect to ice (eice) in hPa

(when Tw < 0 ◦C)

eice = 6.1115 · fi · exp

((
23.036−

(
Td

333.7

))
Td

279.82+Td

)
fi = 1+ 3× 10−4

+ 4.18× 10−6Pmst

Buck (1981) (4)

Wet bulb temperature

(Tw) in ◦C

Tw =
aT+bTd
a+b

a = 6.6× 10−5Pmst

b = 409.8e

(Td+237.3)2

Jensen et al.

(1990)

(5)

Station pressure

(Pmst) in hPa

Pmst = Pmsl

(
T

T+0.0065Z

)5.625
List (1963) (6) Pmsl is pressure at mean sea

level, Z is height in metres, T in

Kelvin

Relative humidity

(RH) in %rh

RH= 100
(
e
es

)
– (7),

q
qs

can be substituted for e
es

.

was taken with a wet bulb thermometer. This potentially in-

troduces a dry bias in q and e when T is near 0 ◦C where

resistance or capacitance sensors are used – such automated

sensors are more common in the most recent years. It is as-

sumed that any large biases introduced by this are detected

and accounted for in the homogenisation process (Sect. 3).

Furthermore, values of q and e are low in cold conditions,

so absolute errors will be small even if they are large in per-

centage terms. This issue should bear little influence on the

large-scale assessments of q and e. For RH, dry biases could

be up to 4 %rh, increasing as Tw rises towards 0 ◦C. It is not

possible to identify which instruments were used where and

when on the global scale and so this problem is impossible to

correct for and remains an uncertainty in the data that is very

difficult to quantify accurately.

In converting to e, q and Td a climatological monthly mean

station pressure (Pmst) is used. Station pressure from HadISD

is not always available, or of suitable quality and so cannot

be used. The effect of a 1 hPa change in Pmst is ∼ 0.1 %

in terms of q (Willett et al., 2008), hence assuming a stan-

dard pressure of 1013.25 hPa could introduce considerable

error. To maximise coverage and minimise errors climato-

logical monthly mean sea level pressure (Pmsl) is obtained

from the 20th Century Reanalysis V2 (20CR, Compo et al.,

2011; data provided by the NOAA/OAR/ESRL PSD, Boul-

der, Colorado, USA, http://www.esrl.noaa.gov/psd/). This is

available for 2◦ by 2◦ grid boxes and has been averaged over

the 1976 to 2005 climatological period. Gridded Pmsl is con-

verted to Pmst, using station elevation (Z in metres) and sta-

tion climatological monthly mean T (in Kelvin), by an equa-

tion based on the Smithsonian Meteorological Tables (Eq. 6;

List, 1963). Using a climatological Pmsl introduces small er-

rors (∼ 0.1 % in q for 1 hPa) at the hourly level. The con-

version to Pmst from climatological T introduces small er-

rors that are progressively larger for higher elevation stations.

For example, for stations at 2000 m and temperature differ-

ences (from climatology) of ±20 ◦C, an error in q of up to

2.3 % could be introduced to the individual hourly values.

However, the majority of stations (89 %) are below 1000 m,

where potential error for ±20 ◦C reduces to ∼ 1 % and then

0.5 % for 500 m. During any month the actual T and Pmsl

will vary above and below the estimated climatological val-

ues due to synoptic and mesoscale as well as diurnal varia-

tions and so essentially resulting errors in Pmst should can-

cel out or at least reduce by averaging. Ultimately, using a

non-varying station pressure (year-to-year) ensures that any

trends in q and e originate entirely from the humidity com-

ponent as opposed to changes in T introduced into station

pressure indirectly through conversion from Pmsl. Hence, for

studying long-term trends inqanomalies, this method is suf-

ficient. However, users of actual monthly mean q, e, RH and

Tw should be aware of the small potential errors noted above.
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Figure 2. Final station coverage maps with supersaturated and subzero error stations identified that are not included in the final HadISDH

data sets. (a) Good stations common to all variables, (b) additional temperature stations, (c) additional dew point temperature stations, (d)

additional specific humidity stations, and (e) additional relative humidity stations. See Fig. SM1 for other variables.

2.2 Processing of hourly values to monthly

climate anomalies

All hourly variables are then converted to monthly mean val-

ues (Fig. 1c, and see Supplement). The absolute monthly

mean values are passed and returned from the homogenisa-

tion software, which internally creates climate anomalies in

order to perform the homogenisation. For consistency, ho-

mogenisation is applied directly to the core variables of T

and DPD first (Fig. 1d, PHA: Pairwise Homogenisation Al-

gorithm). The change-point locations from these are then

used indirectly to apply adjustments to all other variables,

in addition to applying DPD change points to T (Fig. 1e, ID

[indirect] PHA). This is explained fully in Sect. 3.

Climate anomalies are then derived from the homogenised

station data by simply recalculating monthly mean clima-

tologies. In some cases these stations now have insuffi-

cient data with which to calculate a climatology. This oc-

curs for two reasons. Firstly, during direct homogenisation

(PHA), individual months of data can be removed. Secondly,

the initial climatologies were built from monthly–hour cli-

matologies. In a few cases monthly–hour means that con-

tributed to a monthly–hour climatology were insufficient

to create a monthly mean, resulting in insufficient monthly

means to create a climatology. To ensure physical consis-

tency, monthly homogenised Td is calculated by subtracting

DPD from T .

Resulting spatial and temporal coverage is shown in

Figs. 2 and 3, respectively (see also Figs. SM1 and SM2

for other variables in the Supplement). Note that coverage

differs slightly between variables due to the homogenisation

process which removes further stations, and some data pe-

riods (direct PHA only). The removal of supersaturated and

subzero (q and e only) stations is discussed in Sect. 3.3. The

tail-off at either end of the record and especially post-2005

is partly due to the initial HadISD data selection which max-

imises coverage over the 1976–2005 climatology period and

has remained static since version 1.0.0. of HadISD. This will

www.clim-past.net/10/1983/2014/ Clim. Past, 10, 1983–2006, 2014
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Figure 3. Station temporal coverage. Colours show missing station months by 
WMO ID (left y-axis) and the solid black line shows total station count (right y 
axis). WMO IDs/colours are bounded as follows: Europe: 0-199999 (dark red), 
Russia/Eastern Europe: 200000-379999 (crimson), Central Asia/Middle 
East/India/Pakistan: 380000-439999 (dark orange), South East Asia/East 
Asia/China: 440000-599850 (orange), Africa: 600000-689999 (gold), 
USA/Canada: 690000-749999 (dark green), Central America: 760000-799999 
(olive green), South America: 800000-879999 (royal blue), Antarctica: 
880000-899999 (sky blue), Pacific Islands (Inc. Hawaii): 911000-919999 
(navy), Papua New Guinea/Australia/New Zealand: 930000-949999 (lilac), 
Indonesia/Philippines/Borneo: 960000-999999 (purple). a) temperature, b) 
dew point temperature, c) specific humidity and d) relative humidity. See 
Figure SM2 for other variables. 

