

Evaluation of the effects of different lightning protection rods on the quality of C-Band weather radars

Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange and Benjamin Rohrdantz (Deutscher Wetterdienst, Germany) Contact: cornelius.hald@dwd.de

Why lightning protection?

- Radars are at exposed locations (assumption: 5.22 lightning strikes per km² and year)
- Protection for expensive equipment
- → Guarantee staff safety
- It's a regulatory requirement

Definition of lightning protection

- Roll an imaginary ball over the building
- Place lightning protection rods such that the ball does not touch the building
- The smaller the ball, the higher the lightning protection class
- Requirement for radar towers: "BSK III"

Current lightning protection

- ➔ 4 rods with spacing of 90° AZ
- Length: 8m, Diameter: 100mm to 50mm from 0-7m, 10mm in the last meter
- Material: last meter: stainless steel, then aluminium cable covered with fibre glass
- Result: "BSK I" (required for example for nuclear power plants)
- No time for data evaluation prior to installation

(Negative) Effects of the current rods

- <u>Beam blockage</u>: removes some of the sent and received power
 - Leads to underestimation of rain rates
 - Visible as "four-leaf clover" in rain sums
 - Evaluated by calculating precipitation sums

Precipitation sum in mm for 2014 at radar OFT

(Negative) Effects of the current rods

- <u>Reflection</u> on send and receive path
 - Makes signals appear where there are none
 - Appears as enhanced side lobe levels in antenna measurements (not property of the antenna!)
 - Evaluated by antenna measurements

Tested new rods

- → Vertical:
 - 16mm and 40mm diameter, 4 pieces, 4m length
- ➔ Horizontal:
 - → 76mm diameter, 4m length, last meter at 45°
- Both require an additional rod in the radome top panel!

Antenna

measurements

- Have an external signal source point at the radar
- → Switch radar transmitter off
- Perform a series of high resolution scans
 - → 3000Hz PRF, 0.4µs PW, 0.05° resolution, 20km range, 1km range resolution
 - → Record SNR, ZDR, RhoHV, PhiDP
 - → Done with default radar software
 - → Raster, PPI and RHI
- Do this with different lightning rods in place

Antenna

measurements

- Have an external signal source point at the radar
- → Switch radar transmitter off
- Perform a series of high resolution scans
 - → 3000Hz PRF, 0.4µs PW, 0.05° resolution, 20km range, 1km range resolution
 - → Record SNR, ZDR, RhoHV, PhiDP
 - → Done with default radar software
 - → Raster, PPI and RHI
- Do this with different lightning rods in place

measurement	LPR	Position	Mode
1	16mm	267.5°	STAR
2	16mm	267.5°	H only
3	none	-	STAR
4	40mm	267.5°	STAR
5	40mm	267.5°	H only
6	16mm	250.7°	H only
7	16mm	250.7°	STAR
8	40mm	250.7°	STAR
9	40mm	250.7°	H only
10	horizontal	245°	H only
11	horizontal	245°	STAR

Approx. 2h per measurement

Normalized SNRh from antenna measurements

- Blue: old rod, black: no rod
- All tested rods are closer to no rod than to the old one
- Smallest increase in side lobe levels at horizontal rod (orange)
- Larger side lobes for 40mm than 16mm rods

0 LPR at 267.5° LPB at 267.5° PR at 267.5° horizontal I PR at 2459 9 -20 +20 dB normalized SNRh [dB] 90 +3 dB +5 dB 6 50 60 20 -5 0 5 10 15 AZ [°]

Normalized SNRh from antenna measurements

- Blue: old rod, black: no rod
- All tested rods are closer to no rod than to the old one
- Smallest increase in side lobe levels at horizontal rod (orange)
- Larger side lobes for 40mm than 16mm rods

Normalized SNRv from antenna measurements

- Smaller total differences in vertical channel
- Results stay the same: all tested setups are better than the old one
- Assumption: for a vertically polarized wave, the length of the rod is key, not the diameter

- Smaller total differences in vertical channel
- Results stay the same: all tested setups are better than the old one
- Assumption: for a vertically polarized wave, the length of the rod is key, not the diameter

Results – precipitation sums

2023/11/09

Recommendation

- From a scientist: horizontal rods
 - Least influence on data. Will be used for new towers
- → Actual implementation:
 - → 40mm vertical rods are the only ones that are structurally safe under the assumption of heavy ice accumulation and people near the towers!
 - → Keep diameters below radar wave length.
- Again: all require the top rod in the radome (measurements showed no detrimental effects)
- → Paper with more details is in preparation.

Beam blockage on receive path

Raster scans

Raster scans

A puzzle for the end:

