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Reassessing biases and other uncertainties in sea-surface

temperature observations measured in situ since 1850, part 1:

measurement and sampling uncertainties

J. J. Kennedy,1N. A. Rayner,1R. O. Smith,2D. E. Parker,1and M. Saunby1

Abstract. New estimates of measurement and sampling uncertainties of gridded in situ

sea-surface temperature anomalies are calculated for 1850 to 2006. The measurement un-
certainties account for correlations between errors in observations made by the same ship
or buoy due, for example, to miscalibration of the thermometer. Correlations between
the errors increase the estimated uncertainties on grid-box averages. In grid boxes where
there are many observations from only a few ships or drifting buoys, this increase can
be large. The correlations also increase uncertainties of regional, hemispheric and global
averages above and beyond the increase arising solely from the inflation of the grid-box
uncertainties. This is due to correlations in the errors between grid boxes visited by the
same ship or drifting buoy. At times when reliable estimates can be made, the uncer-
tainties in global-average, southern-hemisphere and tropical sea-surface temperature anoma-
lies are between two and three times as large as when calculated assuming the errors are
uncorrelated. Uncertainties of northern hemisphere averages approximately double. A new
estimate is also made of sampling uncertainties. They are largest in regions of high sea-
surface temperature variability such as the western boundary currents and along the north-
ern boundary of the Southern Ocean. The sampling uncertainties are generally smaller
in the tropics and in the ocean gyres.

1. Introduction

In order to understand changes in sea-surface tempera-
ture (SST) at global and regional levels, it is important to
quantify the expected uncertainties in the observations. A
number of studies have attempted to quantify the measure-
ment errors in observations made by ships, drifting buoys
and moored buoys. Typically, studies have considered two
separate, but related, problems. One is the problem of esti-
mating uncertainties associated with random measurement
errors, which are assumed to be uncorrelated from one obser-
vation to the next (for example Emery et al. [2001], Kent and
Challenor [2006], Rayner et al. [2006]). The second is that
of identifying biases in the data due to changes in the way
that measurements were taken. For example, many early
SST measurements were made by collecting water samples
in poorly insulated buckets. The buckets lost heat as they
were hauled to the deck thus introducing a persistent cold
bias into records of SST (e.g. Folland and Parker [1995],
Smith and Reynolds [2002]). Part 2 of this paper (Kennedy
et al. [2011a]) deals with estimating biases and their un-
certainties on long space and time scales due to changing
measurement methods.

However, the two types of errors cannot be separated
so easily. Although measurements from ships exhibit char-
acteristic average biases arising from the methods used to
make the measurements, no two ships or buoys are identical.
Therefore, one would expect biases that vary from ship to
ship, or from drifting buoy to drifting buoy. By comparing
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SST observations to SST fields output from the Met Of-
fice Numerical Weather Prediction model, Kent and Berry
[2008] estimated the standard deviations of these micro-
biases, which they referred to as inter-platform errors to
distinguish them from actually-random intra-platform er-
rors. They found significant inter- and intra-platform errors
in observations from ships, drifting buoys and moored buoys.
Kennedy et al. [2011b] found similar errors in comparisons of
in situ observations with measurements made by the Along
Track Scanning Radiometer. The inter-platform and intra-
platform designations can be confusing so here we refer to
micro-bias errors and random measurement errors instead.

In addition to measurement uncertainties, gridded data
sets of SST also incur an additional uncertainty from esti-
mating area averages from a finite number of observations.
Rayner et al. [2006] estimated combined measurement and
sampling uncertainties from the SST data, but did not ex-
plicitly estimate the sampling uncertainty alone. Sampling
uncertainties for land air temperatures have been estimated
by Jones et al. [1997], Brohan et al. [2006] and Shen et al.
[2007]. The formalism used in these studies depends on the
average correlations between points within a grid box. The
situation is slightly more complicated for marine data be-
cause the observations are randomly placed in time as well
as in space. Morrissey and Greene [2009] extended the aver-
age correlation concept to marine data, which is the starting
point for this analysis.

In the present paper, the estimates of micro-bias and ran-
dom measurement uncertainties are used to estimate the un-
certainties of gridded SST fields and on global and regional
average SSTs for the period 1850 to 2006. Section 2 briefly
describes the data source used in the analysis. Section 3
details the theoretical basis for the error model used in the
subsequent sections. Section 4 deals with the practical prob-
lem of estimating uncertainties particularly when it is not
possible to identify individual ships because the ships call
sign, or ship name is not contained in the meteorological
reports. Section 5 describes the results. In part 2 of the
paper Kennedy et al. [2011a] a bias adjusted version of the

1



X - 2 KENNEDY ET AL.: HADSST3 MEASUREMENT AND SAMPLING

Met Office Hadley Centre SST data set is described. The
data set and uncertainty estimates together constitute ver-
sion 3 of that data set. HadSST3 runs from 1850 to 2006
and includes bias adjustments and more comprehensive er-
ror estimates.

2. Data

The sea-surface temperature data for 1850 to 2006 come
from version 2.5 of the International Comprehensive Ocean
Atmosphere Data Set (ICOADS, Woodruff et al. [2010]).
ICOADS comprises meteorological measurements originat-
ing from ships, oceanographic stations, moored buoys, drift-
ing buoys and research vessels. SST data from ICOADS
were quality controlled and processed according to the
method detailed in Rayner et al. [2006] to produce monthly
5◦ latitude × 5◦longitude grids.