Figure 3. Station temporal coverage. Colours show missing station months by WMO ID (left y-axis) and the solid black line shows total sta-

tion count (right y-axis). WMO IDs/colours are bounded as follows: Europe: 0–199 999 (dark red), Russia/Eastern Europe: 200 000–379 999

(crimson), Central Asia/Middle East/India/Pakistan: 380 000–439 999 (dark orange), South East Asia/East Asia/China: 440 000–599 850 (or-

ange), Africa: 600 000–689 999 (gold), USA/Canada: 690 000–749 999 (dark green), Central America: 760 000–799 999 (olive green), South

America: 800 000–879 999 (royal blue), Antarctica: 880 000–899 999 (sky blue), Pacific Islands (Inc. Hawaii): 911 000–919 999 (navy),

Papua New Guinea/Australia/New Zealand: 930 000–949 999 (lilac), Indonesia/Philippines/Borneo: 960 000–999 999 (purple). (a) Temper-

ature, (b) dew point temperature, (c) specific humidity and (d) relative humidity. See Fig. SM2 for other variables.
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be revisited in the future as will the list of stations that require

merging. The ISD archive is undergoing continual improve-

ments in terms of data coverage which will filter through

to HadISD and HadISDH in time. The post-2005 drop-off

is primarily driven by US stations (Figs. 3, SM2, SM3 and

SM4). These stations are reasonably evenly spread across

the USA. Any users wishing to focus analysis over the USA

should be aware of this issue but given the 600+ remaining

stations with reasonably continuous records this should not

be a significant issue.

It should be noted that intermittency in station records is

a common in situ observing system problem. While in some

cases the observations do not exist, more likely, they exist but

have not made it electronically into various archives due to

technical problems at that time. Retrospective improvements

do occur sporadically thanks to the archiving work of host

institutions (e.g. NCDC in the case of ISD) and individual

countries but it would take significant international effort to

recover all missing records. The intermittent missing data are

further compounded by removals during QC processing but

this is necessary to ensure high-quality data.

3 Homogenising all variables in a consistent manner

For any analysis of long-term trends and variability, the data

product must be free from features that are not of climatic

origin. Systematic changes in the data that originate from

changes to the observing system or its environment arise for

multiple reasons. These change points need to be identified

and the data adjusted to remove the inhomogeneities.

Locating change points and adjusting for inhomogeneities

is non-trivial, especially with large station networks where

the homogenisation process must by necessity be automated

to be both tractable and reproducible. Records of changes

to instruments, shelter, location, observing practice etc. may

exist on paper or in digital form but there is presently no

globally complete digital archive. For global-scale projects

the majority of homogenisation processing is therefore nec-

essarily undertaken using statistical frameworks. Large inho-

mogeneities that occur distinctly in time and space from any

other inhomogeneity within the network are easy to detect.

However, it is most likely that change has been ubiquitous

across the global station record, ranging from large to very

small changes in the mean with additional changes in the

variance that likely differ depending on the season or even

other climate variables – e.g. temperature biases could de-

pend upon whether the sky is clear or cloudy. Comparisons

of long-term trends in both the raw and homogenised data

are made in Sects. 5.2 and 5.3.

There are very few automated homogenisation meth-

ods able to be applied to networks of the order of

several thousand stations (Venema et al., 2012). NOAA

NCDC’s Pairwise Homogenisation Algorithm (PHA; Menne

and Williams, 2009; Supplement) has been used on the

Global Historical Climate Network – Monthly (GHC-

NMv3, Lawrimore et al., 2011) and was also used for

HadISDH.landq.1.0.0.2012p (see Sect. 3 of Willett et al.,

2013b). It has been tested against a set of benchmarks for

the USA (Williams et al., 2012) and through the COST

HOME benchmarks (Venema et al., 2012). Overall, it was

found to bring temperature data closer to their “truth” but

be overly conservative in places; i.e. its adjustments tended

to be too few while it avoided making adjustments where

none were needed. For the multi-variable HadISDH it is a

good choice both because of its previous validation and also

because it is computationally efficient. This allows multi-

ple runs during method testing and efficient updating. The

code is freely available from http://www.ncdc.noaa.gov/oa/

climate/research/ushcn/#phas.

As the equations for conversion between humidity vari-

ables (Table 1) are nonlinear, it would introduce substantive

errors to simply homogenise monthly T and Td and then use

these to calculate monthly values of all of the other vari-

ables. However, straightforward application of PHA to the

monthly means of each variable separately can also result

in physical inconsistencies. For example, a positive adjust-

ment in T and RH should not coincide with a negative ad-

justment in q because that is not physically possible. Fur-

thermore, some variables have better signal-to-noise ratios

than others such that their change points are more easily de-

tected. Within the HadISDH network, station 557 730 (Pagri,

Tibetan plateau, China) has conspicuous changes in DPD be-

tween 2000 and 2007 (Fig. 4a) but this is not detected in q

when PHA is applied directly (Fig. 4b). If the PHA-based

change-point locations from DPD are used to apply adjust-

ments to q, then a small change is applied (Fig. 4c). This sug-

gests that by using the change points located within a variable

with higher signal-to-noise ratio the smaller, less detectable

inhomogeneities in the candidate variable can be adjusted

for. Given the above, our strategy involves both direct and

indirect application of the PHA algorithm (henceforth called

PHA and ID PHA) as shown diagrammatically in Fig. 1.

In HadISDH2.0.0 all direct PHA detected change points

in monthly T and DPD are used in applying appropriate ad-

justments to monthly series of all other variables (ID PHA,

Fig. 1f). Additionally, ID PHA is used to apply extra adjust-

ments to T using change-point locations found in DPD. Fi-

nally, a homogenised Td product is obtained by subtracting

homogenised DPD from homogenised T (Fig. 1g). In this

case conversion at monthly resolution is appropriate because

the equation is linear.

3.1 Results of applying direct PHA to T and DPD

The distributions of adjustment size for both T and DPD

are close to Gaussian and fairly evenly distributed over time

(Fig. 5a and e). The “missing middle” is where change points

most likely exist but are undetectable by homogenisation

algorithms due to the low signal-to-noise ratio for small
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Figure 4. Example of an inhomogeneity having a greater signal-

to-noise ratio in DPD compared to q for station 557 730, Pagri, Ti-

bet. (a) DPD annual mean series for raw data (red) and direct PHA

homogenised data (blue) for 557 730 and its raw neighbour series

(black). (b) q annual mean series for raw data (red) and direct PHA

homogenised data (blue) for 557 730 and its raw neighbour series

(black). (c) q annual mean series for raw data (red) and indirect

PHA homogenised data (blue) for 557 730 and its raw neighbour

series (black).

magnitude inhomogeneities (Brohan et al., 2006). This is

clear in Fig. 5a and c. A far greater frequency of change

points is found for DPD (2.53 change points per 41 year

station record) versus T (1.34 per station). When additional

DPD change points are used to apply adjustments to T (see

Sect. 3.2, Fig. 1e) this “missing middle” is substantially filled

resulting in 3.6 change points per station (Fig. 5c) which sup-

ports the decision to use the additional DPD change points.

For direct PHA, T adjustments had a slight negative tendency

(mean adjustment size=−0.10). The addition of the DPD

change points reduces the negative tendency substantially

(mean adjustment size=−0.02). Inevitably, some change

points from DPD may originate from the wet bulb thermome-

ter alone such that an adjustment is applied to T erroneously.

In such cases, adjustments applied will be extremely small

because if no inhomogeneity exists then there should be no

significant difference between the station minus neighbour

difference series before and after the change point.

