N

& LEONARDO

-

LEONARDO Germany GmbH

International Data Center
Solution Concept: Toward Predictive Maintenance

Hassan Al Sakka and Nipesh Dulal

20230922

Electronics

Helicopters

Aircraft

Cyber &

Security

Unmanned
Systems

Aerostructures




OUTLINE

e[0T

« Example

« Monitoring and maintenance

* The concept

- Advantage

S

N~
\ © 2023 LEONARDO Germany GmbH — All rights reserved



OUTLINE

°loT

© 2023 LEONARDO Germany GmbH — All rights reserved



INTERNET OF THINGS: IOT

Interconnected ecosystem of physical devices,
embedded with sensors and software.

Communicating and exchanging data
seamlessly over networks .

Improve efficiency and add value.

Image credit: news.mit.edu
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Example
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CURRENT REAL TIME EXAMPLE

Ingest Transform and Analyse Deploy

Image credit: Product design and development using Artificial Intelligence (Al)
techniques: 10.31224/2958 ER
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TYPES OF MAINTENANCE

* Reactive Maintenance (hotline, helpdesk, remote check):

Potential upside Predictive

Address issues post-failure or open question.
Maintenance

Preventive

A —— Often involves on-site, immediate response

Reactive
Maintenance

Q& @ S - Preventive Maintenance:

Complexity Regularly scheduled.

On-site checkups based on experience and expertise

Potential upside ,, * Predictive Maintenance 1.0 and 2.0:

Utilizes set rules and thresholds for alerts.

Part of the RAVIS approach

* Predictive Maintenance 3.0 and 4.0: DATACENTER

Complexity
Image credit: https://www.csselectronics.com/
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TYPES OF MAINTENANCE

Potential upside

Maintenance
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PREDICTIVE MAINTENANCE

Centralizing the data

Image credit: https://www.csselectronics.com/
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Back to Radars/Lidars

Features which already used in

vy
SYSTEM OVERVIEW
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TO THE DATA

Data Center
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WORKING SCENARIO

Data Center

S Y
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Sub-system

 Power
* Temp.

Status
On/Off

o D

Monitoring}—*
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2 - ™
Analyzing — Actions
Data Analysis « Warning
for trends and * Reporting
patterns \_
Use Al (e.g. ML)
User Group
Radar
comparison Improve Skills
. 4 )
‘ OQutput and Objectives
Improve Skills | « Statistics
» Predictive maintenance
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REAL TIME CONNECTION
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REAL TIME CONNECTION

— 1 way connection

@ < 2 Wways connection
L
=

Python script

Cloud DB
InfluxDB

v

Security?

_

Security?

-

S

The main issue is the data policy !
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ALTERNATIVE CONNECTION

Save the file

_

Security?

-
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N (S)ftp

— 1 way connection
< 2 Wways connection

Cloud DB
InfluxDB
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THEN WHAT WE DO NOW :
USING GRAFANA TO DISPLAY ALL BITE DATA
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WHAT IS PREDICTIVE MAINTENANCE (3.0 AND 4.0)? = DATA-DRIVEN

Few Recent Real Case

..........................

Window of time before customer getting notifications

- : Something went
Working Fine _ —
J May be we can inform and warn customer to check, or

wrong
replace later
® 19
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Statistics of different parameters

Correlation matrix
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Statistics of different parameters
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Machine learning, prediction, and real-time alert notification

Parrot_Magentron temperature

80

Model to
forecast time
series data
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These alerts can serve as a simple data-driven predictive maintenance 3.0
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OUTLINE

- Advantage
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STEPS OF DATA DRIVEN PREDICTIVE MAINTENANCE 4.0

Data Collection

Feature Engineering

Machine learning Models

Interpretation and improvement

Predict the failure’s time window - predictive maintenance 4.0

Estimate the remaining useful time of machine - predictive maintenance 4.0

S

N~
\ © 2023 LEONARDO Germany GmbH — All rights reserved

24



ADVANTAGES

Reduced asset Maintenance & parts Extend remaining
downtime optimization useful 1life

Maintenance can be scheduled to

prevent unplanned downtime Replacements are on hand when Optimizes the use of assets
needed
: : Avoids last-minute rush and potential Operates efficiently for a longer time
EUIES CHREEEnL opeea el error extending their useful lifespan

efficiency.

,,Image credit: https://www.csselectronics.com/
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Thank you

datacenter@leonardogermany.com

LEONARDO Germany GmbH
Raiffeisenstrasse 10

41470 Neuss, Germany

Tel: +49 (0) 2137 782-0
info@leonardogermany.com
www.leonardogermany.com
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