Met Office

Weather Services for Building Project Managers

Contents

Introduction to the Met Office 5
How can we help? 6
Project Planning \& Design Criteria
Planning Averages 7
Climate Means \& Extremes 12
Weather Frequency Analysis 13
Soil Moisture Data 14
Degree Day Reports for Heating \& Cooling Guidance 15
Mean Annual Frost Index 16

Project Delivery, Construction, \& Operations
VisualEyes ${ }^{\text {TM }}$ - Location-specific Monitoring \& Alerting 17
‘Talk to a Forecaster’ Forecaster Consultancy Service 20

Project Analysis
Downtime Summary Reporting. 21
Historical Weather Data 27
Storm Analysis 29

Meteorological information for the Construction Industry

Introduction to the Met Office

The Met Office is the National Meteorological Service for the UK and one of the world's foremost weather and climate service providers.

There is a well-established acceptance that relevant weather and climate information is vital for health and safety and operational efficiency on the UK's building projects. We have a breadth of experience in the building and construction sector and we work with the industry on a daily basis.

Weather can have a huge impact on construction projects from costly delays and risks to personnel. This guide suggests how we can support projects when the weather does not play ball. The Met Office has a range of weather and climate services to support building projects from the project planning stage, throughout project delivery, and even for project analysis.

Recent Met Office research demonstrates that we are seeing extreme weather events, more frequently. With Met Office weather services, we can improve your awareness help reduce the impact of such events. According to the Office of National Statistics the annual expenditure on construction is now over $£ 99,266$ million, so even a small proportional saving could represent huge value.

How can we help?

I am trying to....

...plan my project and understand...	Page	
..expected conditions on site throughout the year	Planning Average Reports Climate Means \& Extremes Weather Frequency Analysis	$\mathbf{7}$ 12 13
...expected conditions of the ground on site	Soil Moisture Data	$\mathbf{1 4}$
...how often weather has passed a certain threshold in the past	Weather Frequency Analysis	$\mathbf{1 3}$
...climate information for suitable heating and cooling systems	Degree Day Reports	$\mathbf{1 5}$
...temperatures when planning for materials in road construction	Mean Annual Frost Index	$\mathbf{1 6}$

...deliver my project and...

...to be alerted when my project may be affected by bad weather	VisualEyes $^{\text {™ }}$	$\mathbf{1 7}$
...make sure I have an expert at to speak to	Talk to a Forecaster	$\mathbf{2 0}$

...analyse the project to...
...make a contractual claim for project downtime
Downtime Summary Reports
21

ClaimCheck

Storm Analysis Report
29
...obtain basic weather data...
...for our own records and analysis
Observed Weather Data

Project Planning \& Design Criteria

Planning Averages

Planning Averages Reports provide expected conditions for a given month at a given location. By looking over a thirty-year period you can understand the monthly norms to expect on site. Planning Averages give guidance in developing contingency plans and negotiating contracts.

The two main features of Planning Average Reports

Long-term averages are the conditions observed over the past thirty years. If the weather at any time exceeds this value, you can claim that the weather events are above average.

1-in-10-year value is the worst case scenario one may experience every ten years. If weather at anytime exceeds this value, one can say with confidence the weather events were extreme. This is not an average, but it is in fact a return period calculated from thirty years of data or more.

Where does the data come from?

The Met Office produces Planning Averages Reports with data from two different sources. (Both are suitable for a variety of building contracts including guidance of NEC 60.1 (13)).

Location-based Planning Average Reports use modelled data from one of more than 3,600 locations across the UK. Data is compliant with a wide range of construction contracts.

Station-based Planning Average Reports use observational data from one of 100 physical weather stations across the UK.

What is the difference between 'observational' and 'modelled' data?

Observed data has been physically acquired from a weather station. To generate Location Based Reports we have used a combination of our scientific systems. These datasets are essentially all data collected from our weather stations over the years, interpolated over the UK onto a 1 km grid. Both options are acceptable to calculate downtime. The benefits of locationbased reporting are that you can work with data more representative to your site, if by chance there is not a weather station nearby.

What data is more accurate?

Our modelled data has undergone extensive scientific investigation, analysis, and verification to ensure accuracy. This technical report explains the benefits of using location-specific data.

Why are there different types of Planning Averages Reports?

Different projects work on different contracts, with slightly different takes on the weather. So you will see within the reports the various weather parameters based on user need and data availability.

Planning Averages Comparison Table

	Station Based Monthly Planning Averages	Station Based Monthly Planning Averages (with Wind)	Station Based Monthly Planning Averages (Daytime)	Location Based Monthly Planning Averages (includes wind as standard)
Example report	Page 11	Page 11	Page 11	Page 9/10
Features				
Greater representation of actual onsite weather conditions				\checkmark
Over 3,600 locations available				\checkmark
100 weather observation stations	\checkmark	\checkmark		
55 weather observation stations			\checkmark	
Includes wind		\checkmark		\checkmark
Reports over 24 hours	\checkmark	\checkmark		\checkmark
16 different weather elements, 11 with Long Term Averages (LTAs) and 1-in-10 year values				\checkmark
Makes it immediately clear if compensation event reached				\checkmark
Volume discounts available	\checkmark			\checkmark
Advantages				
Can be used across a variety of construction contracts including JCT \& NEC contracts	\checkmark	\checkmark	\checkmark	\checkmark
Suitable for NEC clause $60.1 \text { (13) }$	\checkmark	\checkmark		\checkmark

Where is my nearest location to derive data?

This link will take you to the map to assist you in finding the nearest location to your site where data for Planning Average reports can be derived from. Both Location and Station-based Planning Average are available. A summary version is on page 23.

\approx Met Office

Location based planning averages

Prepared for: Example Location Based Planning Averages
Site:
Exeter, Postcode EX1 3PB
Weather Data from: Latitude 50.7242, Longitude -3.5047
Issued on Monday 2 March at 12:06:50

1-in-10 Year Values (1971-2010)

Month	Daily Rainfall Total (mm)	Days of Rain $>5 \mathrm{~mm}$	Days of Snow	Days with Snow Lying at 0900 UTC	Days of Freezing
January	149	11	5	4	2
February	137	10	5	3	1
March	100	7	3	1	0
April	93	7	2	0	0
May	104	7	0	0	0
June	97	7	0	0	0
July	79	6	0	0	0
August	102	7	0	0	0
September	114	8	0	0	0
October	141	10	0	0	0
November	135	10	1	0	0
December	156	11	3	2	0

Month	Minimum Ground Temperature (Deg C)	Days of Ground Frost	Minimum Air Temperature (Deg C)	Days of Air Frost	Mean Wind Speed (mph)	Sunshine Total (hours)
January		22	-7.8	15	13.0	
February	20	-6.2	14	13.0	78	
March	18	-4.9	8	12.5	95	
April	16	-2.8	4	11.6	146	
May	7	-0.6	1	10.7	200	
June	2	3.1	0	10.3	238	
July	0	5.9	0	10.1	256	
August	0	4.6	0	10.1	258	
September	3	2.3	0	10.1	240	
October	9	-2.1	3	10.5	172	
November	17	-5.2	8	11.2	122	
December	21	-7.1	13	12.8	93	

Met Office

Location based planning averages

Prepared for: Example Location Based Planning Averages
Site:
Exeter, Postcode EX1 3PB
Weather Data from: Latitude 50.7242, Longitude -3.5047
Issued on Monday 2 March at 12:06:50