The change-point frequency over time commonly reduces

away from the middle of the time period for direct PHA

(Fig. 5b and f) to zero change points in the first and last two

years. PHA does not allow change points to be detected in

the first or last two years of any time series. Furthermore,

its power to identify and adjust for change points is lim-

ited near the start and end of records. This is due to the

reduced window width (homogeneous subperiod) available

because shorter periods are more sensitive to inter- and intra-

annual variability. Where an adjustment cannot be robustly

estimated (defined with reasonable confidence) then no ad-

justment is applied and the related sub-period of data is re-

moved. This is the reason for the severe drop-off in station

counts at the beginning and end of the record for T , Td and

DPD shown in Figs. 3a, b and SM2c. It also explains the

higher density of missing data in the middle of the record in

DPD, Td and T compared to the other variables that have un-

dergone ID PHA. In ID PHA these change points are noted

and adjustments applied regardless (no data are removed) –

hence the additional frequency of change points at time pe-

riod ends in the first and last few years of the record shown

in Fig. 5d.

In some cases the size of the adjustments is very large

– six stations have adjustments in T greater than 5 ◦C with

one of 13.99 ◦C (WMO ID 714963; Table SM1). Given their

large adjustment sizes, these six stations are removed. In

such cases the likely cause is either a bad merging decision

(Sect. 2) or a station move of considerable horizontal and/or

vertical distance. Five out of the six stations are merged dur-

ing HadISD processing and so can be considered as bad

merges. Work is ongoing to investigate these merges fur-

ther as they are necessarily based on automated statistics to

some degree. Willett et al. (2013b) found that the merges im-

proved spatio-temporal coverage considerably but not all of

the 673 stations were analysed in detail. Although PHA can

remove these inhomogeneities it is better to remove these sta-

tions altogether given that there are known problems. These
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Figure 5. Adjustment sizes and locations applied by PHA (a, b, e, f) and ID PHA (c, d, g, h) to all monthly mean station time series

combined. (a, c, e, g) Distribution of adjustment size (black line) with a Gaussian fit (grey line), a best-fit merged line taking the larger

wings and Gaussian fit over the missing middle (red dashed line) and the difference between the best-fit line and actual distribution (blue

dotted line) for temperature, dew point depression and relative humidity, respectively. The mean and standard deviation of the differences

are shown. b,d,f,h) Distribution of adjustments over time for temperature (a, b, c, d), dew point depression (e, f) and relative humidity (g, h),

respectively.

problems would affect all variables and so it is sufficient to

base this station removal on T only but then remove the sta-

tions from processing for all other variables too.

3.2 Results of applying ID PHA to T , q, e, RH and Tw

indirectly from change points in T and DPD

To our knowledge this is the first time that ID PHA has

been used. ID PHA does not remove any data from station

records. This results in better spatial and temporal coverage
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but leaves the ID PHA less conservative than direct PHA as

an adjustment will always be applied. However, ID PHA and

direct PHA yield very similar products, especially for large-

scale averages. For q, regional trend differences between ID

PHA and PHA are within 0.01 g kg−1 decade−1 for the globe,

Northern Hemisphere and tropics. The regions with drying

trends are far more pronounced when using ID PHA. There

are greater differences for RH with ID PHA, resulting in

smaller regional trends. These are no longer significant for

the globe and Northern Hemisphere in the ID PHA case.

With ID PHA there is a much greater chance of having

consistency across variables and there is a greater frequency

of change points than would be the case for direct PHA on

these variables which we believe to be more realistic. This

is both because change points from both T and DPD are

applied and also because DPD often has a better signal-to-

noise ratio than q and e. The distributions of change points

by magnitude and frequency over time for ID PHA on T and

RH are shown in Fig. 5c, d, g, h. Here it is clear that the

“missing middle” is infilled to some extent and that there

is a greater frequency of change points towards the end-

points of the record. The multi-variable approach of ID PHA

may be an improvement over direct PHA in its ability to de-

tect small inhomogeneities. However, without multi-variable

benchmarks (Venema et al., 2012; Williams et al., 2012; Wil-

lett et al., 2014b) this is impossible to test fully.

3.3 Processing the homogenised stations into

gridded products

All homogenised stations with enough monthly data to cal-

culate a climatology are gridded. A further requirement is

that station data must not show supersaturation (all humidity

variables) or subzero values (for e, q and RH only). The ap-

plication of ID PHA is intended to maintain the physical con-

sistency across variables compared to direct PHA but there

are cases where it does not. We have removed all such sta-

tions with physically unrealistic data from gridding and fur-

ther analysis. This is discussed further in Supplement Sect. 7.

Table SM1 lists the number of stations removed because of

this for each variable and station locations are shown in Fig. 2

and Fig. SM1. This is a minor problem for e, q and RH where

only 28 stations are removed due to supersaturation and 52

stations removed due to subzero values (e and q only). This is

significant for Tw (808 stations removed) because it is much

closer in value to the dry bulb temperature. This means that

even small adjustments can result in supersaturation. Nearly

all stations north of 60◦ N are removed from the gridded Tw

product resulting in very few stations common to all vari-

ables above this latitude (Fig. 2a).

Grid box averages are simple means of all stations present

within the grid box for that month. Grid-box averages are

made of the absolute values, climate anomalies, climatol-

ogy and standard deviation in the climatology in addition to

the uncertainty estimates. While there are limitations to the

method presented here, none appears large enough to affect

the large-scale features of the data (see Sect. 5). It is likely

that these methods will be less suitable for types of variables

that have shorter spatial correlation distances (e.g. precipita-

tion). We attempt to quantify the uncertainty remaining due

to both applied and missed inhomogeneities to some extent

in Sect. 4 and further comparison between the raw and ho-

mogenised data is given in Sect. 5.

4 An uncertainty model for all variables

There are various sources of uncertainty whose effects prop-

agate from the raw hourly observations, through the conver-

sion to the chosen variable, averaging to monthly means,

conversion to climate anomalies, homogenisation, gridding

and spatial averaging. Here we estimate these components

given the current state of knowledge. The framework is

based around that described initially in Brohan et al. (2006)

and then adapted for humidity and PHA homogenisation in

HadISDH.1.0.0 (Willett et al., 2013b). Here it is expanded

for application for all variables. All uncertainties are de-

scribed as standard uncertainties (1σ ) and provided as 2σ

in the final data-product. This coverage factor (k = 2) means

that there is 95 % confidence (2σ ) that the true value of each

quantity lies in the range ±2σ about our estimate. Each un-

certainty component is available individually as a monthly

gridded product. The individual uncertainties are assumed to

be independent and so are combined in quadrature for each

grid box. Regional uncertainties are also calculated, by ad-

ditionally including a component for spatial coverage uncer-

tainty due to missing data.

4.1 Station uncertainty

The uncertainty estimate for the station provides an indi-

vidual value for each monthly mean anomaly based on un-

certainty in the climatology calculation given missing data

(clim), in any homogenisation adjustments made and missed

(adj) and also from the initial hourly measurement (ob). All

components are described fully in Willett et al. (2013b).