There are three principal types of platform measuring
SST in situ: ships, drifting buoys and moored buoys. Ships
and buoys are identified by a unique call sign, or other iden-
tifier. For many historical reports, however, this information
is absent. Where present, call sign information is recorded in
ICOADS metadata and was recorded in Global Telecommu-
nication System (GTS) reports until December 2007. After
this date, the callsign information was removed from some
GTS feeds and encrypted on others owing to concerns about
ship security. Due to the lack of public call sign informa-
tion it was not possible to complete this uncertainty analysis
after 2006.

Most of the ship-based data in ICOADS were taken by
ships engaged on other business. The Voluntary Observing
Ships (VOS) were recruited into national fleets and issued
with standardised equipment and instructions for their use.
Although countries made an effort to standardise equipment
and instructions within their fleets at any one time, there
have always been differences between countries concerning
best practice. The size of the VOS fleet peaked around 1985,
when there were more than 7500 ships on the World Mete-
orological Organisation’s VOS fleet list. Numbers have de-
clined since, with fewer than 4000 ships remaining on the
list today (http://www.bom.gov.au/jcomm/vos/).

Drifting buoys consist of a plastic ball, approximately 30
cm in diameter, attached to a drogue. The drogue ensures
that the buoy remains correctly oriented and that it drifts
with the currents in the mixed layer. The SST sensor is
embedded in the underside of the buoy and measures at a
depth of approximately 25cm in calm seas. Movement of
the buoy and the action of waves mean that the measure-
ment is representative of the upper 1m of the water column
(Lumpkin and Pazos [2007]). The design of drifting buoys
was standardised in the early 1990s; consequently, measure-
ments from drifting buoys should be consistent at all times
and places thereafter. In contrast, moored buoys come in a
wide variety of shapes and sizes, from the 10m discus buoys
to the 1.5m fixed buoys deployed in the North Sea.

The sampling characteristics of these three platform types
are quite distinctive. Ships travel between ports making reg-
ular observations so the observations from a single ship can
provide a representative sample for a large area. However,
most ship observations are made in the standard shipping
lanes so the coverage obtained in this way can be limited.
Drifting buoys, as their names suggests, drift. How far they
drift depends on the prevailing currents, but during a month
they do not often travel far. They typically take hourly
observations and consequently provide dense sampling of a
limited area in any given month. Drifters are generally de-
ployed to provide a quasi-uniform coverage of the oceans.
Moored buoys take regular measurements at a fixed point,
typically in coastal areas, but there are also a number of
tropical moorings in the open oceans.

3. Error model - theory

Consider an SST measurement, Oij , taken by ship i at
point j that has been converted to an anomaly from a refer-
ence climatology. This observation is a combination of the
true SST anomaly at that point, Tij , a random measure-
ment error, Mij , that is different for every observation and
a constant offset - the micro-bias error - for measurements
from that ship, Bi. Here “ship” is used to refer to any single
entity - be it ship, drifting buoy, or moored buoy - that takes
SST measurements. Oij can thus be written as:

Oij = Tij + Mij + Bi (1)

Mij has mean zero and standard deviation σmi
and is dif-

ferent at each point j. Bi is drawn for each ship, i, from a
sample with mean zero and standard deviation σbi

. A mean
of zero assumes that the bias adjustments discussed in Part
2 of this paper have adjusted successfully for the mean bias
for each measurement type. The indices i and j can be used
to keep track of observations in a single grid box. In this
instance i = 1, 2, ..., m; j = 1, 2, ..., ni. i.e. there are m
ships and ship i takes ni observations. The total number of
observations is n. The grid-box average, G, is therefore,

G =
1

n

m
∑

i=1

ni
∑

j=1

(Tij + Mij + Bi). (2)

It is assumed that the Ms and Bs are independent of the
T s and the Ms are independent of the Bs. Hence

var(G) =
1

n2
[var

m
∑

i=1

ni
∑

j=1

(Tij) + var

m
∑

i=1

ni
∑

j=1

(Mij) (3)

+var

m
∑

i=1

ni
∑

j=1

(Bi)] (4)

and all the covariance terms between the different sources of
error are equal to zero. The variance of the first term in the
square brackets can be expressed (Kagan [1966]; Yevjevich

[1972]) as,

1

n2
var

m
∑

i=1

ni
∑

j=1

(Tij) =
1

n
σ2

s [1 + (n − 1) r̄] (5)

where σ2
s is the standard deviation of the SST anomalies

at a fixed point, which is assumed to be a constant in any
given grid box, and r̄ is the average correlation of the SST
anomalies measured at any pair of points within the grid
box. The Ms are independent of each other, as are the Bs,
so we have

1

n2
var

m
∑

i=1

ni
∑

j=1

(Mij) =
1

n2

m
∑

i=1

ni
∑

j=1

var (Mij) =
1

n2

m
∑

i=1

niσ
2
mi

(6)

and

1

n2
var

m
∑

i=1

ni
∑

j=1

(Bi) =
1

n2

m
∑

i=1

var[

ni
∑

j=1

(Bi)] = (7)
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∑
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1

n2

m
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n2
i σ

2
bi

. (8)
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The total variance of the grid-box average is therefore

σ2
tot =

1

n2

m
∑

i=1

niσ
2
mi

+
1

n2

m
∑

i=1

n2
i σ

2
bi

+
1

n
σ2

s [1 + (n − 1) r̄] .