Long Term Averages (1981-2010)

Month	Daily Rainfall Total (mm)	$\begin{gathered} \text { Days of Rain } \\ >5 \mathrm{~mm} \end{gathered}$	Days of Snow	Days with Snow Lying at 0900 UTC	Days of Freezing
January	85	6	2	1	0
February	68	5	3	1	0
March	61	4	1	0	0
April	57	4	0	0	0
May	59	4	0	0	0
June	50	3	0	0	0
July	46	3	0	0	0
August	55	3	0	0	0
September	59	4	0	0	0
October	88	6	0	0	0
November	88	6	0	0	0
December	94	6	2	1	0

Month	Minimum Ground Temp (Deg C)	Days of Ground Frost	Minimum Air Temp (Deg C)	Days of Air Frost	Mean Wind Speed (mph)	Sunshine Total (hours)	Solar Radiation $\left(\mathbf{k W h} / \mathbf{m}^{\wedge} \mathbf{2)}\right.$
January	15	-4.0	8	9.8	58	26	
February		15	-3.5	8	9.8	76	42
March	13	-2.4	4	10.1	111	80	
April	11	-0.9	2	9.2	166	121	
May	3	2.1	0	8.7	192	154	
June	0	5.5	0	7.8	198	164	
July	0	7.8	0	8.3	197	154	
August	0	7.0	0	7.8	184	134	
September	1	4.9	0	7.6	144	96	
October	4	0.8	1	8.7	101	57	
November	10	-2.0	4	8.5	73	31	
December	15	-4.1	8	9.4	53	20	

Station-based Planning Averages (with daytime data)

Station-based Planning Average Reports

Monthly Planning Averages for xxxx, xxxx (Lat=xx.xxN Long=x.xxW)

1-in-10 year values - based on station data between 1970 and 2010

Month	Daily rainfall total (mm)	Days with rainfall $>5 \mathrm{~mm}$	Days with air frost	Days with snow lying at 0900 UTC
January	121.0	9	17	9
February	94.4	7	16	7
March	93.8	6	13	6
April	88.6	6	8	6
May	90.4	6	3	6
June	89.4	6	0	6
July	115.7	7	0	7
August	99.5	7	0	7
September	117.7	7	0	7
October	139.8	9	4	9
November	144.7	9	11	9
December	118.5	7	16	7

Long term averages - based on station data between 1981 and 2010

Month	Daily rainfall total (mm)	Days with rainfall $>5 \mathrm{~mm}$	Days with air frost	Days with snow lying at 0900 UTC
January	65.0	4	10	3
February	52.2	3	10	4
March	55.4	3	6	2
April	54.7	3	3	0
May	56.0	3	1	0
June	60.9	3	0	0
July	60.9	3	0	0
August	57.6	4	0	0
September	64.7	4	0	0
October	90.9	6	1	0
November	88.3	5	5	1
December	71.4	4	11	4

Above is an example of one page of the report.

A Means and Extremes Report can be seen as the next step up in detail to a Planning Averages Report, and an alternative view to a Frequency Analysis Report.

NAME OF LOCATION HERE WMO no: $x x x x x$ Pos: $\mathbf{x x}^{\circ} \mathrm{xx}^{\prime} \mathrm{N} \mathrm{xx}^{\circ} \mathbf{x x}^{\prime} \mathrm{E}$ Alt: 29 metres AMSL Period: 1991 to 2015	© Crown Copyright Met Office 2016												
	Global Climatological Means and Extremes												
Temperature (deg c)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Absolute maximum	27.9	30.5	36.6	39.3	41.1	40.0	38.5	38.4	37.5	37.0	33.1	29.5	41.1
Average daily max	18.1	18.3	20.3	23.4	26.2	28.9	30.8	31.6	30.5	28.0	23.7	19.9	25.0
Average daily min	11.6	11.4	12.9	15.5	18.5	21.7	24.1	25.0	24.0	21.1	16.7	13.1	18.0
Absolute minimum	3.1	3.5	1.2	7.6	12.6	17.2	19.0	22.0	15.0	13.7	8.9	-1.4	-1.4
Days of air frost	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lowest maximum	9.3	8.9	10.5	9.8	16.2	22.5	28.0	n/a	25.7	16.7	12.3	9.4	8.9
Highest minimum	18.8	19.1	22.5	26.7	27.3	25.7	28.6	28.3	30.0	28.2	25.8	19.0	30.0
Precipitation (mm)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Average rainfall	193	146	84	37	11	1	4	0	18	71	113	159	836
Wettest month	409.0	330.6	218.7	133.7	40.2	7.0	62.7	2.0	123.0	229.4	294.8	325.8	1367.2
Driest month	8.8	46.2	11.4	1.7	0.0	0.0	0.0	0.0	0.0	2.2	0.0	51.4	630.7
Max rain in 24 hr	141.0	99.0	46.0	63.0	25.0	30.0	62.7	1.0	66.0	117.0	133.0	111.0	141.0
Days of rain $>=0.2 \mathrm{~mm}$	14.9	13.0	10.5	7.7	5.0	1.7	1.1	0.2	1.7	7.0	8.7	12.5	84.1
Days of rain $>=1.0 \mathrm{~mm}$	12.7	10.9	7.4	4.6	1.6	0.2	0.2	0.1	1.4	5.3	7.0	10.4	61.9
Days of rain $>=5.0 \mathrm{~mm}$	8.8	7.9	4.6	2.1	0.7	0.1	0.0	0.0	0.8	3.5	4.8	7.7	41.2
Days of rain $>=25.0 \mathrm{~mm}$	2.4	1.6	0.9	0.2	0.0	0.0	0.0	0.0	0.2	0.6	1.3	1.7	9.1
Wind speed (knots)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Mean wind speed	4.9	5.3	5.4	5.6	5.1	5.5	5.8	5.1	4.9	4.2	4.5	4.7	5.1
Days of wind $>=15 \mathrm{kt}$	3.2	4.6	4.2	3.5	1.8	2.1	2.9	1.7	1.1	0.9	2.6	2.8	31.5
Days of wind $>=25 \mathrm{kt}$	0.6	0.5	0.9	0.6	0.1	0.1	0.0	0.0	0.0	0.1	0.5	0.5	3.9
Max wind recorded	31	38	40	43	41	33	23	40	33	40	37	37	43
Days of gale	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.5
Misc weather	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Days of fog observed	0.1	0.1	0.0	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.8
Days of snow falling	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Days of thunder heard	4.8	4.3	2.9	1.7	0.8	0.0	0.0	0.0	0.5	3.0	4.0	4.7	26.8
Days of frzng ra/dz	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Days of hail	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Case Study - Forth Road Bridge Constructors (FCBC)

The FCBC team were aware of the challenges that weather brings to the existing bridge and approached us to support planning at the Queensferry Crossing, a vital link in Scotland's road network.