An overview and the differences necessitated by the multi-

variable approach are described in Supplement. To briefly

recap, for any monthly mean anomaly our model is as fol-

lows (note Eqs. (1) to (7) are in Table 1):

uanom =

√
u2

clim+ u
2
adj+ u

2
ob. (8)

Specifically, the measurement uncertainty expands the

HadISDH.1.0.0 model out to all variables. As we do not have

instrument type information for any of the data, we make the

assumption that all measurements were taken using aspirated

psychrometers. This is an overgeneralisation, especially over

the last two decades when electronic sensors became more

common. RH instruments are most prone to errors at high

humidity whereas psychrometers are most inaccurate at low
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humidity. Electronic sensors are also more prone to drift over

time, especially after exposure to high levels of specific hu-

midity, though this effect is mitigated by more frequent re-

placement of sensors. Overall, psychrometers are thought to

be prone to greater errors, particularly at low humidity, so our

assumption can be seen as providing a conservative uncer-

tainty estimate. In future iterations of HadISDH we plan to

incorporate an uncertainty model for RH sensors and address

the challenge of homogenisation of data in which sensors are

replaced/recalibrated on a time scale of at least once a year,

as practiced in the UK (M. Molyneux and N. Mander, per-

sonal communication, 2014). For future versions of HadISD,

and HadISDH, it may be possible to identify for some sta-

tions whether they are automated or manual, and changes

over time from the original ISD code. An assumption could

be then made that all automated stations use sensors and all

manual or non-identifiable stations used psychrometers. This

would allow a more specific measurement uncertainty model

to be applied.

4.2 Gridding of uncertainty components, grid box

sampling uncertainty and spatial coverage

uncertainty in large-scale averages

HadISDH is a 5◦ by 5◦ gridded product in which all val-

ues within a grid box for each month are simply averaged

with weighting for stations’ latitude/longitude/elevation. No

further interpolation or smoothing is performed. The overall

station uncertainty for a grid box is estimated as the square

root of the sum of the squared station errors u2
anom divided by

the number of stations in the grid box.

Month to month, the number of stations within a grid box

will vary for very many grid boxes. Furthermore, given the

relatively sparse sampling of stations within each grid box,

the grid box value is unlikely to be the true grid box value

even in the limit that all contributing stations’ data were per-

fect. This sampling uncertainty term is described fully in

Willett et al. (2013b), and follows Brohan et al. (2006) (see

also Jones et al., 1997). To briefly recap, the grid box sam-

pling uncertainty SE2 is estimated by

SE2
=

(
s̄2
i r̄ (1− r̄)

)
(1+ (Ns− 1) r̄)

, (9)

where s̄2
i is the variance of the grid box anomalies calcu-

lated over the 1976–2005 climatology period, r̄ is the average

inter-site correlation and Ns is the actual number of stations

contributing to the grid box in each month of the record.

When obtaining global and regional time series for the

variables in HadISDH, the time-varying coverage has to

be accounted for. The same methodology of the earlier

HadISDH.1.0.0 (Willett et al., 2013b), following Brohan et

al. (2006) is used, and recapped here. While redoing the cal-

culations an error was found in the code used for the cover-

age uncertainties of HadISDH.1.0.0, which meant they were

overestimated in Willett et al. (2013b). This has been recti-

fied here resulting in uncertainties of approximately half the

magnitude.

ERA-Interim data (Dee et al., 2011) are used as they have

good agreement with the in situ surface humidity variables

(Simmons et al., 2010). Monthly surface fields are available

for T and Td, and fields for q and RH have been created and

provided by A. Simmons. Using equations from Table 1 we

have derived DPD fields directly from T and Td, e from Td

and surface pressure and Tw from T , Td and surface pressure.

These monthly resolution conversions for e and Tw are not

ideal given the nonlinear nature of the equations. This is suf-

ficient though, for estimating the coverage uncertainty. For

each of the seven variables, for each month in the HadISDH

anomalies, the ERA-Interim anomalies from all matching

calendar months are selected (i.e. for a January in HadISDH,

all Januaries in ERA-Interim are selected). The ERA-Interim

fields are then masked by the spatial coverage in HadISDH

for that particular month and a cosine-weighted regional av-

erage is calculated. The residuals between these masked av-

erages and the regional average calculated from the observed

grid boxes are only then calculated. From the distribution of

these residuals the standard deviation is extracted and used as

the spatial coverage uncertainty for that month in the regional

HadISDH time series.

On a month-by-month basis, the sampling and station un-

certainties from each grid box are treated as independent and

combined in quadrature. The resulting regional uncertainty is

the square-root of the sum of the normalised cosine-latitude-

weighted squares of the individual grid box uncertainties.

This regional uncertainty is then also treated as independent

of the overall coverage uncertainty for the region and com-

bined in quadrature with it to obtain the final 2σ uncertainty

on the area average time series.

5 Variability and recent trends in land surface

humidity and temperature

5.1 Seasonal and interannual variability

The annual climatological averages for 1976–2005 are

shown in Fig. 6 and Fig. SM5. For T , Td, Tw, e and q the

patterns are very similar. All variables peak across the trop-

ics and decrease polewards. A dry/cool arm extends south-

wards down to the Himalaya across eastern Asia. The pat-

terns in T are most similar to those in Tw whereas Td ap-

pears more similar to q and e. RH and DPD are very differ-

ent from the other variables but similar to each other. They

show little zonal stratification but have regionally consistent

dry zones over high elevation and desert regions (e.g. south-

western USA/northwestern Mexico, southern Africa, Aus-

tralia, northern and western Africa, central Asia including the

Gobi desert and the Tibetan Plateau). Climatological limits

for each variable are given in Supplement Table SM3. Note
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Figure 6. Annual climatologies (1976–2005) for (a) temperature, (b) dew point temperature, (c) specific humidity and (d) relative humidity.

See Fig. SM5 for other variables.

that these are monthly averages for the grid box and so ex-

treme hourly values at a station may be considerably higher

and lower.

5.2 Spatial patterns in long-term changes in land

surface humidity and temperature

Long-term trend assessment requires homogeneous data free

from non-climate influences, so it is important to compare

the raw and homogenised data. Figures 7a–c to 10a–c show

comparisons for grid box decadal trends for T , Td, q and

RH. Trends are all calculated using the median of pairwise

slopes (Sen, 1968). The effects of homogenisation on the spa-

tial trend patterns are relatively small. For all variables, ho-

mogenisation has led to a reduction in the apparent extreme

tails of the distribution of grid box trends (panel c). We may

expect inhomogeneities to lead to unrealistically large grid

box trends in some cases so this suggests that homogenisa-

tion is performing reasonably.

Panel a shows where decadal trends have changed sign af-

ter homogenisation, or where they have been enhanced or

reduced. Very few clear patterns emerge. The smallest effect

of homogenisation is in T and Tw, whilst the greatest effect is

in RH and DPD (panel b). For T , Tw, Td, q, e, RH and DPD,

96.5, 91.7, 86.3, 90.2, 90.0, 74.2 and 69.7 % of grid boxes,

respectively retain the same trend sign after homogenisation.

Changes to grid box trends for q and e are almost identi-

cal, and changes in the southern tip of South America and

around the east of the Arabian Peninsula are common to Td

and Tw as well. For RH and DPD there is little regional pat-

tern (either in terms of each variable or when comparing the

two) to the grid boxes which have switched sign, but ho-

mogenised grid boxes with changed trend direction are much

more widespread than for the other variables. This suggests

that RH and DPD are much more sensitive to inhomogeneity

than the other variables. This may be because of their greater

variability and their joint dependence on measurements of

temperature and humidity. It may also be the case that many

of the grid box trends lie close to a zero trend, hence a change

in trend direction only requires a small change in the data.