(9)

The total variance includes a component representing the
variability of the true grid-box average from one month to
the next. This variability is given by the constant term (σ2

s r̄)
and represents the climate signal. Subtracting σ2

s r̄ from the
total variance leaves only those terms that together provide
an estimate of the excess variance due to under-sampling
errors and measurement errors:

σ2
error =

1

n2

m
∑

i=1

niσ
2
mi

+
1

n2

m
∑

i=1

n2
i σ

2
bi

+
1

n
σ2

s [1 − r̄] (10)

This formula gives the uncertainty on the grid-box average
for a given set of observations made within that grid box and
tends to zero as n and m increase. To better understand the
formula it is instructive to consider the case where each of
the m ships takes the same number (ni = n/m) of observa-
tions and has the same random measurement and micro-bias
error characteristics, then the formula above reduces to

σ2
error =

σ2
m

n
+

σ2
b

m
+

σ2
s (1 − r̄)

n
. (11)

The three terms correspond to the random measurement
uncertainty, the micro-bias uncertainty and the sampling
uncertainty respectively. This is the minimum uncertainty
for a given number of observations n and ships m and shows
that it is only possible to reduce significantly the uncertainty
of the grid-box average by increasing both the number of
observations (n) and the number of ships (m) making those
observations. It is also interesting to consider the limiting
cases for a given number of observations. The uncertainty of
the grid-box average will be a minimum when m = n and a
maximum when m = 1. Between these extremes, the uncer-
tainty will tend to reduce with n more slowly than n−1. The
micro-bias error term will also lead to correlations between
the errors in two grid boxes where the same ship makes ob-
servations in both. This will be explored further in the next
section.

3.1. Inter-grid box error correlations

The micro-bias error, σ2
bi

, for a given ship in equation
10 is correlated both within a grid box and between any
two grid boxes that the ship visits. Random measurement
and sampling errors are uncorrelated between grid boxes.
Therefore the covariance, Cp,q, between two grid boxes is:

Cp,q p6=q =

∑

k
npk

nqk
σ2

bk

NpNq

(12)

where npk
and nqk

are the number of observations from ship
k in grid boxes p and q respectively. k runs from 1 to the
number of ships that are present in both grid boxes. Np and
Nq are the total number of observations in boxes p and q.
If there are no ships that made measurements in both grid
boxes then Cp,q is zero. Cp,p is given by the error variance
on the grid-box average in Equation 10.

To do this calculation it is necessary to know which ships
took measurements in each grid box, how many observations
were made by each ship (npk

and nqk
) and the estimated bias

error associated with that ship (σ2
bk

). Given this informa-
tion, the covariance matrix can easily be calculated during
gridding. Unfortunately, as was noted above, not all SST
observations made by ships can be unambiguously associ-
ated with an individual vessel. This problem is discussed in
Section 4.2.

3.2. Sampling error

Sampling errors arise when the area-average of a
spatially-varying quantity is estimated from a finite num-
ber of observations. Even if the individual measurement er-
rors were zero, the mean of the observations in the grid box
would not be equal to the true spatial-average. As discussed
above, the total variance of a grid-box average of n perfect
observations is given (Kagan [1966]; Yevjevich [1972]) by

σ2
grid =

σ2
s

n
(1 + r̄ (n − 1)) . (13)

The formula assumes that the variance at every point within
the grid box is equal to σ2

s and that the points are randomly
distributed. These are likely to be good approximations for
most grid boxes, but this additional uncertainty is discussed
in Section 4.5. The sampling uncertainty term is the part
that depends on n i.e. the excess variance caused by under
sampling:

σ2
se =

σ2
s

n
(1 − r̄) . (14)

It is possible to estimate σ2
s for a given grid box by cal-

culating the grid-box average variance for months when n is
large.

σ2
n=∞ = σ2

s r̄ (15)

The value of r̄ can be estimated from the data as in Jones

et al. [1997] and Brohan et al. [2006] who used the correla-
tions between grid boxes to estimate the average correlation
within a grid box for land stations. Land stations generally
make two or more observations a day every day, thus en-
suring perfect temporal sampling. The only concern then is
that the measurements made at the station are not repre-
sentative of the whole area of the grid box. Estimating r̄ is
slightly more complicated for marine data because observa-
tions are sampled randomly in both space and time. Morris-

sey and Greene [2009] examined the case of SST sampling
and extended the r̄ concept to include a time dimension.
The special case where the observations are randomly dis-
tributed and there is no correlation between the space and
time components is used here. It will tend to lead to a
slightly larger estimate of the sampling error than for the
case where the two are correlated.

In Jones et al. [1997] r̄spacewas estimated by calculating
a correlation decay length from inter-grid box correlations.
A similar method is followed here. The correlation between
two points is assumed to be of the form:

r = exp(
−x

x0
) (16)

where x is the distance between two points and x0 is the
characteristic length scale. In most grid boxes an exponen-
tial form for r gives a better fit to the data than a gaussian
form.