In the pre-construction phase, we conducted a study to analyse winds of different heights together with a general climate assessment. It identified times of day when winds would potentially be at their highest and lowest speeds; times of year when wind shear would be at its greatest and least; as well as providing a rainfall analysis of the site. For the build phase, FCBC utilised the Met Office's webbased planning tools, to plan weather-dependent tasks up to 14 days ahead to optimise time periods when it hires large and expensive equipment. FCBC were also able to manage contractors more effectively.
With our expertise in forecasting, the construction team has kept to schedule and reduced costs during the build. The monitoring of potential weather hazards also reduced the possibility of accidents occurring, helping to maintain the well-being of the workforce.
"It is vitally important - not least to the health and safety of our construction personnel - that we have dependable, accurate and site-specific forecasts with which to plan our work schedules"
Ken Clarke
FCBC Marine Liaison Officer

Weather Frequency Analysis Reports allow you to relate two parameters such as temperature and month, or wind speed and wind direction. If you know you can lay concrete or paint over a certain temperature, the Frequency Analysis should allow you to gain insight into the normal size of window you have in the day and by month.

Frequency analyses can be complied for a wide range of weather parameters and are available in annual or monthly tables depending on the length of time of your project.

HOURLY TEMPERATURE FREQUENCY ANALYSIS.
Met Office
EXAMPLE STATION. NGR XXXXE XXXXN. Altitude xxm amsl.

FREQUENCY COUNT						Rows $=$ Air temperature $(\operatorname{deg} \mathrm{C})$					Columns $=$ Month		
Year is 1990 => 1999													
MONTH:	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	ALL
AIRTEMP:													
$-10.0=>-9.1$	0	0	0	0	0	0	0	0	0	0	0	0	0
$-9.0=>-8.1$	0	1	0	0	0	0	0	0	0	0	0	0	,
$-8.0=>-7.1$	0	1	0	0	0	0	0	0	0	0	0	1	2
$-7.0=>-6.1$	1	14	0	0	0	0	0	0	0	0	0	6	21
$-6.0=>-5.1$	3	14	0	0	0	0	0	0	0	0	0	10	27
$-5.0=>-4.1$	22	33	0	0	0	0	0	0	0	0	1	22	78
$-4.0=>-3.1$	45	35	1	0	0	0	0	0	0	0	2	56	139
$-3.0=>-2.1$	75	69	4	0	0	0	0	0	0	3	14	96	261
$-2.0=>-1.1$	121	156	7	2	0	0	0	0	0	4	30	178	498
$-1.0 \Rightarrow>-0.1$	197	219	38	29	0	0	0	0	0	16	73	234	806
$0.0 \Rightarrow 0.9$	272	254	119	57	2	0	0	0	0	28	168	297	1197
1.0 => 1.9	438	308	197	105	7	0	0	0	0	48	216	436	1755
2.0 => 2.9	524	465	221	151	16	0	0	0	0	67	234	523	2201
$3.0=>3.9$	574	495	426	197	43	2	0	0	0	101	343	672	2853
4.0 => 4.9	789	497	471	290	74	2	0	0	1	144	456	712	3436
5.0 => 5.9	708	567	594	407	138	7	0	0	18	168	537	733	3877
$6.0=>6.9$	710	626	661	529	198	15	0	2	38	242	607	663	4291
7.0 => 7.9	729	620	625	652	300	33	6	2	79	388	636	649	4719
8.0 => 8.9	650	741	792	742	480	82	11	10	123	562	641	534	5368
9.0 => 9.9	543	688	863	700	439	138	18	45	224	637	705	496	5496
10.0 => 10.9	442	424	798	808	634	297	48	93	350	799	682	385	5760
$11.0=>11.9$	362	287	627	704	729	482	130	164	462	764	606	316	5633
$12.0=12.9$	199	153	415	476	703	728	243	232	652	749	542	239	5331
$13.0=13.9$	27	52	267	388	683	824	376	314	753	692	314	140	4830
$14.0 \Rightarrow 14.9$	7	28	142	267	601	753	575	501	807	605	236	42	4564
$15.0 \Rightarrow 15.9$	2	9	70	227	499	714	679	690	863	547	111	0	4411
$16.0=>16.9$	0	3	49	165	402	651	792	732	791	395	39	0	4019
17.0 => 17.9	0	7	23	102	335	520	736	773	625	228	6	0	3355
$18.0=>18.9$	0	2	15	68	293	454	691	730	467	113	1	0	2834
19.0 => 19.9	0	0	8	64	197	349	598	632	310	59	0	0	2217
20.0 => 20.9	0	0	5	37	173	301	482	562	241	34	0	0	1835
$21.0=>21.9$	0	0	2	22	121	242	442	461	149	16	0	0	1455
$22.0=>22.9$	0	0	0	10	107	190	393	366	89	9	0	0	1164
$23.0=>23.9$	0	0	0	1	84	129	368	296	65	15	0	0	958
$24.0=>24.9$	0	0	0	0	66	94	251	206	39	7	0	0	663
$25.0=>25.9$	0	0	0	0	76	61	193	162	26	0	0	0	518
26.0 => 26.9	0	0	0	0	36	43	162	141	18	0	0	0	400
$27.0=>27.9$	0	0	0	0	4	45	94	94	7	0	0	0	244
$28.0=>28.9$	0	0	0	0	0	18	54	74	1	0	0	0	147
$29.0=>29.9$	0	0	0	0	0	14	39	65	2	0	0	0	120
$30.0=>30.9$	0	0	0	0	0	5	36	41	0	0	0	0	82
$31.0=>31.9$	0	0	0	0	0	6	17	19	0	0	0	0	42
$32.0=32.9$	0	0	0	0	0	1	6	16	0	0	0	0	23
$33.0=>33.9$	0	0	0	0	0	0	0	10	0	0	0	0	10
$34.0=34.9$	0	0	0	0	0	0	0	4	0	0	0	0	4
ALL	7440	6768	7440	7200	7440	7200	7440	7437	7200	7440	7200	7440	87645

Soil Moisture Data

When is it suitable for heavy plant to operate in rural areas projects?
The Met Office's Rainfall and Evapo-transpiration Calculation System (MORECS) calculates soil moisture conditions and can aid assessments of trafficability on site by providing assessments of rainfall, evaporation and soil moisture. This is particularly useful for Autumn and Spring periods to plan when it's the best time to operate on site when in a rural environment.

Output can either be for a single site or as averages over $40 \mathrm{~km} \times 40 \mathrm{~km}$ squares which cover the UK.
MORECS allows you to choose desired land use metadata such as bare soil or grass that is placed into the MORECS model for a specific location, and you can see daily outputs to best understand conditions. MORECS utilises a number of observed weather parameters along with crop and local soil information to calculate evaporation, so that most circumstances can be catered for.

Some of the MORECS metadata includes data derived from bare soil, grass, rough grazing, areas of deciduous trees, and coniferous trees.

What are the MORECS outputs?

- PE: Potential Evaporation (mm) - The water loss from a crop or surface where the water supply is such that unhindered evaporation occurs. This evaporation rate is governed by the weather and by crop physical factors such as crop height.
- AE: Actual Evaporation (mm) - The amount of water which is removed into the air in an un-irrigated crop. It is equal to or less than the Potential Evaporation
- SMD: Soil Moisture Deficit (mm) - The amount of rainfall which would have to be added to the soil in order to bring it to field capacity. The larger the SMD the drier the soil.
- EP/HER: Hydrologically Effective Rainfall / Runoff (mm) - The period between the return to field capacity and the loss of capacity in spring gives opportunity for rainfall to recharge ground water and flow to rivers. The sum of rainfall less evaporation during this (mainly winter) period is known as excess rainfall (Hydrologically Effective Rainfall)

Degree Day Reports for Heating \& Cooling Guidance

Degree days are defined as the mean number of degrees by which the air temperature has gone above or below a threshold, calculated day by day and summed over a period of days.