Without the aid of variable-specific benchmark tests it is

impossible to measure exactly how well the homogenisa-

tion is performing other than comparing the resulting data-

product with expectation from theory. The good spatial con-

sistency shown in the climatologies (Fig. 6, Fig. SM5), de-

spite no spatial smoothing beyond the grid box, in addition

to the agreement between variables and with expectation pro-

vides support to the efficacy of the homogenisation approach.
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Figure 7. Comparison of decadal trends from 1973–2013 between raw and homogenised monthly mean temperature. (a) Ratio of raw to

homogenised trends for each grid box (a value of > 1 means that the raw trend is greater than the homogenised trend). (b) Scatter plot of

raw verses homogenised decadal trends for each grid box with percentage presence in each quadrant. (c) Trend size distribution for raw and

homogenised grid boxes. (d) Large-scale area-average time series (weighted by the cosine of the latitude) and decadal trends calculated using

the median of pairwise slopes with 5th to 95th percentile slopes as confidence intervals.

Figures 11 and SM6 show mapped homogenised decadal

trends. Grid boxes with black dots identify trends where the

5th to 95th percent confidence intervals of the trend are of

the same sign. These are considered to be significantly dif-

ferent from a zero trend. For all variables the vast majority of

grid boxes exhibit moistening (Td, Tw, q,e) and warming (T )

trends with widespread consistency. For T , 88.6 % (90.2 %)

of grid boxes after (before) homogenisation experience sig-

nificant warming. As Tw is governed by both changes in wa-

ter vapour and T it is expected that this variable would be the

most similar to T in spatial patterns of trends. This is indeed

evident here. For Tw, 82.1 % (80.7 %) of grid boxes after (be-

fore) homogenisation experience significant increases. Of the

grid boxes common to T and Tw, 95.5 % have trends of the

same sign (94.5 % increasing, 0.9 % decreasing).

The variables that are solely affected by the amount of wa-

ter vapour in the atmosphere (Td, q and e) mostly show sig-

nificant moistening of the homogenised (raw) trends, making

up 73.6 (67.6 %), 74.1 (69.3 %) and 73.1 % (69.1 %) of grid

boxes, respectively. There are some drying trends over the

typically desert regions (southern South America, southwest

North America, southern Australia, southern Africa) and also

in south-eastern China which in many grid boxes are signifi-

cant. The Southern Hemisphere drying regions are also com-

mon to Tw, but in this case they are not significantly different

from a zero trend. The close agreement between these vari-

ables is a strong indicator of the internal consistency of the

HadISDH data product. 90.6 % of grid boxes common to q,

e and Td are of the same sign (83.1 % increasing, 7.6 % de-

creasing). From Eq. (2), it is clear that e should be approx-

imately 1.6 times larger than q. For the decadal trends the

mean ratio of e to q is indeed 1.6 : 1. Although the standard

deviation is reasonably large at 0.7, only 1.7 % of grid boxes

have a ratio of less than 1.

Trends are strongest over northern high and mid-latitudes

for T , Td and Tw, whereas for q and e they are strongest over

the tropics and around the Mediterranean. This is consistent

with basic physics. Following Clausius–Clapeyron we expect

increases in q and e to be larger in warmer, more humid re-

gions. Changes in Td are greater in drier regions where there

is less water vapour and smaller in more humid regions where

there is more water vapour. For example, a 1 hPa increase in

e from 1 to 2 hPa results in an increase of around ∼ 8 ◦C in

Td, whereas a change in e from 31 hPa to 32 hPa results in a

much smaller change in Td of ∼ 0.5 ◦C.
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Figure 8. Comparison of decadal trends from 1973–2013 between raw and homogenised monthly mean dew point temperature. (a) Ratio of

raw to homogenised trends for each grid box (a value of > 1 means that the raw trend is greater than the homogenised trend). (b) Scatter plot

of raw verses homogenised decadal trends for each grid box with percentage presence in each quadrant. (c) Trend size distribution for raw

and homogenised grid boxes. (d) Large-scale area-average time series (weighted by the cosine of the latitude) and decadal trends calculated

using the median of pairwise slopes with 5th to 95th percentile slopes as confidence intervals.

DPD and RH present more diverse spatial patterns in long-

term trends. Both variables are distinct measures of close-

ness to saturation and as such have very similar patterns to

each other. For RH almost an equal number of homogenised

(raw) grid boxes show significant increases and decreases –

29.8 % (40.6 %) becoming less saturated and 26.5 % (26.3 %)

becoming more saturated. Similarly, DPD grid boxes with

significant trends are of mixed sign with 39.6 % (46.2 %) be-

coming less saturated and 22.1 % (19.3 %) becoming more

saturated. Overall, the high latitudes and tropics have be-

come more humid (closer to saturation, decreasing DPD, in-

creasing RH) while the mid-latitudes, including the Mediter-

ranean, have become drier (less saturated, increasing DPD,

decreasing RH). For RH and DPD 75.2 % of grid boxes con-

cur on trend direction (31.8 % increasing saturation, 43.4 %

decreasing saturation).

The regions of strongly increasing saturation (e.g. India

and West Africa) are also regions of strong increases in wa-

ter vapour (increasing e and q). However, regions of strongly

reduced saturation (e.g. subtropics to mid-latitudes in both

hemispheres) are not generally associated with decreasing

water vapour (decreasing q and e). Although the amount of

water vapour (e and q) is increasing for the most part over

northern mid-latitudes, these increases appear insufficient to

keep the same level of saturation (constant RH) as these re-

gions are also rapidly warming.

5.3 Long-term trends in large-scale regional averages

For all variables, regional averages are created for the globe

(70◦ S to 70◦ N), the Northern Hemisphere (20 to 70◦ N), the

Southern Hemisphere (70 to 20◦ S) and the tropics (20◦ S to

20◦ N). Each grid box is weighted by the cosine of its lati-

tude to account for the change in grid box area with latitude.

Note that assuming complete spatial coverage over land this

results in a global average comprising of 62, 24 and 14 % of

grid boxes from the Northern Hemisphere, tropics and South-

ern Hemisphere, respectively, For q this breakdown is very

similar at 64, 24 and 12 %, hence the global average is domi-

nated by Northern Hemisphere signals, Trends have been fit-

ted and significance of the trend direction tested as described

in Sect. 5.2.

For long-term trends in large-scale averages, homogenisa-

tion has had little impact in the well-sampled Northern Hemi-

sphere and the global average. Figures 7 to 10 (panels d–g)

show raw and homogenised regional average time series and

trends for T , Td, q and RH. Overall, the homogenised trends
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Figure 9. Comparison of decadal trends from 1973–2013 between raw and homogenised monthly mean specific humidity. (a) Ratio of raw

to homogenised trends for each grid box (a value of > 1 means that the raw trend is greater than the homogenised trend). (b) Scatter plot

of raw verses homogenised decadal trends for each grid box with percentage presence in each quadrant. (c) Trend size distribution for raw

and homogenised grid boxes. (d) Large-scale area-average time series (weighted by the cosine of the latitude) and decadal trends calculated

using the median of pairwise slopes with 5th to 95th percentile slopes as confidence intervals.

Table 2. Regional trend direction summary before and after homogenisation. + significant increasing trend, − significant decreasing trend,

/ no significant trend. Boxes are labelled for warming (warmer), increasing water vapour/closeness to saturation (wetter), decreasing water

vapour/closeness to saturation (drier) and no change (blank).