SST data were taken from 1961 to 2010, using HadSST2
to extend the series from 2007-2010. The data were de-
trended using a 5-term polynomial fit to the time series
of observations in each grid box. Winsorised correlations
(Wilcox [2001]) were calculated between the de-trended time
series of SST from a given grid box with de-trended time se-
ries in all grid boxes within ±100◦of longitude and ±20◦of
latitude. A minimum of 30 months of coincident data were
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Figure 1. (a) r̄space, (b) r̄time, (c) r̄all and (d)
√

σ2
s(1 − r̄), the sampling error (◦C) on a single observation.

required to estimate the correlations. The value of x0 that
minimised the RMS difference between the observed corre-
lations and the model was calculated. The average spatial
correlation, r̄space , within each grid box was estimated by
choosing 100000 pairs of points from within the grid box,
calculating the correlations using equation 16 and taking
the average. The map of r̄space is shown in Figure 1.

r̄time was calculated in an analogous manner by fitting
an exponentially decaying lag correlation function to the
de-trended (using a low-pass filter) monthly time series of
SST anomalies in each grid box. The resulting field of r̄time

was multiplied by r̄spaceto get the final estimate of r̄all for
each grid box (Figure 1).

Typically the average correlations are highest in the trop-
ics, particularly in the eastern Pacific. They are lower in the
region of the western boundary currents, on the northern
boundary of the Southern Ocean and at the edges of the
field near areas of seasonal sea ice cover.

The true standard deviation at a point in a given grid
box, σ2

s , was calculated from σ2
n=∞ = σ2

s r̄. This was esti-
mated by Rayner et al. [2006] from the observed data. A

map of
√

σ2
s(1 − r̄), the sampling uncertainty of a grid box

average calculated from a single observation, is shown in
Figure 1. Sampling uncertainties are highest in the west-
ern boundary currents and along the northern boundary of
the Southern Ocean where SST can change rapidly and spa-
tial temperature gradients are strong. Sampling uncertain-
ties are smaller in the tropics - particularly in the Indian
and Atlantic Oceans - where the spatial and temporal cor-
relations are large. In the eastern tropical Pacific there is
an area of higher variability in the region of the El Niño
cold tongue. In the North Pacific the Kuroshio extension
increases sampling uncertainty as far east as Hawaii. The
pattern and magnitude of the sampling uncertainty is simi-

lar to that calculated from sub-sampling complete satellite
data (Rayner et al. [2009]).

3.3. The full error covariance matrix

Combining all the terms of the error covariance matrix
gives

Cpp =
1

n2

m
∑

i=1

niσ
2
mi

+
1

n2

m
∑

i=1

n2
i σ

2
bi

+
1

n
σ2

s (1 − r̄) (17)

along the diagonal, and

Cpq, p6=q =

∑

k
npk

nqk
σ2

bk

NpNq

(18)

on the off-diagonal, which can be evaluated only when we
have call sign information. When calculating area-averages
and other useful quantities, it is necessary to keep track
of the uncertainties through the calculation. For a generic
function f = f(x1, x2...xn), where the covariance of xp and
xq is given by Cp,q, the standard expression for the error
variance of f , σ2

f is given by

σ2
f =

n
∑

p=1

n
∑

q=1

(

∂f

∂xp

∂f

∂xq

Cpq

)

. (19)

When f is the weighted average of n grid boxes

f =

∑n

p=1
apxp

∑n

p=1
ap

(20)
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where ap is the weight of grid box p and

∂f

∂xp

∂f

∂xq

=
apaq

(
∑n

l=1
al

)2
(21)

Therefore, in matrix notation,

σ2
f =

aCaT

(Σn
l=1al)2

(22)

where a is a vector of weights a = (a1, a2, ..., an). For cal-
culating area averages of the SST data, the values of a are
the grid box areas, or set to zero where data are missing.

3.4. Uncertainties of temporal averages

It is useful to know the uncertainty of annual average
values as well as monthly average values. The correlated
errors that lead to non-zero covariance in the spatial fields
of uncertainty will also lead to non-zero covariances in the
full space-time covariance matrix. The non-zero covariances
need to be accounted for when propagating uncertainties
from monthly to annual averages. There are two extreme
cases: first that the monthly errors are independent; second,
that they are completely correlated. All other assumptions
being correct, the correct error variance will lie somewhere
between the two corresponding estimates.

It is impractical to create the covariance matrix for the
whole year. For a 5◦latitude×5◦longitude monthly analysis
such a matrix would contain nearly a billion ((72×36×12)2)
elements. Instead, the weight that each observation takes in
the global average was calculated and the uncertainty was
built up in the following way.

σ2
global average =

1

(Σwij)
2
(

m
∑

i=1

(

ni
∑

j=1

wij)
2σ2

bi
(23)

+

m
∑

i=1

ni
∑

j=1

w2
ijσ

2
mi

(24)

+

m
∑

i=1

ni
∑

j=1

w2
ijσ

2
seij

) (25)

where wij is the weight that observation j from ship i takes
in the global annual average. σseij

is the sampling error in
the grid box containing observation ij. wij depends on how
the annual average is calculated. Here, the annual global
average is calculated by first taking the area-weighted aver-
age of the 12 monthly SST fields and then averaging the 12
numbers to get the annual average. Therefore the weight of
each observation is

wij =
areai,j

ngridboxnmonthsareatotal,month

(26)

where areai,j is the area of the grid box containing observa-
tion i, j, and the areatotal,month in the denominator is the to-
tal area of occupied grid boxes in the field for a given month.
ngridbox is the number of observations in the monthly grid
box containing observation j from ship i and nmonths is the
number of months in the average, usually 12.