What is Degree Day Data used for?

- As a guide for seasonal heating/cooling requirements.
- Preparing annual budgets.
- Detecting faults in heating/cooling systems.
- Evaluating the success of savings measures.
- Constructing control charts that compare benchmarked and actual energy usage.
- To help assess where potential energy waste may occur in heating and cooling systems.

Degree Day Reports

The Degree Day Report provides you with monthly heating degree-day data, at a standard base temperature of above $15.5^{\circ} \mathrm{C}$ for cooling or below $15.5^{\circ} \mathrm{C}$ for heating. Just like Planning Average Reports, this report contains a monthly long-term average for comparison.

Met Office

Heating Degree Days Below $15.5^{\circ} \mathrm{C}$
July 2015

Issued on Sunday 2 August 2015 at 12				Page 1	1
Location	July 2015	July Mean	\% of Mean	July 2014	
LONDON (HEATHROW) Area 1 - Thames Valley	16.5	15.7	105.0	10.1	
LONDON (CHARLWOOD) Area 2 - South Eastern	36.8	35.4	104.0	22.3	
BOURNEMOUTH (HURN) Area 3 - Southern	35.3	31.3	113.0	28.1	
PLYMOUTH MOUNTBATTEN Area 4 - South Western	24.5	23.5	104.0	15.9	
BRISTOL Area 5 - Severn Valley	26.7	20.5	130.0	13.6	
BIRMINGHAM COLESHILL Area 6 - Midlands	40.6	34.9	116.0	28.4	
MANCHESTER (WOODFORD) Area 7 - West Pennines	49.8	35.5	140.0	32.6	
CARLISLE Area 8 - North Western	50.9	39.8	128.0	28.1	
BOULMER Area 9 - Borders	67.9	50.5	134.0	33.2	
LEEMING Area 10 - North Eastern	60.2	42.2	143.0	35.4	
WADDINGTON Area 11 - East Pennines	35.0	29.8	118.0	17.0	
MARHAM Area 12 - East Anglia	35.2	31.0	114.0	18.5	
GLASGOW BISHOPTON Area 13 - West Scotland	72.7	47.2	154.0	37.8	
LEUCHARS Area 14 - East Scotland	66.9	52.5	128.0	41.4	
ABERDEEN (DYCE) Area 15 - North East Scotland	75.9	58.2	130.0	41.1	
ABERPORTH Area 16 - Wales	45.2	39.0	116.0	26.0	
BELFAST (ALDERGROVE) Area 17 - Northern Ireland	65.9	43.0	153.0	26.4	
STORNOWAY Area 18 - North Western Scotland	97.3	71.2	137.0	41.4	

[^0]
Mean Annual Frost Index

Who is the Mean Annual Frost Index suitable for?

The Frost Index gives a measure of the severity and duration of a cold spell in an area. It is used to decide which material can be used for road dressing. The basis of the design procedure (Department of Transport Guidelines) has been to require that non-frost susceptible materials must be used in the top 450 mm of the road surface if the area is susceptible to frost. If the mean annual frost index is below 50, materials which are more frost susceptible can be used closer to the surface.

How is the Mean Annual Frost Index calculated?

The mean annual frost index can be calculated for any Met Office station which has a suitable long record (generally from 1959, but it must include the severe winter of $1962 / 63$). The index is an accumulation of the daily mean temperature below 0 deg Celsius; - e.g. a daily mean temperature of -2.5 deg C adds 2.5 to the total. These values are totalled over each winter to give a winter index. The mean annual frost index is the average of all these values.

What does a Mean Annual Frost Index look like?

Project Delivery, Construction, \& Operations

VisualEyes ${ }^{\text {TM }}$ - Location-specific Monitoring \& Alerting

VisualEyes ${ }^{T M}$ is the Met Office's 24/7, web-based, location specific weather monitoring and alerting system. It contains a broad range of weather types and a long range forecast out to fourteen days with probabilistic forecasting

The main benefits to using VisualEyes ${ }^{T M}$ are:

- Managing decision making around health and safety risks - protect personnel and customers during operations and maintenance to avoid litigation and other risks.
- Increase efficiency and preparedness-minimise asset downtime through effective planning of workforce, equipment hire and site access. VisualEyes ${ }^{T M}$ planning charts quickly identify the optimum times for specific operations.
- Stay fully informed - wherever your team are on site, with device responsive mobile access to access critical site-specific weather conditions wherever you are with email and SMS alerts, so it is perfect to use while in the control room or while working on site.

Key features

VisualEyes ${ }^{\text {TM }}$ enables you to access two distinct views to suit your needs. Control Room view, and Weather Chart view, which includes 'Smart Windows':

Control Room view monitors weather conditions across multiple sites. It includes a map viewer and collapsible alert panel.

Weather Chart view allows for forward planning of specific operational activities and highlights times when weather conditions exceed a given threshold - that you define -which may affect planning, or the running of a build.

Smart Windows is a flexible tool for identifying both favourable and unfavourable weather combinations. Up to ten different weather types can be combined to identify operational windows in the weather - all in which adds operational context to the forthcoming weather conditions. The green line in the case below would indicate when it is safe to work on a particular task such as concrete laying or crane operations.
\# \#menthe VisualEyes2

Potential uses and benefits of VisualEyes ${ }^{\text {TM }}$

- Help assist organisers in making suitable arrangements for severe weather such as planning facilities for a reduction of accidents.
- Help Managers determine when it is and is not safe for staff to work at height due to wind, rain, or lightning risk.

An example of lightning strike monitoring

Case Study - London Legacy Development Corporation (LLDC)

LLDC was involved in a $£ 25$ million scheme to regenerate Hackney Wick Overground Station. VisualEyes ${ }^{\text {TM }}$ was used from planning through to operational delivery of the project.

VisualEyes ${ }^{\text {TM }}$ was critical due to the volatile nature of the weather during that time of year, compounded by the pressure of the works needing to be complete within a 99-hour rail blockade. There was no option to 'wait for the storm to pass'. The graphical format of VisualEyes™ was also used in getting the messages across at boardlevel presentations.

VisualEyes ${ }^{T M}$ was key to the project's success and was used for key decisions by the project team. Making the wrong call at this point had the potential for LLDC to incur months of delay and many hundreds of thousands of pounds in postponement costs.
"Installing the new subway at Hackney Wick Overground Station was an incredible feat of engineering, which was dependant on the right weather conditions being in place. By being given solid, up to the minute data, my team was able to make an informed decision on whether to go ahead with the work and, as a result of a successful period of construction, we are making excellent progress on delivering improved transport facilities for residents and workers in the Hackney Wick area."

Janet Townsend
Director of Development, LLDC

‘Talk to a Forecaster’ Forecaster Consultancy Service

At times when projects need additional details to the conditions on certain days, the Met Office can provide 24/7/365 meteorology consultancy.

The 'Talk to a Forecaster’ service provides a direct line for you to ask any weather information or forecast for any location. Perhaps there is a time of uncertainty, or if you really need to get some expert advice.

Forecasters on the line are located within the Met Office's Operations Centre at Met Office HQ, Exeter.

- Direct access to a weather forecaster, 24/7/365.
- Each call is approximately three-to-four minutes in duration.
- Access is issued via a PIN, which is given on the instigation of the service.