T Tw Td e q RH DPD

Raw (before homogenisation) Trends

Global + + + + + − +

warmer wetter wetter wetter wetter drier drier

NH + + + + + / +

warmer wetter wetter wetter wetter drier

SH + + − / / − +

warmer wetter drier drier drier

Tropics + + + + + − +

warmer wetter wetter wetter wetter drier drier

Homogenised Trends

Global + + + + + / +

warmer wetter wetter wetter wetter drier

NH + + + + + / +

warmer wetter wetter wetter wetter drier

SH + / / / / − +

warmer drier drier

Tropics + + + + + / /

warmer wetter wetter wetter wetter
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are very similar to the trends from the raw data. The ho-

mogenised trends are slightly smaller in magnitude in all

cases except global and Northern Hemisphere Td, where they

are very marginally larger (0.02 ◦C decade−1 and 0.01 ◦C

decade−1 larger, respectively).

Regional trend directions, where they are significantly dif-

ferent from a zero trend, are summarised in Table 2 for PHA

and ID PHA compared to the raw data. For T , q and e there is

no change in trend direction for any region. For Td and Tw the

trend over the Southern Hemisphere changes from decreas-

ing and increasing, respectively to no trend in both cases.

The largest change occurs in RH where the significant de-

creasing (becoming less saturated) trends for the globe and

tropics are no longer significantly different from a zero trend

after homogenisation. For DPD, all trends in the raw data

are significantly increasing (becoming less saturated). After

homogenisation, there is no longer any significant trend di-

rection in the tropics.

The homogenised global trends (5th to 95th percentile

confidence range in brackets) are as follows (Fig. 12):

– T , 0.22 (0.17 to 0.28) ◦C decade−1,

– Tw, 0.17 (0.12 to 0.21) ◦C decade−1,

– Td, 0.17 (0.11 to 0.22) ◦C decade−1,

– q, 0.08 (0.06 to 0.11) g kg−1 decade−1,

– e, 0.13 (0.09 to 0.17) hPa decade−1,

– RH −0.08 (−0.18 to 0.04) %rh decade−1,

– DPD, 0.05 (0.03 to 0.07) ◦C decade−1.

Over all regions (Fig. 13) the largest significant trends for T ,

Td and Tw are in the Northern Hemisphere – these are 0.28

(0.21 to 0.36) ◦C decade−1, 0.23 (0.14 to 0.30) ◦C decade−1

and 0.22 (0.16 to 0.28) ◦C decade−1, respectively. The largest

significant trends for q and e are in the tropics – these

are 0.13 (0.09 to 0.17) g kg−1 decade−1 and 0.21 (0.14 to

0.27) hPa decade−1, respectively. For the variables that are

related to levels of saturation, RH and DPD, the largest trends

are in the Southern Hemisphere – these are −0.24 (−0.44

to−0.04) %rh decade−1 0.08 (0.03 to 0.13) ◦C decade−1, re-

spectively. Interestingly, none of the other variables show sig-

nificant trends in any direction in the Southern Hemisphere.

The coherent conclusion here is significant warming and

increasing water vapour over the majority of sampled global

land areas over the last 40 years. This is true for the global av-

erage and for the Northern Hemisphere. It is not true for the

Southern Hemisphere, which, although warming, does not

exhibit significantly increasing water vapour in any humid-

ity variable. The surface air over the Southern Hemisphere

land is becoming less saturated. The limited land area and

poorer data coverage may be factors here. Sparser observa-

tional coverage leads to greater sensitivity to uneven spatio-

temporal sampling of stations and errors remaining in the

data. For the tropics and Southern Hemisphere decadal trends

in q are present at only 49 and 59 % of grid boxes, respec-

tively. For the globe this rises to 72 %, largely driven by the

relatively well sampled Northern Hemisphere at 84 %. As

such, there is much larger uncertainty over the tropics and

Southern Hemisphere. This is reflected in the spatial cov-

erage uncertainty estimates discussed below and shown in

Figs. 12 and 13.

Figures 12f, 13f and 13n show continuation of the decline

in RH since 2000 noted in Simmons et al. (2010) and recent

State of the Climate reports (Willett et al., 2011, 2012, 2013a,

2014a). This is apparent in the global, Northern Hemisphere

and Southern Hemisphere time series although too short to

be considered a long-term trend at present. As shown in

Fig. 11d, it is dominated by the mid-latitudes while the high

latitudes and Northern Hemisphere tropics, including the In-

dian sub-continent show increasing saturation. For the most

part this replicates findings in Simmons et al. (2010) for

ERA-Interim. However, aside from West Africa and India,

ERA-Interim shows drying across the Northern Hemisphere

tropics. ERA-Interim drying over central Africa is thought

to be unreliable (Dee et al., 2011) and cannot be compared

with HadISDH as there is no data coverage. Given the poor

data coverage and large uncertainties for HadISDH over the

tropics, the validity of the increased saturation shown in the

Caribbean for HadISDH is unclear. These features of reduced

saturation are also shown in the DPD data (Figs. 12g, 13g,

13o and SM6c and 12g).

Regardless of whether the Caribbean is becoming more

saturated or not, the zonal nature of these features suggests

that there must be a large-scale contributing factor, possibly

linked to atmospheric circulation The flattening since 1998,

commonly referred to as the “warming hiatus”, is less appar-

ent in T than in Td, Tw, q and e. As discussed earlier, these

humidity variables depend substantially on evaporation over

the ocean. The faster warming over the land relative to the

oceans (Joshi et al., 2008; Simmons et al., 2010; Sánchez-

Lugo et al., 2014), especially in summertime extremes of

temperature (Seneviratne et al., 2014), is likely to be impor-

tant. Insufficient water is being evaporated at cooler temper-

atures over oceans to maintain a constant RH for the higher

temperatures over land. Furthermore, a reduction in moisture

availability over land can in turn allow temperatures to esca-

late further (greater sensible heating) than in the presence of

moisture because no energy is lost to evaporative processes

(latent heating) (Brabson et al., 2005). Changing land use

patterns may also play a part as urban, agricultural, grazed

and forest surfaces all have very different properties in terms

of water storage, run off, evaporation, evapotranspiration and

energy balances.

From previous modelling studies it was thought that RH

would not change much on multi-decadal timescales, at least

in the large-scale average (Manabe and Wetherald, 1975; Al-

lan and Ingram, 2002). More recently, Richter and Xie (2008)

show modelled increases in RH of the order of 1 %rh over the

Clim. Past, 10, 1983–2006, 2014 www.clim-past.net/10/1983/2014/
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Figure 10. Comparison of decadal trends from 1973–2013 between raw and homogenised monthly mean relative humidity. (a) Ratio of raw

to homogenised trends for each grid box (a value of > 1 means that the raw trend is greater than the homogenised trend). (b) Scatter plot

of raw verses homogenised decadal trends for each grid box with percentage presence in each quadrant. (c) Trend size distribution for raw

and homogenised grid boxes. (d) Large-scale area-average time series (weighted by the cosine of the latitude) and decadal trends calculated

using the median of pairwise slopes with 5th to 95th percentile slopes as confidence intervals.

surface oceans under an A1B emissions scenario out to 2090.