4. Error model - implementation

The method was applied to data from ICOADS 2.5 from
1850 to 2006. Each year was split into 12 pseudomonths
comprising six five-day pentads with the exception of Au-
gust which has seven. Leap years have an extra day in the

final February pentad. The data were processed following
Rayner et al. [2006]. In Rayner et al. [2006] the grid box
averages were calculated by first taking the winsorised aver-
age of the SST anomalies within each 1x1xpentad grid box.
The winsorised average of the 1x1xpentad grid boxes within
each final 5x5xmonthly grid box were then calculated. De-
spite the averaging method differing from that assumed in
the error model, equation 9 provides a good fit to the grid
box variances. This was checked by repeatedly resampling
a grid box in the North Sea which contains more than 1000
observations each month (not shown). In this way it was
possible to ensure that the model fitted the data for a wide
range of n and m.

The values of σ2
mi

and σ2
bi

are taken from Kennedy et al.
[2011b] for ships and drifting buoys and Kent and Berry
[2008] for moored buoys. In Kennedy et al. [2011b] observa-
tions from each unique ship or drifting buoy were compared
to a background SST field from the Advanced Along-Track
Scanning Radiometer (AATSR) instrument and the differ-
ence time series were used to calculate representative values
of σ2

mi
and σ2

bi
for ships and drifting buoys. The differing

values, shown in Table 1, reflect the relative accuracies of
ship and buoy measurements. Kent and Berry [2008] cal-
culated σ2

mi
and σ2

bi
for moored buoys by comparing their

measurements to SST fields taken from the Met Office Nu-
merical Weather Prediction system.

In the following analysis all ships are considered to have
the same error characteristics i.e. a fixed value of σm and
σb. Drifting and moored buoys have their own characteristic
values. The values used are summarised in Table 1.

The error model as described above assumes that it is
possible to unambiguously identify each ship, or buoy. How-
ever, this is not always possible. Often the call signs by
which individual ships can be identified are missing from
the ICOADS reports or a generic call sign is used instead.
In other cases the ship identifier is incomplete. For exam-
ple, between 1870 and the 1910s many observations have
call sign “0120”. Many of these observations have the same
time stamp, but different locations so the call sign cannot
be a unique identifier. The non-unique call signs identified
were ’SHIP’, ’SHIPX’, ’0120’, ’PLAT’, ’1’, ’58’, ’7’, and ’ ’
(i.e. no call sign).

Excluding these observations from the uncertainty calcu-
lation would lead to an underestimate of the uncertainties.
An alternative approach might be to assume that the obser-
vations with non-unique call signs did indeed come from the
same vessel, but this would lead to a very large overestimate
of the uncertainties at those times when many observations
cannot be uniquely identified with a particular ship. The
following sections attempt a more reasonable estimate of
the uncertainty component associated with the unidentifi-
able observations.

4.1. Grid-box average

The first difficulty in implementing the error model is in
estimating the micro-bias uncertainty term,

m
∑

i=1

n2
i σ

2
bi

(27)

Table 1. Estimated random measurement (σm) and micro-
bias (σb) uncertainties for ships and drifting buoys from
Kennedy et al. [2011b] and for moored buoys from Kent and
Berry [2008].

Platform σm(◦C) σb(
◦C)

Ship 0.74 0.71
Mooring 0.30 0.20
Drifter 0.26 0.29
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when the ships cannot be identified and the ni are therefore
unknown. However, what is known in all situations is n, the
total number of observations in the grid box. The micro-bias
term can be estimated using only this information.

The value of Equation 27 depends on how the n observa-
tions are partitioned between the ships that made them. As-
suming that the partitioning of observations between ships
is roughly constant for a given grid box over time,

∑

i
n2

i

can be estimated using a function of the form

anb
≈

∑

i

n2
i (28)

where n is the total number of observations in the grid box.
The parameters a and b can be estimated from those ob-
servations for which the call signs are known and for which
∑

n2
i can therefore be evaluated. Values of a and b were

estimated for each grid box for each year using data from
alternate months (January, March, May...) for the nine year
period centred on that year. The logarithm of

∑

n2
i was re-

gressed on the logarithm of n.

log
∑

i

n2
i = log(a) + b log(n) (29)

Ships that took hourly observations, such as ocean
weather ships, were excluded because they tended to skew
∑

n2
i towards high values that were not representative of

typical SST observations. Months where the value of
∑

n2
i

was in the upper 15% were also rejected because these were
often dominated by a few exceptionally high values. The
model parameters were verified using the remaining months
(February, April, June...). Where the correlation of the esti-
mate from the model with the actual value was below 0.5, a
and b were flagged as missing. Values of a and b are shown
in Figure 4.

Where observations were available from many ships, b was
close to 1. For example, in the case where each of m ships
takes g observations, n is equal to mg and

∑

n2
i is equal

to mg2, so a = g and b = 1. Where most of the observa-
tions come from a single ship, b approaches 2. Therefore,
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Figure 2. (a) Uncertainty of global monthly average
SST anomaly for the error model including inter-grid box
correlations (grey) and for the error model with no inter-
grid box correlations (black). (b) Ratio of the two lines in
panel (a). (c) as for panel (a) but including an estimate
of the full uncertainty of the global monthly average SST
anomaly (upper black line). This is 2.4 times the lower
black line prior to 1982 and equal to the grey line after
1982. (d) Fraction of observations with unique call signs.

along the well travelled shipping lanes, the observed value
of b tends to be around 1. At high latitudes and in other
areas where shipping traffic is more sporadic, b tends to be
higher, reflecting the fact that in these areas the grid-box
average is likely to be based on observations from a smaller
number of vessels. When b is close to 2, the value of a is
generally close to 1, as expected.