Project Analysis

Downtime Summary Reporting

Monthly Downtime Summary reports support your claims for downtime. They provide detailed weather conditions experienced over a month. This can be used to compare the Long-Term Averages and 1-in-10 year values identifying conditions that could not have been planned for. Our weather reports are trusted to help resolve contractual disputes within contracts such as NEC and JCT, and are available as Location-based or Station-based reports.

The difference between Station-based, and Location-based Downtime Summaries

The Met Office produces Downtime Summary Reports with data from two different sources.
Location-based Planning Average Reports use modelled data from one of more than 3,600 locations across the UK. Data is compliant with a wide range of construction contracts.

Station-based Planning Average Reports use observational data from one of 100 physical weather stations across the UK. Both are suitable for a variety of building contracts including JCT contracts and guidance of NEC3 and 4 contracts 60.1 (13).

What is the difference between ‘observational' and 'modelled' data?

Observed data has been physically acquired from a weather station. Modelled data uses a combination of our scientific systems, essentially all data collected from our weather stations over the years, interpolated over the UK onto a 1 km grid. The benefits of location-based reporting are that you can work with data more representative to your site, if by chance there is not a weather station nearby

What is the difference between 'observational' and 'modelled' data?
Our modelled data has undergone extensive scientific investigation, analysis, and verification to ensure accuracy. This technical report explains the benefits of using location-specific data.

Downtime Summary Comparison Table

Downtime Summary Report data is available from both Station-based sources (such as weather stations) and Location-based sources (such as model data). So, what are the differences?

	Station Based Monthly Planning Averages	Station Based Monthly Planning Averages (with Wind)	Station Based Monthly Planning Averages (Daytime)	Location Based Monthly Planning Averages (includes wind as standard)
Example report	Page 25	Page 25	Page 25	Page 24
Features				
Greater representation of actual onsite weather conditions				\checkmark
Over 3,600 locations available				\checkmark
100 weather observation stations	\checkmark	\checkmark		
55 weather observation stations			\checkmark	
Includes wind		\checkmark		\checkmark
Reports over 24 hours	\checkmark	\checkmark		\checkmark
16 different weather elements, 11 with Long Term Averages (LTAs) and 1-in-10 year values				\checkmark
Makes it immediately clear if compensation event reached				\checkmark
Volume discounts available	\checkmark			\checkmark
Advantages				
Can be used across a variety of construction contracts including JCT \& NEC contracts	\checkmark	\checkmark	\checkmark	\checkmark
Suitable for NEC clause 60.1 (13)	\checkmark	\checkmark		\checkmark

Where is my nearest location to derive data?

This link will take you to the map to assist you in finding the nearest location to your site where data for Planning Average reports can be derived from. Both Location and Station-based Planning Average are available. A summary version is on page 23.

Location-based Downtime Summary Reports

Location based downtime summaries

Prepared for: A Company			Met Office	
Somewhere, Latitude 51.555, Longitude -1.555				
Weather Data from: Latitude 51.5075, Longitude -1.5301				
Month: May 2017Issued on Wednesday 7 June at 08:40:21				
Summary Page				
	$\begin{aligned} & \text { Monthly } \\ & \text { Summary for } \\ & \text { May } 2017 \end{aligned}$	$\begin{gathered} \text { 1-in-10 } \\ \text { Year Value } \\ (1971-2010) \end{gathered}$	$\begin{aligned} & \text { Long-term } \\ & \text { Average } \\ & (1981-2010) \end{aligned}$	
Monthly Rainfall Total (mm) 0900-0900	78.7	105.0	63.0	
Total Days of Rain $>5 \mathrm{~mm}$	7	8	4	
Monthly Snowfall Total (cm)	0.0	not available	not available	
Total Days of Snow	0	1	0	
Total Days with Snow Lying at 0900	0	0	0	
Maximum Snow Depth (cm) at 0900	0.0	not available	not available	
Total Days of Freezing	0	0	0	
Minimum monthly Ground Temp (Deg C)	3.8	not available	not available	
Total Days of Ground Frost	0	not available	not availab	
Minimum monthly Air Temp (Deg C)	-0.9	-1.7	0.2	
Total Days of Air Frost	1	3	1	
Mean monthly Wind Speed (mph) 0900-0900	8.9	11.4	9.4	
Monthly Sunshine Total (hours)	172.5	23.0	190.0	
Maximum monthly Gust Speed (mph) 0900-0900	34.5	not available	not available	
Total Days of Lightning	3	not available	not available	
Monthly Solar Radiation Total (kWh/m^2)	139.5	158.0	146.0	
Monthly value is less than or equal to the 1 -in-10 year value, except for Minimum Ground Temp and Minimum Air Temp where the monthly value is greater than or equal to the $1-\mathrm{in}-10$ year value.		$\begin{aligned} & \text { alue is greater than } \\ & \text { Minimum Ground } \\ & \text { ere the monthly value } \end{aligned}$	$\begin{aligned} & \text { e } 1 \text {-in- } 10 \text { year value, } \\ & \mathrm{np} \text { and Minimum Air } \\ & \text { less than the } 1 \text {-in- } 10 \end{aligned}$	

Location based downtime summaries

Prepared for:	A Company
Site:	Somewhere, Latitude 51.555, Longitude -1.555
Weather Data from:	Latitude 51.5075, Longitude -1.5301
Month:	May 2017

Latitude 51.5075, Longitude - $\mathbf{- 1 . 5 3 0 1}$
May 2017
Issued on Wednescay 7 June at 08:40:21

Day of Month	Days of Freezing	Minimum Ground Temperature (Deg C)	$\underset{\text { Frost }}{\text { Days of Ground }}$	Minimum Air Temperature (Deg C)	Days of Air Frost
1		7.2		7.7	
2		6.2		4.0	
3		6.7		6.2	
4		7.9		8.1	
5		6.8		6.2	
6		7.9		8.2	
7		7.7		7.9	
8		5.2		5.0	
9		5.6		5.8	
10		3.8		-0.9	1
11		5.5		5.3	
12		11.3		11.6	
13		10.3		10.7	
14		10.1		9.7	
15		8.4		7.5	
16		12.7		13.2	
17		13.5		14.0	
18		8.0		6.4	
19		8.8		8.5	
20		5.6		5.4	
21		7.2		6.8	
22		9.2		9.5	
23		10.5		10.2	
24		10.8		11.6	
25		11.5		9.9	
26		11.7		11.6	
27		14.0		14.5	
28		11.6		10.0	
29		14.3		13.1	
30		12.7		12.1	
31		12.5		11.2	
Summary	0	3.8	0	-0.9	1
1-in-10 Year Value (1971-2010)	0	not available	not available	-1.7	3
Long-term Average (1981-2010)	0	not available	not available	0.2	1

