# Radio Frequency Interferences (RFI) on Weather Radar Data Quality

Qian Li\*, Hamid Nasr, Norman Donaldson, Lubna Bitar, Alvin Au Duong and Sorin Pinzariu

Meteorological Service of Canada Environment and Climate Change Canada



The Fourth Calibration and Monitoring Workshop

8<sup>th</sup> – 10<sup>th</sup> November 2023



Environment and Environnement et Climate Change Canada Changement climatique Canada



### OUTLINE

- Canadian New Weather Radar Network Overview
- Ongoing challenges
- Radio Frequency Interferences (RFI) on Weather Radar Data Quality
- Mitigation Measures



## "Generational" renewal

Once-in-a-generation event for the majority of people involved

Generational change of radar technology

- C-band to S-band wavelength
- Magnetron to klystron transmitter
- Conventional (Doppler) to polarimetry
- In-house integration to commercial off-the-shelf (COTS) hardware solution
- Change of industrial vendor
- New data representation (file formats)

Applications: from largely qualitative to qualitative <u>and</u> quantitative



#### **Technology – Key Differences**

|                          | 98A (Andrews)*   | 98E<br>(Enterprise)                                        | 98R<br>(Raytheon) | 1700S<br>(Selex)    |  |  |
|--------------------------|------------------|------------------------------------------------------------|-------------------|---------------------|--|--|
| Operating Band           | C-ba             | nd (5.6-5.65GHz                                            | z)                | S-band (2.7-2.9GHz) |  |  |
| Antenna Diameter         | 6.1 m            | 4.2 m                                                      | 4.2 m             | 9.15 m              |  |  |
| Antenna Gain             | 49.2 dB          | 43.0 dB                                                    | 42.9 dB           | 45.8 dB             |  |  |
| Beam Width               | 0.62°            | 1.1°                                                       | 1.1°              | 0.88/0.86°          |  |  |
| Radome Diameter          | 9.1 m            | 5.5 m                                                      | 5.5 m             | 11.8 m              |  |  |
| Polarization             | Sir<br>*King and | Single Pol, H-only<br>*King and Exeter Radars are Dual Pol |                   |                     |  |  |
| Transmitter (Tx)         | Mag              | Magnetron / 250k W                                         |                   |                     |  |  |
| Tx/Rx Location           | Ground           | Below Radome                                               |                   |                     |  |  |
| Reflectivity Range       | ~2               | ~250 km (CONVOL)                                           |                   |                     |  |  |
| Doppler Range (@48m/s)   |                  | 240 km                                                     |                   |                     |  |  |
| Receiver (Rx) Resolution |                  | 16 bit                                                     |                   |                     |  |  |
| Min. Detectable Signal   | -1               | ≤ -114dBm                                                  |                   |                     |  |  |
| Signal Processor         |                  | GDRX                                                       |                   |                     |  |  |
| Operating System         |                  |                                                            | Linux             |                     |  |  |
| Monitoring Software      | BI               | RAVIS                                                      |                   |                     |  |  |
| Maintenance Interval     |                  | 2 / year                                                   |                   |                     |  |  |



#### With completion of the final two radars this year...



| Population Coverage:<br>S-Band Radar | Population<br>Count | % Total<br>Population* |
|--------------------------------------|---------------------|------------------------|
| 240 km<br>(Doppler Range)            | 36,538,617          | 98.774%                |
| 330 km<br>(Extended Range)           | 36,668,160          | 99.125%                |

\* 2021 Census Population Count: 36,991,981

#### New/replacement sites – west to east

Halfmoon Peak, British Columbia Fort McMurray, Alberta Egbert, Ontario (offline, training/testing) Blainville, Québec

...more than 99% of the population will be within 330 km of a radar.