Where it was not possible to estimate a and b, it was
assumed that b was equal to 2 and a was equal to 1. This
is the most conservative case and reflects the fact that in
areas where observations were not sufficiently numerous to
calculate reliable estimates of a and b, the observations were
likely to have come from a single ship. In the 1860s there
were few observations and most had no call sign, so many
grid boxes had to be filled in this way. Once a and b had
been calculated, they were used to estimate the micro-bias
uncertainty term thus:

∑

i(ID known)

n2
i σ

2
bi

+ anb
unknownσ2

b (30)

All observations with missing or generic call signs were as-
sumed to come from ships and not from drifting or moored
buoys. This information can then be combined with the
sampling and random measurement uncertainties, like so

Cpp =
1

n2

m
∑

i=1

niσ
2
mi

+
1

n2

∑

ID known

n2
i σ

2
bi

(31)

+
1

n2
anb

unknownσ2
b +

1

n
σ2

s (1 − r̄) (32)

along the diagonal.

4.2. Regional average

Because of the problem of missing call signs, it is not
possible to explicitly calculate the off-diagonal elements of
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Figure 3. (a) fraction of observations in each month
from 1850 to 2006 with unique call signs. (b) Uncer-
tainty of the global annual average sea-surface tempera-
ture calculated from only those observations with unique
call signs. The upper line shows the full error calculation
described in Section 4.3, and the lower line was calculated
from the uncertainties on the monthly averages assuming
that they are independent. (c) Neff calculated from the
uncertainties shown in panel (b). The horizontal line is
at neff = 2.25. (d) The uncertainty of the global an-
nual average sea-surface temperature calculated using all
observations and assuming neff = 2.25.
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Figure 4. Values of a (left) and b (right) calculated for three different nine-year periods centred on:
1994 (top), 1924 (middle) and 1894 (bottom). a and b are dimensionless quantities.

the covariance matrix (Equation 12) for all months. To es-
timate the size of this effect, the off-diagonal elements, Cpq,
were calculated using only data from ships that could be
identified unambiguously. Generic call signs (SHIP, SHIPX,
0120, PLAT etc.) were not included, neither were observa-
tions with no call sign. A second estimate was made using
all the data, but assuming that all the off-diagonal elements
were set to zero. Figures 2(a) and (b) show the uncertainty
of the global average calculated using these two methods
and the ratio between them. Also shown are the fractions
of observations with unique call signs (Figure 2(d)).

In the 1860s and 1970s there are few observations with a
unique call sign. In these cases Cpq could only be estimated
in very few cases so the grey line runs close to the black line
and is an underestimate of the true uncertainty. In contrast,
there are a number of periods during which the number of
identified callsigns is large relative to the number of uniden-
tified call signs: 1850-1854, 1880-1890, 1915-1945 and from
around 1982. Before 1982, there is an approximately lin-
ear relationship between the fraction of observations with
unique call signs and the ratio shown in Figure 2(b). Ex-
trapolating a linear fit to the case where all observations
have unique call signs gives an estimated ratio of 2.4 be-

tween the uncertainties based only on the diagonal elements
and the uncertainty from the full error model in the case
when all call signs are known.

An estimate of the uncertainty of the global average was
made by multiplying the series of uncertainties based only
on the diagonal elements by 2.4. After 1982, the estimates
from the full error model were used because the number of
non-unique call signs is relatively small and the sampling
characteristics changed markedly with the introduction of
drifting and moored buoys. The resulting combined series
is shown in the upper black line of Figure 2(c) which is
2.4 times the lower black line until 1982. The multiplier is
different for each region, reflecting the nature of the local
shipping and observational coverage. Prior to 1982, a fac-
tor of 2.4 was used for the globe and southern hemisphere
and a factor of 2.2 was used for the tropics. A multiplier of
2.1 was more appropriate for the better observed northern
hemisphere, again, prior to 1982.

4.3. Temporal average

The calculation of the uncertainty of an annual average,
σ2

annual, is once again complicated by the presence of missing
call signs. This is dealt with in a similar way to the regional
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averages, by comparing the annual and monthly uncertain-
ties calculated from observations for which the call signs are
all known. There are two limiting cases

∑

σ2
monthly

122
≤ σ2

annual ≤

∑

σ2
monthly

12
(33)

where σ2
monthly are the error variances of the monthly aver-

ages. In the first case the monthly uncertainties are assumed
to be independent. In the latter case, they are assumed
to be perfectly correlated. In practice, the truth will lie
somewhere between these extremes. An effective number of
months, neff , was defined such that

σ2
annual =

∑

σ2
monthly

12neff

(34)

To estimate neff , Equation 25 was used to estimate the
uncertainty on the global annual average, σ2

annual, calcu-
lated only from those observations with unique callsigns.
The sum of the error variances of the monthly global av-
erages was calculated from only those observations with
unique call signs and divided by twelve times the error vari-
ance on the annual average to get neff . The results are
shown in Figure 3. Figure 3(b) shows the uncertainty of the
annual average calculated only for those observations with
call signs and the lower line shows the uncertainty on the
annual average assuming that the monthly errors are inde-
pendent. Panel (c) shows the calculated value of neff for
each year. The lowest values of neff are around 2.25 in the
late 1990s, suggesting that in this period there was signif-
icant correlation between errors in individual months. At
other times values as high as 7.5 were recorded. The values
can be used to estimate uncertainties on averages at annual
time scales for the full data set by assuming a constant value
for neff and using this to estimate the uncertainty on the
annual average from the uncertainties on the monthly aver-
ages (Figure 3d). In this case neff was chosen to be 2.25, as
this is a reasonably conservative estimate that is also con-
sistent with well observed periods in the record.