They also show that this layer of increasing RH is very thin

and that above the boundary layer (> 925 hPa) widespread

decreases in RH are found over the subtropics and mid-

latitudes. As a land-only product, HadISDH RH cannot be

directly compared with the results of Richter and Xie; but the

decreasing land surface RH shown here suggests that large-

scale RH can indeed change on multidecadal timescales.

There are a few other products available that also provide

global temperature and humidity variables over similar pe-

riods. Comparison with these is a useful test of validity for

HadISDH. The CRUTEM4 (Jones et al., 2012) and GHCN-

Mv3 (Lawrimore et al., 2011) are land-based temperature

data sets routinely used for climate monitoring. The ERA-

Interim reanalysis (Dee et al., 2011) is included here for

T , q and RH comparison, following comparison with ear-

lier HadISDH humidity and CRUTEM temperature products

(Simmons et al., 2010; Willett et al., 2013b). ERA-Interim

fields for Td are available and DPD has been derived from the

monthly T and Td fields. We have also calculated monthly

mean e and Tw fields for ERA-Interim using 6-hourly T

and Td fields. Finally, we show CRUTS3.21 (Harris et al.,

2014) for e. While CRUTS3.21 is not intended as a monitor-

ing product due to infilling with climatology in data-sparse

regions we expect there to be good agreement over well-

sampled regions as this infilling occurs mostly pre-1960s.

Global average time series are compared with all data sets re-

gridded to HadISDH resolution and resampled to only those

grid boxes where HadISDH has data. Difference series and

correlations for the standardised climate anomalies (not de-

trended) are shown in Fig. 12.

In general, agreement between HadISDH and the other

products is very good both intra- and inter-annually. Cor-

relations are remarkably high (> 0.99) for T . Agreement is

slightly poorer for RH although still strong at R = 0.817.

This adds further support to the validity of HadISDH (and

ERA-Interim). ERA-Interim changed the source of the in-

gested SSTs in June 2001, which has previously been thought

to be the primary cause of a small shift between ERA-Interim

and other products around that time (Simmons et al., 2010).

This is not obvious in the difference series although some di-

gression around that time is apparent for all variables other

than T . Interestingly, for q, RH, e and Tw HadISDH exhibits

a slightly more humid period between 1997 and 2004.

The uncertainty ranges are sufficiently small at the global

level (Fig. 12), that we can be quite certain that the most

www.clim-past.net/10/1983/2014/ Clim. Past, 10, 1983–2006, 2014
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Figure 11. Decadal trends from 1973–2013 for monthly mean climate anomalies relative to 1976–2005. Trends are fitted using the median of

pairwise slopes. Black dots show trends that are considered to be significantly different from a zero trend – where the 5th and 95th percentiles

of the pairwise slopes are in the same direction. (a) Temperature, (b) dew point temperature, (c) specific humidity and (d) relative humidity.

See Fig. SM6 for other variables.

recentdecade was both warmer and moister than 1973–1982.

For all regions, the combined uncertainty is dominated by the

spatial coverage and station uncertainty. The latter is domi-

nated by uncertainty in adjustments applied and missed dur-

ing homogenisation, which reduces to near zero towards the

present day. Temporal sampling uncertainty is negligible in

all cases at these large regional scales. Interestingly, station

uncertainty (essentially homogeneity uncertainty) makes a

much larger contribution to combined uncertainties for q, e

and RH compared to Td, Tw, DPD and T . This suggests that

both station quality and station density are the primary is-

sues for producing robust humidity analysis whereas station

quality is less of an issue for temperature.

Uncertainties are similar in magnitude for the Northern

Hemisphere and the globe in all cases (Fig. 13). For the direct

humidity variables (q, e, RH, Td and DPD), coverage uncer-

tainties are much larger over the tropics than the Northern

Hemisphere. This is both due to the poorer spatial coverage

and greater variability in terms of humidity. For the thermally

driven variables of T and Tw, there is far less variability in

the tropics, thus mitigating against the effect of poorer spatial

coverage. Hence, uncertainty in the tropics for T and Tw is

smaller than for the Northern Hemisphere and the globe. In

all cases uncertainty in the Southern Hemisphere is consider-

able, leaving little confidence in the robustness of any signal

over this region.

5.4 Comparison between HadISDH.landq.2.0.0 and

HadISDH.landq.1.0.0 series

This new version of HadISDH.landq (2.0.0. compared to

1.0.0) differs only in the method used for homogenisation

which applies adjustments differently in a way that is con-

sistent across all variables. The ID PHA method leads to a

slightly smaller initial set of stations owing to the require-

ment for sufficient neighbours for PHA on both T and DPD.

However, as there is no data removal by ID PHA, fewer sta-

tions fail the post-homogenisation climatology test. This re-

sults in slightly more stations in 2.0.0 (3558) compared to

1.0.0 (3456). The 2013 download of ISD stations also re-

sults in retrospective changes to the data set resulting in small

Clim. Past, 10, 1983–2006, 2014 www.clim-past.net/10/1983/2014/
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Figure 12. Comparison global (70◦ N to 70◦ S) average time series of annual mean climate anomalies from HadISDH.2.0.0 with difference

series for other monitoring products spatially matched to HadISDH grid box size and coverage. HadISDH uncertainty ranges for station

(blue), sampling (red) and coverage (gold) uncertainty contributions combined are shown. All series have been given a zero mean over the

common 1981–2010 period. Decadal trends with 5th to 95th percentile confidence ranges are shown for HadISDH and correlation coefficients

of the standardised climate anomalies (not detrended) are shown. (a, h) Temperature, (b, i) wet bulb temperature, (c, j) dew point temperature,

(d, k) specific humidity, (e, l) vapour pressure, (f, m) relative humidity, (g, n) dew point depression.

changes in spatio-temporal coverage and thus the temporal

behaviour of large-scale averages. These are insufficient to

change the decadal trend magnitude in the global average out

to three significant figures.

In terms of the homogenisation methods alone, the grid-

ded homogenised product 2.0.0 is essentially the same as

1.0.0 for large-scale averages. HadISDH.2.0.0.landq pro-

duces significant decadal trends for the globe (tropics) that

are 0.01 g kg−1 decade−1 smaller (larger). There is no differ-

ence for the Northern Hemisphere and changes are not sig-

nificant for the Southern Hemisphere in either product. Dif-

ferences for the global average are shown in Fig. 12 with

a correlation of > 0.99. At the individual grid box level,

11 % of grid boxes now contain trends of a different direc-

tion. These are almost all over the drying regions shown in

Fig. 11c, these are more spatially widespread and consistent

in HadISDH.2.0.0. It is more likely that these widespread

drying signals are real as we would not expect errors in the

data to have such a spatially smooth signal, providing further

confidence for the methods of HadISDH.2.0.0.

6 Data availability and logistics

The gridded product of HadISDH used here is

HadISDH.2.0.0.2013p. Table SM3 documents the fields

available. It is freely available for research purposes from

www.metoffice.gov.uk/hadobs/hadisdh, along with support-

ing material, diagnostics and also some of the source code

www.clim-past.net/10/1983/2014/ Clim. Past, 10, 1983–2006, 2014
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Figure 13. HadISDH.2.0.0 regional average time series for all variables for with combined uncertainties broken down by coverage (gold),

temporal sampling (red) and station (gold). Decadal trends are shown with 5th to 95th percentile confidence intervals. (a, h, o) Temperature,

(b, i, p) wet bulb temperature, (c, j, q) dew point temperature, (d, k, r) specific humidity, (e, l, s) vapour pressure, (f, m ,t) relative humidity,

(g, n, u) dew point depression.

used in development. Individual stations are also available

on request. Version control will follow the HadISD format

(Dunn et al., 2012) with HadISD updates being fed through

to HadISDH. HadISDH version control and format are fully

described on the download web page.