Location based downtime summaries

Prepared for:	A Company					Met Office
Weather Data from: Latitude 51.5075, Longitude -1.5301						
Month:	May 2017					
Issued on Wednesday 7 June at 08:40:21						
Day of Month	Daily Rainfall Total (mm)	$\begin{aligned} & \text { Days of Rain } \\ & >5 \mathrm{~mm} \end{aligned}$	Daily Snowfall Total	Days of Snow	Days with Snow Lying at 0900 UTC	Snow Depth (cm) at 0900 UTC
1	0.3		0.0			0.0
2	0.0		0.0			0.0
3	0.0		0.0			0.0
4	0.0		0.0			0.0
5	0.0		0.0			0.0
6	0.0		0.0			0.0
7	0.0		0.0			0.0
8	0.0		0.0			0.0
9	0.0		0.0			0.0
10	0.0					0.0
11	7.6	1	0.0			0.0
12	1.6		0.0			0.0
13	7.3	1	0.0			0.0
14	2.4		0.0			0.0
15	0.9		0.0			0.0
16	5.4	1	0.0			0.0
17	24.6	1	0.0			0.0
18	2.4		0.0			0.0
19	5.4	1	0.0			0.0
20	1.8		0.0			0.0
21	0.0		0.0			0.0
22	0.0		0.0			0.0
23	0.0		0.0			0.0
24	0.0		0.0			0.0
25	0.0		0.0			0.0
26	5.4	1	0.0			0.0
27	0.0		0.0			0.0
28	9.4	1	0.0			0.0
29	4.3		0.0			0.0
30	0.0	0.00.0				0.0
31	0.0					0.0
Summary	78.7	7	0.0	0	0	0.0
$\begin{aligned} & \text { 1-in-10 Year Value } \\ & (1971-2010) \end{aligned}$	105.0	8	not available	1	0	not available
Long-term Average (1981-2010)	63.0	4	not available	0	0	not available

Location based downtime summaries

Prepared for:	A Company				Met Office
Site: Weather Data from: Month:	Somewhere, Latitude 51.555, Longitude -1.555				
	: Latitude	1.5075, Longit	de -1.5301		
	May 2017				
Issued on Wednesday 7 June at 08:40:21					
Day of Month	Mean Wind Speed (mph)	Sunshine Total (hours)	Maximum Gust Speed (mph)	Days of Lightning	Solar Radiation Total (kWh/m^2)
1	8.7	6.2	23.0		4.3
2	11.2	8.3	26.5		5.3
3	14.3	1.4	27.6		2.7
4	15.0	2.2	28.8		3.5
5	17.0	5.3	28.8		4.8
6	10.3	0.7	23.0		3.4
7	9.2	5.7	23.0		4.9
8	11.4	6.7	20.7		5.6
9	6.3	4.6	16.1		4.7
10	7.4	11.4	23.0		7.3
11	7.6	5.1	23.0	1	4.0
12	9.8	2.0	24.2		2.9
13	11.4	7.2	28.8		4.8
14	8.7	8.3	29.9		5.7
15	14.3	0.0	34.5		1.4
16	9.4	2.1	29.9		3.1
17	5.8	0.0	16.1		0.6
18	4.2	6.6	17.3		4.8
19	6.5	2.9	20.7	1	3.2
20	7.8	4.9	28.8		3.8
21	8.7	11.1	23.0		6.8
22	10.3	11.3	28.8		7.1
23	7.2	1.1	27.6		3.5
24	2.9	10.6	10.4		6.6
25	8.7	11.6	24.2		6.8
26	11.2	12.6	27.6	1	7.9
27	9.4	6.5	31.1		5.1
28	6.5	6.2	25.3		5.0
29	6.3	0.1	19.6		1.8
30	7.6	6.0	27.6		4.9
31	4.2	3.9	15.0		3.6
Summary	8.9	172.5	34.5	3	139.5
$\begin{gathered} \text { 1-in-10 Year Value } \\ (1971-2010) \end{gathered}$	11.4	239.0	not available	not available	158.0
Long-term Average (1981-2010)	9.4	190.0	not available	not available	146.0

Station Based Downtime Summary for ALDERGROVE
Weather Data from: (Lat=54:66N Long=06:22W)
Met Office
Month: January 2014
Issued on Monday 1 December 2014 at 11:42:40

Date	Daily Rainfall total (mm) 0900-0900	Days of Rain $>5 \mathrm{~mm}$	Minimum Air Temp (Deg C)	Days with Air Frost	Snow Depth (cm) at 0900 UTC	Days with Snow Lying at 0900 UTC
01	3.8		3.3		0	-
02	3.2		3.3		0	-
03	0.6		3.5		0	-
04	1.8		2.6		0	-
05	7.8	1	0.4		0	-
06	0.2		4.7		0	-
07	0.6		6.6		0	-
08	0.2		4.3		0	-
09	0.2		-0.1	1	0	-
10	4.4		2.7		0	-
11	0.0		0.3		0	-
12	3.8		0.4		0	-
13	0.6		1.5		0	-
14	9.6	1	-1.4	1	0	-
15	2.8		-0.2	1	0	-
16	17.6	1	4.1		0	-
17	tr		4.3		0	-
18	9.4	1	3.3		0	-
19	0.2		2.4		0	-
20	2.4		1.7		0	-
21	4.4		1.8		0	-
22	2.0		4.8		0	-
23	5.0		2.9		0	-
24	6.4	1	2.5		0	-
25	16.2	1	4.9		0	-
26	2.6		2.1		0	-
27	7.8	1	2.5		0	-
28	0.8		4.6		0	-
29	2.6		3.8		0	-
30	2.0		2.9		0	-
31	17.4	1	3.3		0	-
Total	136.4	8	-	3	-	-
1-in-10 Year Value	126.7	10	-	16	-	7
Long-term average (1981-2010)	81.3	6	-	9	-	2

Explanatory Notes

"\#" means some data are missing, the no. of hours missing follows the symbol; "-" means no data are available; "n/a" means the total, long-term average or 1 -in-10 year value is not available or not applicable; "tr" means 'trace' of rainfall i.e. less than 0.05 mm .

[^1]

Building Downtime Summary (MetBUILD)
\approx Met Office

ABERPORTH - January 2014

Issued on Monday 14 July 2014 at 10:49:17							Page 3 of 4		
Day	Number of hours in the period 07 to 17 GMT								
	with mean winds (mph) greater than						with gusts (mph) greater than		
	15	18	23	26	32	39	39	46	\#
01	10	10	9	6	2	1	7	4	
02	6	2	0	0	0	0	0	0	
оз	10	10	10	4	1	0	10	6	
04	3	2	0	0	0	0	0	0	
05	10	10	7	6	2	0	6	5	
06	10	10	10	10	3	0	10	9	
07	10	10	6	3	0	0	5	1	
08	0	0	0	0	0	0	0	0	
09	10	9	1	0	0	0	0	0	
10	5	1	0	0	0	0	0	0	
11	3	2	0	0	0	0	0	0	
12	10	10	10	7	2	0	7	3	
13	5	2	0	0	0	0	0	0	
14	2	2	0	0	0	0	0	0	
15	9	6	3	0	0	0	0	0	
16	9	4	0	0	0	0	0	0	
17	0	0	0	0	0	0	0	0	
18	6	4	3	0	0	0	2	0	
19	1	0	0	0	0	0	0	0	
20	0	0	0	0	0	0	0	0	
21	10	10	6	4	0	0	5	0	
22	9	8	0	0	0	0	0	0	
23	10	10	8	3	1	0	3	1	
24	8	1	0	0	0	0	0	0	
25	8	7	6	6	5	3	6	6	
26	10	10	10	10	5	0	10	9	
27	10	10	10	10	1	0	7	3	
28	10	10	6	3	0	0	2	0	
29	0	0	0	0	0	0	0	0	
30	0	0	0	0	0	0	0	0	
31	10	10	8	8	0	0	8	5	
Mon-Fri Total	153	125	77	51	8	1	57	29	
Long-term avg	133	100	64	50	16	4	25	12	
Mon-Sat Total	173	140	86	57	13	4	65	35	
Long-term avg	165	124	80	61	20	6	31	15	