4.4. Coverage uncertainty

When calculating area averages from a gridded data set
there is an additional uncertainty that arises because there
are often large areas, and consequently, many grid boxes,
which contain no observations. Such uncertainties are re-
ferred to here as coverage uncertainties. In Brohan et al.
[2006] coverage uncertainties were estimated by subsam-
pling reanalysis data. A similar method is used here. SST
anomalies from the globally complete HadISST1 data set
(Rayner et al. [2003]) were used in the place of reanaly-
sis data. For example, to calculate the uncertainty on the
March 1973 monthly average for the North Pacific a time se-
ries of North Pacific average SST anomalies was calculated
using HadISST from 1870 to 2010. The coverage of HadISST
at all time steps was then reduced to that of HadSST3 for
March 1973. The North Pacific time series was recalculated
from the sub-sampled data and the standard deviation of
the difference between the series from the complete and sub-
sampled series was used as an estimate of the uncertainty for
March 1973. Data from the ERSSTv3b (Smith et al. [2008])
and COBE (Ishii et al. [2005]) data sets were also used in
place of HadISST1 and gave similar results suggesting that
the uncertainties do not depend strongly on the statistical
assumptions made in creating HadISST1. Coverage uncer-
tainties calculated using HadISST1 are shown in Figure 6.

4.5. Additional uncertainties

A number of additional sources of uncertainty are not in-
cluded in this analysis. These include, but are not limited
to, the following.

1. Uncertainties associated with the adjustments for bi-
ases in the data are dealt with in part 2 of this paper
(Kennedy et al. [2011a]). On larger spatial and longer tem-
poral scales, they are comparable to, or of greater impor-
tance than the measurement and sampling errors discussed
here.

2. No estimate has yet been made of uncertainties in the
estimate of the climatological average SST that has been
used to convert actual SST measurements to anomalies. In
sparsely observed regions, such as the Southern Ocean, the
climatological uncertainty could be large. For future appli-
cations it might be wise to estimate climatological averages
from a modern well-observed period and make use of satellite
data. There is an open problem in how regions that have,
until recently, been covered by sea ice should be treated. Is
it meaningful to assign a sea-surface temperature anomaly
to a region that, during the climatology period, was covered
with sea ice? This question is of particular significance if
estimates of SST anomalies are combined with land surface
air temperature anomalies to create an estimate of global
average temperature.

3. Uncertainties inherent in the estimated values for σm,
σb, σs and r̄ have not been included. For example, due to
random measurement and sampling errors, the estimates of
r̄, the average correlation of two points within a grid box de-
rived in Section 3.2, might be underestimated leading to a
sampling uncertainty that is too large. This effect has been
reduced by the use of a robust measure of correlation. An-
other compensating factor might be that micro-bias errors
lead to a slight increase of the correlation of separated grid
boxes. It has also been pointed out (Rayner et al. [2009])
that sampling within a 5 degree grid box might not be ran-
dom as supposed here. Morrissey and Greene [2009] de-
veloped a more general means of estimating the sampling
error that takes into account the locations of the observa-
tions within the grid boxes. Clustering of the observations
would typically lead to an underestimate of the sampling
uncertainty, which currently assumes that the observations
are randomly distributed. Work by Kent et al. [1993] and
Kent and Challenor [2006] shows that the measurement un-
certainties of SST observations from ships using buckets
to make their SST measurements were different from those
made by ships using engine intake water. They also found
variations between the ships recruited by different countries
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Figure 5. Zonal average of 5◦ latitude by 5◦ longitude
grid box 1-sigma uncertainties (◦C) for: (a) 1890s, (b)
1920s, (c) 1990s and (d) 2000-2006. The black line is the
new estimate of the uncertainty and the grey line is the
estimate from Rayner et al. (2006).
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and that many observations were only recorded to whole or
half degrees. More detailed analysis using metadata for dif-
ferent ships could be used to further refine the analysis in
future.

4. Uncertainties arising from outliers, or otherwise non-
normal deviations, in the data have not been consid-
ered although their effects have been quantified elsewhere
(Kennedy et al. [2011b]).

5. Results

Figure 5 shows the zonal mean of the individual grid-box
uncertainties for four different periods. Despite improve-
ments in data coverage associated with using ICOADS 2.5
rather than ICOADS 2.0, the grid-box uncertainties are gen-
erally larger than the estimates made in Rayner et al. [2006]
owing to the correlation of errors within the grid boxes,
which was neglected in Rayner et al. [2006].