The version of the pairwise algorithm used is that as-

sociated with the GHCN v3.2 release and can be down-

loaded from http://www.ncdc.noaa.gov/oa/climate/research/

ushcn/#phas. While great effort has been made to ensure high

quality and long-term homogeneity of the data, all users are

advised to use the uncertainty estimates and station numbers

contributing to each grid box mean where possible.

Furthermore, there is some instability resulting from pe-

riodic ISD updates and improvements to the historical data.

For each update an assessment will be made of any result-

ing differences in HadISDH. This will be documented on the

website.

Feedback is very much appreciated and future ver-

sions/annual updates will endeavour to address any is-

sues found. All updates, related work in progress and

notes of interest are written on the HadISDH blogsite

hadisdh.blogspot.co.uk. Users can also keep up to date with

developments from the Met Office Hadley Centre HadOBS

twitter account @metofficeHadOBS.

7 Concluding discussions

HadISDH.2.0.0 is the first, to the authors’ knowledge, multi-

variable humidity and temperature in situ observations-only

land climate data product that is homogenised and annu-

ally updated. Gridded monthly mean climate anomalies (and

other statistics including uncertainty estimates) are provided

for T , Tw, Td, q, e, RH and DPD from 1973 to the end of

2013. Efforts have been made to ensure consistency across

variables such that they can be used together. It is designed

as a tool for climate monitoring, where long-term stability is

essential, providing a variety of physically consistent humid-

ity variables which have different uses for understanding of

the Earth–atmosphere system and societal applications. It is

also useful for evaluation and validation of climate models

and reanalysis products.
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The new ID PHA homogenisation method applied here,

which has been developed to expand the application of exist-

ing PHA software in a manner that is consistent across sev-

eral simultaneous variables, is shown to perform well for all

considered variables. This new method results in a greater

frequency of change points identified for each variable than

there would be otherwise, filling in the “missing middle” of

inhomogeneities typically too small to detect with a single

variable approach.

Given that the dates and character of inhomogeneities are

either unknown or not documented in a useable digitised for-

mat, the only method of validation available is comparison

with other available products and expectation based on basic

physics. On both counts, the homogenised HadISDH prod-

uct performs well, agreeing with the temporal evolution of

estimates available from ERA-Interim, CRUTEM4, GHCN-

Mv3 and CRUTS3.21 and expectations based on the Clau-

sius–Clapeyron relationship.

Efforts have been made to maximise spatio-temporal cov-

erage of the data. However, missing data are prevalent, par-

ticularly at the start and end of the period of record and from

2005 onwards for 128 USA stations. Data are missing for

three main reasons: they are not present in the ISD archive;

station records are too short or have insufficient data over the

climatology period (1976–2005) to be included in our selec-

tion; and data have been removed by the QC or homogenisa-

tion process. In many cases, short station records often orig-

inate from the same station but have different reporting IDs.

These can be merged into one long record, which has been

done for some HadISDH stations. However, the selection and

merge process employed here has been static since 2008 due

to the considerable effort required to undertake such a task. A

revisit is planned which should improve on spatio-temporal

coverage. Although the change in spatio-temporal coverage

over time is substantial, it appears to have little impact on

the large-scale features. There are no obvious signals in the

data that would be consistent with the pattern of missing data

over time and there is good agreement between HadISDH

and other data sets that do not use the same station selection.

Statistically significant long-term warming trends are

found for the globe, both hemispheres and the tropics. Sta-

tistically significant long-term increases in water vapour

(moistening trends) are found for the globe, tropics and

Northern Hemisphere. The long-term trends in RH are sig-

nificantly negative in the Southern Hemisphere but insignif-

icant in the globe, tropics and Northern Hemisphere. How-

ever, the decline in global land RH since 2000, first noted

in ERA-Interim (Simmons et al., 2010), is apparent in our

globe, Northern Hemisphere and Southern Hemisphere av-

erages. This decline approximately coincides with the so-

called “warming hiatus”. Interestingly, the flattening is an

obvious feature in the regional average time series for q, Td

and Tw, and less apparent for T .

As expected following the Clausius–Clapeyron relation-

ship, the largest increases in water vapour are found over the

warm and water-rich regions of the tropics and the Mediter-

ranean. There are significant increases in RH over much of

the tropics and high northern latitudes, and the largest in-

creases in Td and Tw are found in the latter. Thus the land sur-

face air is becoming more saturated in these regions. Despite

increasing water vapour, over the mid-latitudes, including the

Mediterranean, there are decreasing RH trends: the air near

the surface over land is becoming less saturated. It is clear

that the decline in regionally averaged RH since 2000 comes

from these mid-latitude regions – it is not a truly global sig-

nal. It is possible that the increasing automation of observ-

ing instruments, which began in earnest from the late 20th

century, is a contributing factor. However, the widespread

signal is temporally consistent across both hemispheres and

physically plausible. Furthermore, the data have been ho-

mogenised which should have removed any large artefacts

from changes in instruments over time.

The regionally distinct features in RH, the flattening of the

water vapour (q, e and Td) trends and the decline of RH,

are likely to be related. Drivers are not investigated here, but

we suggest that atmospheric circulation changes, land–sea

warming disparities and reduced water availability/changed

land surface properties are potential contributing factors.

Uncertainty estimates, combining uncertainties for spatial

coverage, temporal sampling and station issues of measure-

ment, homogeneity and climatology uncertainty are provided

for each grid box and for the large-scale averages. At large

scales these are dominated by spatial coverage and addi-

tionally station uncertainty for q, e and RH. Station uncer-

tainty is mostly driven by homogeneity uncertainty for both

applied and missed adjustments. Thus, the best way to re-

duce uncertainty is through improving spatio-temporal cov-

erage by greater data-sharing and increased data-rescue ef-

forts (Thorne et al., 2011; Allan et al., 2011) and improv-

ing homogenisation by increasing the digital availability of

metadata (i.e. instrument type, station type – manual or auto-

mated).

Both q and RH are relevant to the hydrological cycle.

In particular, q governs the amount of precipitation during

heavy rainfall events (Allen and Ingram, 2002). RH is im-

portant for both the occurrence of a precipitation event and

the capacity of the air for evaporation (Richter and Xie,

2008). As water vapour is a greenhouse gas, any implica-

tions of it increasing are obviously important for the radia-

tion budget. The energy balance at the surface is also rele-

vant given both the capacity for evaporation as governed by

RH and the amount of latent heat stored in the atmosphere

as inferred by q.

Although lower RH in the mid-latitudes reduces the ther-

mal stress on humans and mammals, should this trend con-

tinue it may have adverse effects on agriculture through the

prevalence of drought. Conversely, increasing RH in already

physiologically stressful regions of the tropics may challenge

human health (Taylor, 2006; Kjellstrom et al., 2008; Willett

and Sherwood, 2012).
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Overall we show robust signals of increasing water vapour

over the last 40 years alongside changes in the level of sat-

uration over the last decade that could have implications for

society. Continued monitoring of both temperature and hu-

midity variables will aid further understanding of both the

causes and implications of these changes.
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