Building Downtime Summary (MetBUILD)
Tel: 08709000 0100 www.metoffice.gov.uk
ABERPORTH - January 2014

Day	Rainfall Total (mm)				Number of hours in the period 07 to 17 GMT			$\begin{aligned} & \text { Snow lying } \\ & \text { during the } \\ & \text { day (06-18 } \\ & \text { (GMT) } \end{aligned}$
	$\begin{aligned} & \hline 00-24 \\ & \text { (GMT) } \end{aligned}$	\#	$\begin{aligned} & \hline 07-17 \\ & \text { (GMT) } \end{aligned}$	\#	with rainfall over 0.2 mm	when snow fell	\#	
01	13.0		12.2		8	0		-
02	5.0		0.2		0	0		-
о3	10.0		4.8		3	0		-
04	7.8		5.4		2	0		.
05	6.4		2.6		2	0		-
06	12.8		12.6		5	0		0
07	0.6		0.6		0	0		0
08	17.4		4.4		3	0		0
09	2.0		0.0		0	0		0
10	2.2		0.2		0	0		0
11	tr		tr		0	0		-
12	2.2		0.2		0	0		.
13	12.4		9.4		5	0		0
14	10.8		2.2		3	0		0
15	4.6		3.4		4	0		0
16	7.0		2.2		3	0		0
17	1.2		0.4		1	0		0
18	16.0		9.2		4	0		.
19	0.2		0.2		0	0		-
20	4.8		1.6		1	0		0
21	3.6		2.2		4	0		0
22	1.8		1.0		1	0		0
23	1.8		tr		0	0		0
24	15.6		6.6		4	0		0
25	0.8		0.8		1	0		-
26	5.4		4.4		4	0		-
27	2.6		0.4		1	0		0
28	17.4		8.2		6	0		0
29	0.6		0.2		0	0		0
30	tr		0.0		0	0		0
31	13.4		10.0		8	0		0
Mon-Fri Total	160.6		82.8		60	0		0
Long-term avg	62.3		23.7		22	5		2
Mon-Sat Total	185.2		98.2		67	0		0
Long-term avg	77.2		29.4		27	7		2

Building Downtime Summary (MetBUILD)
\approx Met Office

ABERPORTH - January 2014

Day	$\begin{array}{\|c\|} \hline \text { Air min temp } \\ \text { (deg C) } \\ \hline \end{array}$	Grass min temp (deg C)	Rainfall amount $09-09(\mathrm{~mm})$	Snow depth (cm) at 09GMT	Mean wind speed for day (mph)	Maximum gust tor day (mph)
01	4.8	2.9	8.4		23.0	56.4
02	5.4	3.1	7.2	-	19.6	46.0
03	4.0	2.1	14.0	.	26.5	62.1
04	3.7	1.5	1.4	.	13.8	33.4
05	2.0	-0.1	6.8	.	21.9	56.4
06	5.5	6.2	12.4	0	27.6	61.0
07	7.0	5.6	0.6	0	21.9	51.8
${ }^{\circ 8}$	7.3	4.9	19.4	0	15.0	${ }^{40.3}$
09	5.8	4.4	0.2	0	18.4	33.4
10	3.2	1.2	2.2	0	15.0	31.1
11	5.3	3.1	*	.	12.7	28.8
12	1.6	0.0	3.6		24.2	49.5
${ }^{13}$	2.5	0.7	11.0	0	15.0	36.8
14	1.1	-1.1	${ }^{11.6}$	0	16.1	41.4
15	1.8	5.3	5.8	0	18.4	38.0
16	5.3	з.3	5.8	0	16.1	34.5
17	5.0	3.6	11.2	0	12.7	23.0
18	4.8	3.2	5.2	.	13.8	39.1
19	1.2	-0.8	3.4	.	12.7	26.5
20	2.0	0.0	1.8	0	6.9	17.3
21	1.6	-0.4	4.4	0	18.4	43.7
22	4.6	2.5	2.8	0	16.1	26.5
${ }^{23}$	5.1	3.5	${ }^{6.8}$	0	20.7	47.2
${ }^{24}$	5.1	3.9	8.8	0	17.3	33.4
25	6.3 50	5.1 32	${ }_{3}^{4.4}$.	${ }^{24.2}$	74.8 610
${ }_{27}^{26}$	5.0 3 3	3.2 20	3.2 6.0		29.9 31.1	61.0 54.1
${ }^{27}$	${ }^{3.3}$	2.0	6.0	0	31.1	54.1
${ }_{29}^{28}$	5.9	4.4	13.2	0	26.5	55.2
${ }_{30}^{29}$	4.5 2.7	2.9 0.5	tr	0	11.5	33.4
31	${ }_{0}^{2.1}$	${ }_{-1.6}^{0.5}$	13.4	0	${ }^{23.0}$	49.5
	No. of air frosts	$\begin{aligned} & \text { No. of ground } \\ & \text { frosts } \end{aligned}$	No. of days rain $>=1 \mathrm{~mm}$	No. of days rain $>=10 \mathrm{~mm}$	No. of days snow lying	Mean wind speed (mph)
Mon-Fir Total		${ }^{3}$	19	${ }^{8}$	0	18.5
Long-term avg	4	7	10	1	1	15.9
Mon-Sat Total	0	3	22	8	0	18.2
Long-tem avg	5	9	13	2	1	15.9

Historical Weather Data

Weather Observations

The Met Office holds an extensive archive of weather observations from thousands of different locations around the UK and globally. We hold original manuscripts dating back to 1860 and have digitised climate records from around 1960 for a wide variety of weather variables to meet your individual business needs.

These include the following:

- Precipitation
- Air temperature
- Grass temperature
- Concrete temperature
- Soil temperature (at a depth of $10 \mathrm{~cm}, 30 \mathrm{~cm}$ and 100 cm)
- Humidity
- Sunshine hours
- Global radiation
- Snow depth
- Cloud cover
- Visibility
- Pressure
- Mean wind speed
- Mean wind direction
- Max gust wind speed
- Max gust corresponding wind direction

Data is available in hourly, daily, weekly, monthly or annual time-steps from our observing station network. We also have some data available in 1-minute frequencies.

In addition, we are also able to offer monthly long-term average data (based on 30 years of historical data, currently 1981-2010). However, if you are looking to claim for downtime, we would recommend Downtime Summary Reports.

Historical Rainfall Radar Data

The UK and Ireland weather radar network composite operates $24 / 7 / 365$ and is currently composed of a total of 18 weather radars, of which 15 are operated and maintained by the Met Office.

Each radar provides location-specific rainfall data out to 255 km, completing a series of scans about the vertical axis at different elevation angles every five minutes. Rainfall Radar Data can be extracted in five minute or hourly timesteps, and delivered in an Excel Spreadsheet.

For more information on Historical Observations and Radar Data availability please provide your locations, weather parameters, and time ranges of interest, to construction@metoffice.gov.uk

ClaimCheck Reports

The ClaimCheck report is a report which contains five consecutive hours of hourly data of five consecutive days of daily data to assist in claims for specific weather affected events, in which you may need to make an insurance claim.

