Weather Radar Data Quality Monitoring using Operational Observations

VAISALA

Dirk Klugmann¹, Jordan Santillo¹, Robinson Wallace², Juha Salmivaara¹, Pekka Puhakka¹ ¹Vaisala Oyj, Vantaa, Finland ²Vaisala Inc, Boulder, CO, USA

Contents

- 1. Introduction / Motivation
- 2. Method
- 3. Examples
- 4. WR Data Quality Assessment of Kerava WR pre / post Magnetron Replacement
 - 1. ZDR Calibration
 - 2. WR Data Quality Assessment
- 5. Conclusions and Outlook
- 6. Summary

Introduction / Motivation

Introduction / Motivation

Monitoring data quality of Weather Radar (WR) observations crucial for:

- Assuring quality of direct observables and derived products.
- Informing subsequent use of observables and products.
 - Example: weight given to observations assimilated into NWP models.

Monitoring data quality of WR observations supports adaptive approach to WR maintenance.

- Adapt maintenance activities to state of individual WRs.
 - Replaces fixed schedule.
- Supported by Artificial Intelligence / Machine Learning.

Introduction / Motivation

- Looking for assessment method (nearly) exclusively using Weather Radar Observations.
 - Alternative: reference sensors, e.g. Vaisala
 FD70 (Marbouti et al.).
- Avoid interruption of operational observations.
 - Birdbath scan, external WR calibration, ...

- Observations from Vaisala Research WRs located in Helsinki Capital Region:
 - WRM200 at Kerava;
 - WRS300 at Kumpula;
 - WRS400 at Vaisala HQ.
- Observations from FMI operational WRM200 WR at Vihti.
- Examples created with Python code.

Method

Method – Observables Quality Evaluation

- 1. Identify Melting Layer Height (MLH) and its range.
 - Using external information (e.g. Radiosonde) or Radar observations.
- 2. Select data from ranges closer than MLH range.
- 3. Mask data for Z_h , e.g.10 dBZ $\leq Z_h \leq$ 20 dBZ.
 - Other ranges for Z_h possible, e.g. 20 dBZ $\leq Z_h \leq 40$ dBZ.
- 4. Mask data for Z_{DR} , e.g. $|Z_{DR}| \le 0.5$.
 - More stringent masking for Z_{DR} possible, e.g. |Z_{DR}| ≤ 0.1, if enough observations available requirement: meaningful statistics!
- 5. Calculate statistics for observables and fit theoretical functions.

Method – Fit Functions

• Fit function for **correlation coefficient** ρ_{HV} takes the form:

$$f(x) = \frac{a}{\sqrt{2\pi} \cdot \sigma \cdot x} \cdot e^{\frac{(\log(x) - \mu)^2}{2\sigma^2}}$$

with $x = 1 - \rho_{HV}$.

• Fit function of **differential phase** Φ_{DP} takes the form: $f(x) = a \cdot (s \cdot x)^{\mu} \cdot e^{-\lambda}$

with $x = \Phi_{DP} - {}^{max}\Phi_{DP} + 10^{\circ}$, where ${}^{max}\Phi_{DP}$ denotes distribution's maximum, *a* is an amplitude factor, *s* a stretch factor, μ and λ are shape parameters.

Method – Fit Functions

1.0

Oumulative P

0.2

0.0

Ш

S Distr. 9.0 Freq.

Reversed log-normal fit for ρ_{HV}

2500 Log-normal fit (peak at $\rho = 0.9885$) $\mu = 5.2926 / \sigma = 0.3944$ ± 0.5dB) Cumulative Freq. Distr $10dBZ \leq Z_{2} \leq 20dBZ$ 2000 $\Delta ZDR = \pm 0.5 dB / n_{tot} = 27502$ Ш K10231011050005 ≤ 20dBZ / ∆ZDR 10dBZ ≤ Z₀ ≤ 20dBZ Elevat.: 0.6 * / ΔZDR = ± 0.5dB 1500 ×Z 1000 Occurrence (10dBZ 500 0 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1 0 0 0 DHV Log-normal fit (peak at $\rho = 0.9885$) $\mu = 5.2649 / \sigma = 0.3515$ 1200 10 (gp) Cumulative Freq. Distr. $20dBZ \le Z_1 \le 40dBZ$ $\Delta ZDR = \pm 0.5 dB / n_{tot} = 13003$ +11000 K10231011050005 0.8 🚊 AZDR $20dBZ \leq Z_{2} \leq 40dBZ$ Elevat.: 0.6 ° / ΔZDR = ± 0.5dB 800 ZBb0t ñ 600 Ň (20dBZ 04 400 200 ŏ