In the 1890s, the uncertainties are higher at most lati-
tudes reflecting the sparseness of the observations and the
small number of platforms. In the 1920s, the mid-latitude
northern hemisphere was more densely observed, principally
as a result of increased shipping rather than an increase in
the number of observations per ship, and consequently there
is little difference between the estimates. The latitude at
which the lines cross is also marked by high variability as it
is the latitude of the Gulf Stream and Kuroshio. In these re-
gions, the uncertainty of a grid-box average based on a single
observation is often higher in HadSST2 than in HadSST3.
However at lower latitudes and in the southern hemisphere
the effects of data sparsity and the lack of diversity in the
observing network are still apparent. By the 1990s, the den-
sity of observations had increased at most latitudes except in
the southern hemisphere, southward of about 40◦S, where
uncertainties remain large. There is a relative increase in
the average uncertainty (between HadSST2 and HadSST3)
in the mid-latitude northern hemisphere in the 1990s that
was larger than in the 1920s. This arises because, although
more observations were made in the 1990s, this was due
mainly to an increase in the number of observations made
per ship without a proportionate increase in the number of
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Figure 6. 1-sigma uncertainties of annual-average (up-
per panel) and monthly-average (lower panel) global SST
anomalies. The three lines in each panel correspond to
the coverage uncertainty (solid black line), the correlated
measurement and sampling uncertainty (dashed black
line) and the uncorrelated measurement and sampling
uncertainty (solid grey line).

ships. Since 2000, the difference is more uniform and reflects
a move to fewer platforms (principally drifting buoys) mak-
ing more observations. Kent and Berry [2008] saw a similar
increase in grid box uncertainties relative to those in Rayner
et al. [2006].

A significant increase in global and regional uncertainties
arises from the inter-grid box correlations. The off-diagonal
terms of the error covariance lead to approximately a fac-
tor of 2.4 increase in the global-average uncertainty relative
to the case where they are assumed to be uncorrelated be-
tween grid boxes. This effect can be seen in the time series
of uncertainties in global, hemispheric and tropical average
sea-surface temperature anomalies shown in Figure 7. The
red line, which is not corrected for missing call signs, is likely
to be an underestimate at times when there are many miss-
ing call signs. This is most apparent between 1860 and 1870
when the off-diagonal component is almost zero. Very few
call signs are associated with the observations in this data-
sparse period. The sudden apparent increase in uncertainty
in 1982 arises because there are far more observations with
call signs available after 1982 than before. The estimated
full error range which accounts for the absent and generic
call signs is given by the upper blue line in each diagram.

Overall, there is a general decrease in the uncertainty of
the global average SST from the mid-nineteenth century to
the present, interrupted by periods of increased global un-
certainty during the two world wars. The uncertainty is
highest in the 1860s, around 0.13◦C, when there are few
observations and fewer extant metadata. The dip in south-
ern hemisphere uncertainty in 1979 is due to the temporary
deployment of many drifting buoys during the First GARP
Global experiment. The fall in total uncertainty at the very
end of the series occurred after the number of drifting buoys
in the oceans was almost doubled. This had a particularly
striking effect in the southern hemisphere. Measurement
and sampling uncertainties are comparable to the coverage
uncertainties (Figure 6) throughout much of the record with
each exhibiting similar temporal correlations.

It is interesting to compare the SST uncertainties with
comparable estimates of uncertainty on global and hemi-
spheric averages of land surface air temperature. In Bro-
han et al. [2006], in which land surface air temperatures
(LSAT) and their uncertainties were calculated, uncertain-
ties on SST (from Rayner et al. [2006]) were generally much
smaller than uncertainties on LSAT. This was due to a large
extent to the higher variability of temperature anomalies
over land. Although the new uncertainties on SST measure-
ments are significantly larger than those in Rayner et al.
[2006] they are still typically lower than hemispheric esti-
mates of land surface air temperature uncertainties.

6. Summary

An error model that accounts for correlated (micro-bias)
and independent (random measurement) random errors in
sea-surface temperature measurements was described. The
correlated errors lead to an increase in uncertainties of grid-
box average and regional-average SSTs compared to previ-
ous estimates. It was not possible to estimate the full corre-
lated error term at all times because that requires that each
contributing ship can be unambiguously identified. At times
this was not possible because the call sign information was
not included in the meteorological report. From December
2007, the call signs of GTS reports were removed from some
feeds and encrypted on others, so this analysis could only
be completed for the period 1850 to 2006. New estimates of
sampling uncertainty were also calculated.

The new estimates of the grid-box uncertainties for
HadSST3 are typically larger than estimates made in
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Figure 7. 1-sigma uncertainties on monthly SSTs for (a) Global-, (b) Northern Hemisphere-, (c) South-
ern Hemisphere- and (d) Tropical-averages. The blue line shows the uncertainty calculated using the full
error model including inter grid box correlations corrected for missing callsigns. The red line shows the
uncertainty calculated using the full error model including inter grid box correlations, but not corrected
for missing call signs. The green line shows the uncertainty if the grid-box errors are assumed to be
uncorrelated. The lower black line is the Rayner et al. (2006) estimate. Note the different scales on each
diagram. The right hand column is shown on an expanded scale because the uncertainties are generally
smaller in the later period.

HadSST2. The differences are largest in areas where the
observing network was less diverse and observations were
made by only a small number of ships or buoys; for exam-
ple, at high latitudes, in the earliest part of the record and
during the Second World War. The new estimates of the
uncertainties of regional averages are also larger owing to
correlations between grid boxes. At times when reliable es-
timates can be made, the uncertainties in global-average,
southern-hemipshere and tropical-average sea-surface tem-
peratures are between two and three times as large as the
case where errors are considered to be uncorrelated. Un-
certainties of northern hemisphere averages approximately
double.

There is one additional point to note. Uncertainties on
derived quantities calculated using the new error model will
not necessarily increase in all situations. When differences
between grid box values are taken, the correlated compo-
nent will cancel to a certain extent. Persistent biases, and
biases arising due to generic means of measuring SST are
dealt with in part 2 of the paper.

The gridded SST anomalies, time series and uncertainties
are available via http://www.metoffice.gov.uk/hadobs
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