Met Office

Daily Report for
Bude postcode sector EX23 0
Covering the period 07/12/2017 to $11 / 12 / 2017$

	07	08	09	10	11
Temperature (Max)	13.5 Celsius	7.8 Celsius	7.8 Celsius	10.7 Celsius	7.8 Celsius
Temperature (Min)	5.9 Celsius	3.7 Celsius	3.1 Celsius	4.4 Celsius	1.6 Celsius
Wind Speed (Mean)	38 mph	39 mph	29 mph	51 mph	35 mph
Wind Gust (Max)	51 mph	46 mph	35 mph	69 mph	39 mph
Rainfall Rate (Max)	13.2 mm per hour	14.2 mm per hour	4.0 mm per hour	13.3 mm per hour	22.1 mm per hour
Total Rainfall (00-12)	12.1 mm	6.3 mm	0.8 mm	20.8 mm	3.1 mm
Total Rainfall (12-24)	2.7 mm	3.9 mm	3.9 mm	5.7 mm	5.3 mm
Lightning Risk	0.00	0.00	0.00	0.00	0.00

The ClaimCheck database is derived from a number of operational data sources including radar data, lightning detection systems and analysis fields generated as part of our operational forecast process. We then map these gridded data to UK postcode sectors to generate the ClaimCheck service. Please be advised that the data provides the most significant value in the postcode sector, which may vary from your precise location of interest, most notably in the cases of larger postcode sectors and those in hilly or mountainous terrain.

Issued 15/12/2017 09:50
Copyright © The Met Office 2017

Met Office

Hourly version ClaimCheck weather summary for:
Location: Sandwell postcode sector B70 6
Date/Time: 01:00 06/05/2015 to 05:00 06/05/2015

Time	$01: 00$	$02: 00$	$03: 00$	$04: 00$	$05: 00$
Temperature (Max)	8.4 Celsius	8.2 Celsius	7.9 Celsius	7.7 Celsius	7.0 Celsius
Temperature (Min)	8.1 Celsius	7.8 Celsius	7.6 Celsius	7.5 Celsius	6.8 Celsius
Wind Speed (Mean)	13 mph	10 mph	10 mph	11 mph	14 mph
Wind Gust (Max)	28 mph	24 mph	26 mph	28 mph	30 mph
Rainfall Rate (Max)	0.0 mm per hour				
Total Rainfall	0.0 mm				
Lightning Risk	0.00	0.00	0.00	0.00	0.00

The ClaimCheck database is derived from a number of operational data sources including radar data, lightning detection systems and analysis fields generated as part of our operational forecast process. We then map these gridded data to UK postcode sectors to generate the ClaimCheck service. Please be advised that the data provides the most significant value in the postcode sector, which may vary from your precise location of interest, most notably in the cases of larger postcode sectors and those in hilly or mountainous terrain.

Issued 13/04/2017 15:28
Copyright © The Met Office 2017

When would you use a ClaimCheck?

ClaimChecks are not designed for claims of downtime; they are used for looking back at specific times of interest where an event may have occurred. It has been designed to assess weather-related insurance claims with greater efficiency and confidence.

ClaimCheck only needs the postcode and date (and time if you have it) to provide all the relevant weather information needed to assess weather conditions.

Storm Analysis

If a specific storm has interrupted site operations considerably and you require more details on the events around it, a Storm Analysis Report can help provide a comprehensive analysis.

It provides an extensive breakdown of the storm as well as the most significant rainfall amounts. You also receive a return period which is the recurrence interval of time between events of a similar size. For example, if the storm has a return period of 31 , you may expect such an event to occur once in every 31 years. This may also be expressed as a 1-in-31 year event, or an event which has a ~3\% chance of occurring each year.

Storm Analysis

Met Office FitzRoy Road Exeter EX1 3PB United Kingdom
Tel: 08709000100 Fax: 08709005050 www.metoffice.gov.uk
WRC LTD
F.A.O

Tel:
Email:

Full Report

Location	Grid Reference	Date	Event Start	Event End
$x x x x x x$	$x x x x x$	$12 / 06 / 2016$	1600 GMT	1700 GMT

Return Period of Most Significant Event (yrs)

125, ONE HUNDRED AND TWENTY FIVE YEARS *

Rainfall Amount	
Data Source	mm
UK COMPOSITE RADAR	48.0

Most Significant Amount	
mm	Duration
38.9	1600 TO 1700 GMT 12/06/2016

Return Periods for Standard Durations		(UK Composite Radar)	
Amount (mm)	Duration	Years	
18.7	15 mins	48^{*}	
29.2	30 mins	97^{*}	
39.7	60 mins	125^{*}	

Confidence: \quad HIGH
© Crown Copyright Met Office

Page 2 of 2

Event at: $\mathbf{x x x x x x}$

Date of event: $12^{\text {th }}$ June 2016

Rainfall Stations used in assessment.

Station	Distance (miles) \& Direction		$09 / 06 / 20$ 16	$10 / 06 / 20$ 16	$11 / 06 / 20$ 16	$12 / 06 / 20$ 16	
MISERDEN PARK	6.8	S	0	0.8	2.8	25.8	
DOWDESWELL RSERVOIR NO 2	2.6	E	0	4.0	5.6	27.8	
EBWORTH	5.9	SSW	0	1.2	6.6	25.4	
UK COMPOSITE RADAR			0	3.7	1.9	48.0	

Rainfall measurements in mm
Table represents daily 24 hr totals from 0900GMT on the date shown

Opinions and conclusions on likely significance of the event

A band of more organised showery rain pushed into Northern Ireland, Wales and the south-west of England.
In central and southern parts of England it remained mostly dry, with some cloud breaks. It was another muggy night, with minimum temperatures mostly in double figures Celsius.

Through the morning, the band of rain across the west continued to move eastwards, affecting Northern Ireland, the Midlands, and south-east England by midday.

Through the afternoon, the rain continued to break up, but as some sunny spells developed, this led to some heavy, thundery and slow-moving showers. By the evening, the focus of the heavy showers were to the north of London.

In the sunnier parts of England and Wales, it was warm and muggy.
Through the evening, thunderstorms continued at first, but towards midnight, the heaviest of the showers tended to ease into light rain. Elsewhere, much of the country stayed
cloudy with rain, low cloud, hill and sea fog.
The nearest rainfall stations to the site were Miserden Park with 25.8 mm , Dowdeswell Reservoir No2 with 27.8 mm and Ebworth with 25.4 mm .

Data from the radar showed an intense burst of rainfall between 1600 to 1700 on 12/06/2016
To provide guidance on the rainfall rate at the location - Leckhampton, on $12^{\text {th }}$ June 2016, return periods were calculated from the UK Composite Radar data. The highest return period for this data was 125 years*.

Prepared by	Date
$X X X X X$	$12 / 07 / 2017$

It is not always the case that the nearest available data site is the most representative of the incident site.
*The return period assigned to this radar rainfall value is calculated in accordance with the method described in the Flood Estimation Handbook (FEH). The FEH method used to determine return periods is based on analysis of rain gauge data only. Hence, this return period estimate is for guidance only.
(0) Met Office, FitzRoy Road, Exeter, EX1 3PB, UK
@(UK): 08709000100 (Int): +44 1392885680
(⿴) construction@metoffice.gov.uk
(e) www.metoffice.gov.uk
(iin) www.linkedin.com/showcase/construction-industry-weather-services

[^0]: (N) means data for N days in the month are not included in the analysis; - means no data are available;

 If data for the primary station is not available, data from an adjacent station may be used You receive this report for personal use only subject to our terms and conditions, available on request. Broadcast, publishing or redistribution is prohibited.

[^1]: Station-based Downtime Summary Reports are also available with additional wind information on request.

