

Detection of Wind Turbine Contamination with a Convolution Neural Network

Nawal Husnoo^(a), Timothy Darlington^(a), Sebastian Torres^(b), David Warde^(b)

^(a)Met Office

^(b) Cooperative Institute for Severe and High-Impact Weather Research and Operations (CIWRO), The University of Oklahoma and NOAA/OAR National Severe Storms Laboratory

℅MetOffice Introduction

- Wind turbines part of the solution for renewable energy
- Growing threat to weather radar data quality
- Typical dual-pol quality control approach struggles with WT
- Doppler filters work for stationary clutter but often fail with WT
- I will describe our previous work on switching the Doppler filter on/off dynamically for stationary ground clutter
- I will then discuss our *current work* on using spectral dual-polarisation parameters to *detect and flag wind turbines dynamically*

Met Office Lowest elevation data is better

Met Office Doppler filtering of stationary ground clutter

Automatic detection and removal of ground clutter contamination on weather radars, Warde & Torres (2009) http://cimms.ou.edu/~torres/Documents/Radar%20Conference%202009.pdf

www.metoffice.gov.uk

© Crow n Copyright 2021, Met Office

Met Office Doppler filtering doesn't always work

Previous work

Dynamic switching of CLEAN-AP^(TM)

Met Office Previous work – unfiltered/filtered/censor

Husnoo et al. (2021) - A Neural Network Quality-Control Scheme for Improved Quantitative Precipitation Estimation Accuracy on the U.K. Weather Radar Network, Jtech, Vol 38, issue 6, pp1157–1172

Met Office Previous work: Inputs to the neural network

- 30 gate-averaged parameters (see paper for details)
- noise-scaled uncalibrated abs autocorrelations (lag0, lag1)x(H,V)x(unfiltered, filtered)
- Notch width as estimated by CLEAN-AP^(TM)
- RhoHV
- PhiDP and angles of lag1 autocorrelations included as (sin,cos)
- Circular variance of autocorrelations (lag0,lag1,cross lag0)
- Small spatial window used fully connected dense neural networks,,,,,,,,,,,l;'

Met Office Previous work: accumulations (9–15 June 2019)

• Note: in-filling of censored lower elevation data using higher elevation data

Met Office Previous work: gauge comparisons

Present work

Dynamic identification of wind turbines

Met Office Masking - some WT only present during anaprop

Met Office Doppler filtering doesn't always work

Met Office Spectral dualpol – range-velocity plots

Polarimetric Spectral Filter for Adaptive Clutter and Noise Suppression Moisseev & Chandrasekar (2009), JTECH, Vol 26, Issue 2, pp215-228

Met Office WT – inputs – spectral dualpol and power (H/V), filt/unfilt

Spectral dualpol inputs: (?, 3*35,7,4) [sZDR, sRhoHV, cos(sPhiDP), sin(sPhiDP)]

Power inputs: (?, 3, 7, 4) [Lag0H_unfilt, Lag0V_unfilt, Lag0H_filt, Lag0V_filt] (scaled by noise floor estimates)

Bootstrap Dual-Polarimetric Spectral Density Estimator,

Umeyama, Torres and Cheong (2007), IEEE Transactions On Geoscience and Remote Sensing, vol. 55, no. 4, April 2017.

Met Office Synthetic tiles – rain (unfiltered)

rain_lag0h=67.5 dB, unfiltered_lag0h=67.7 dB, filtered_lag0h=67.5 dB,

Spectral components: concatenated 3 rays worth of Doppler velocities.

Set Office Synthetic tiles – rain (filtered)

rain_lag0h=45.4 dB, unfiltered_lag0h=66.4 dB, filtered_lag0h=45.4 dB,

Spectral components: concatenated 3 rays worth of Doppler velocities.

Met Office Synthetic tiles – clutter-giveup

rain_lag0h=49.9 dB, unfiltered_lag0h=81.9 dB, filtered_lag0h=73.2 dB,

Spectral components: concatenated 3 rays worth of Doppler velocities.

Met Office Synthetic tiles – wind turbine-giveup

rain_lag0h=46.1 dB, unfiltered_lag0h=87.3 dB, filtered_lag0h=69.8 dB,

Spectral components: concatenated 3 rays worth of Doppler velocities.

Met Office Model and training details

- 2 columns (spectral dualpol and power)
- 4 output neurons with SoftMax: [unfiltered/filtered/clutter/WT]
- Total number of parameters: 4,524

© Crow n Copyright 2021, Met Office

Set Office Training process

- Use guild.ai and tensorboard to monitor progress and compare runs
- Train with a total of 178,308 tiles for a maximum of 150 epochs
- Validate with 182,523 tiles (keep model with best validation accuracy)

Met Office Confusion matrix for tiles dataset (testing split)

• Test on a total of 178,142 tiles

Ground truth						
		unfiltered	filtered	clutter	wt	total
	unfiltered	0.4313	0.0225	0.0080	0.0006	0.4625
Neural	filtered	0.0163	0.1705	0.0124	0.0047	0.2041
Network	clutter	0.0027	0.0056	0.1760	0.0048	0.1892
	wt	0.0005	0.0043	0.0075	0.1316	0.1440
					+	
	Total	0.4510	0.2030	0.2041	0.1418	
overall accuracy: 0.9096						
ground truth: n_unfiltered=80,353, n_filtered=36,167, n_clutter=36,360, n_wt=25,262						
accuracy: unfiltered=0.9563, filtered=0.8401, clutter=0.8624, wt=0.9283						

\gg Met Office Dry case – beam 0 (0.5°)

Hameldon Hill Scale: 300x300km

© Crow n Copyright 2021, Met Office

Set Met Office Rainy case – beam 0 (0.5°)

Hameldon Hill Scale: 300x300km

expt18b4-50e#14 202301031834 polar pl radar04b0 augzdr in.h5

Met Office Mean reflectivity over a 3h period (2023/01/03 12:44-15:39)

35

- 30

- 25

- 20 2

15

- 10

5

avg reflectivity flagged by fixed WT mask

 Note: we're not yet using in-filling of censored lower elevation data with higher elevation data

Hameldon Hill (Beam 0 only) Scale: 168x168km

Met Office Conclusions and ongoing work

- Increase in wind turbine contamination is unavoidable for NetZero
- Spectral dualpol parameters are useful for detecting wind turbines
- The tiles approach works well for training a neural network to detect both clutter and wind turbines
- We'll try to improve the model further
- Current runtime is ~2min/scan, we plan to do some optimisation