0.960

0.965

0.970

0.975

0.980

DHU

0.985

0.990

0.995

1 000

Stretched Γ fit for Φ_{DP}

• Alternative fit function for differential phase Φ_{DP} : $f(x) = \frac{\pi \cdot \gamma}{1 + \left(\frac{x - x_0}{\gamma}\right)^2}$

(Lorentz function).

Also used for fitting distributions of *ZDR*.

Examples

Examples

- Method implemented in Python code using PyART¹.
- Observations from Vaisala Research WRs and one operational FMI WR in wider Helsinki Capital Region.
 - WRM200 at Kerava & Vihti (FMI operational);
 - WRS300 at Kumpula;
 - WRS400 at Vaisala HQ.
 - All WRs within 50km.

¹JJ Helmus and SM Collis, JORS 2016, doi: 10.5334/jors.119

Examples – Input Observations

Example – Assessment FMI Vihti WR

Reversed log-normal fit for ρ_{HV}

Stretched Γ fit for Φ_{DP}

Example – Assessment Kumpula WR

Reversed log-normal fit for ρ_{HV}

Stretched Γ fit for Φ_{DP}

Kerava WRM200 Research WR Data Quality

ZDR Calibation

ZDR Calibration

- Research WR at Kerava recently updated with new Magnetron.
 - Modern up-to-date design.
- Birdbath calibration not allowed due to vicinity of HEL Airport.
 - Necessitates alternative ZDR calibration approach.

ZDR Calibration

WR Data Quality

WR Data Quality

Old Magnetron – 18/10/2022 New Magnetron – 11/10/2023

WR Data Quality – $\varrho_{\rm HV}$

Old Magnetron – 18/10/2022 New Magnetron – 11/10/2023

Clear improvement of distribution width with new magnetron.

Distribution more narrow, contribution of $\rho_{HV} < 0.96$ much lower. Optimisation ongoing to push new magnetron peak to $\rho_{HV} > 0.99$.

WR Data Quality – $\phi_{\rm DP}$

Old Magnetron – 18/10/2022 New Magnetron – 11/10/2023

Clear improvement of distribution width with new magnetron.

Distribution for $\phi_{DP} > {}^{\max}\phi_{DP}$ might be influenced by weather. Distribution for $\phi_{DP} < {}^{\max}\phi_{DP}$ strictly due to Magnetron quality.

Conclusions

Conclusions

- Quality assessment method using operational observations demonstrated with Python code.
- Useful for monitoring / adjusting ZDR calibration.
 - Peak of ZDR distribution for moderate values of Z_h good indicator for offset.
 - Improvement of ZDR calibration.

- Clear indication of difference in WR data quality.
- Multiple indicators for $\rho_{\rm HV}$.
 - Width of distribution;
 - Cumulative contribution of $\rho_{\rm HV} < 0.96$.
- Indication for $\phi_{\rm DP}$: width of distribution.
 - Indicated by stretch factor and Λ parameter.

Outlook

Outlook

- Extention over multiple scans.
 - Larger sample size allows more stringent restrictions on data.
- Option to develop automated tool.
 - Ingest external observations.
 - Apply WRinternal observations or products.
 - Hydroclass, polarimetric observables.

- Adaptive calibration and maintenance.
 - Utilise output to schedule activities flexibly.

Summary

Summary

- Quality assessment method using operational observations demonstrated with Python code.
 - Clear indication of difference in WR data quality.
 - Allows comparison and assessment.
- Allows continuously monitoring and adjusting ZDR calibration.
- Extension of statistics over multiple scans.
 - Larger sample size allows more stringent restrictions on data.

- Option to develop automated tool.
 - Ingest auxiliary external observations.
 - Apply WR-internal observations or products.
 - Hydroclass, polarimetric observables.
- Allows adaptive calibration and maintenance.
 - Utilise output to schedule activities flexibly.
 - Might be supported by AI / ML.

Thank you for your attention!