## CHALLENGES

- Radio Frequency Interference
- Wind Farm Contaminations
- ZDR stability
- Hardware degradation and impacts on DQ
- Improvement to scan strategy and signal processing

## Radio Frequency Interferences Contaminations



|        | SITE         | King<br>Radar | Franktown | Halfmoon<br>Peak | Blainville | Cold<br>Lake | Carvel | Aldergrove | Gore | Exeter | Marion<br>Bridge | Strathmore | Dryden |
|--------|--------------|---------------|-----------|------------------|------------|--------------|--------|------------|------|--------|------------------|------------|--------|
| 2022   | # Radials    | 16            | 16        | 9                | 5          | 3            | 7      | 5          | 7    | 2      | 2                | 2          | 2      |
|        | Intensity*   | 9             | 8         | 10               | 9          | 10           | 7      | 7          | 5    | 7      | 7                | 3          | 2      |
|        | Persistence* | 10            | 10        | 10               | 10         | 10           | 10     | 10         | 10   | 10     | 5                | 5          | 2      |
| 2 1 or | Impact score | 11.3          | 10.5      | 9.7              | 8.5        | 8.3          | 7.8    | 7.3        | 6.8  | 6.5    | 5.3              | 3.3        | 2.0    |

CARE

3

5

3.0

\* Scale of 1-10 with 10 being most significant (values are subjectively assigned)



### Impacts of RFI on Data Quality



RFI contamination along the path impacted by a tornado-producing supercell

Approximately when the tornado started developing; RFI contamination along the damage track

#### Radar covering Ottawa area

#### Radar covering Toronto area

### Investigation of RFI Sources

- Unauthorized bandwidth
   usage
- Intermodulation at Transmitter
- Intermodulation at Receiver
- Spurious emission (out of band transmission)

| A (MHz) | B (MHz) | C (MHz) | Products | Intermodulations<br>(MHz) |  |
|---------|---------|---------|----------|---------------------------|--|
| 2665.00 | 751.00  | 716.00  | A+2B-2C  | 2735.00                   |  |
| 2357.50 | 2151.25 | 1962.50 | A+2B-2C  | 2735.00                   |  |
| 1948.75 | 2660.00 | 1870.00 | A+B-C    | 2738.75                   |  |
| 1965.00 | 2670.00 | 1900.00 | A+B-C    | 2735.00                   |  |
| 2660.00 | 1948.75 | 1870.00 | A+B-C    | 2738.75                   |  |
| 2670.00 | 1965.00 | 1900.00 | A+B-C    | 2735.00                   |  |
| 1948.75 | 751.00  | 2660.00 | 2A+2B-C  | 2739.50                   |  |
|         |         |         |          |                           |  |

Cold Lako Alberta (2725MHz)

## **Mitigation Measures**

| Options                                                                                         | Pros                                                                                                                      | Cons                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hardware solutions:<br>1. Bandpass Filter<br>2. Band-reject (notch)<br>Filter                   | <ul> <li>Immediate Signal<br/>Filtering</li> <li>Higher Signal Quality</li> <li>Simplicity</li> <li>Robustness</li> </ul> | <ul> <li>Limited Adaptability</li> <li>Frequency Specificity</li> <li>Cost and Complexity</li> <li>Insertion loss<br/>(reduced sensitivity)</li> </ul> |
| Software solutions:<br>Post processing using<br>filters (clutter, Doppler<br>and Dual-Pol data) | <ul> <li>Adaptability</li> <li>Wide Frequency<br/>Range</li> <li>Software-based</li> <li>Data Preservation</li> </ul>     | <ul> <li>Data Integrity</li> <li>Complexity</li> <li>Processing Delay</li> </ul>                                                                       |

A combination of both hardware filtering and post-processing techniques is often employed to strike a balance

## Band-pass vs. Band-reject filters

| Options                              | Pros                                                                                                                                                                            | Cons                                                                                                         | 2700 – 2900 MHz 0 dI                                                                                         |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Bandpas<br>s Filter                  | <ul> <li>Pass frequencies<br/>between fL and fH</li> <li>Attenuate anything<br/>outside of the pass-<br/>band</li> <li>Protect RFI from future<br/>telecom expansion</li> </ul> | <ul> <li>Could have high insertion<br/>loss (~3dB with cable)</li> </ul>                                     | 2620-2690 MHz<br>fr fn fH                                                                                    |
| Band-<br>reject<br>(notch)<br>Filter | <ul> <li>Attenuate frequencies<br/>between fL and fH</li> <li>Passes anything<br/>outside of reject-band</li> <li>Help to determine what<br/>frequency causes RFI</li> </ul>    | <ul> <li>Need to tune frequency at each site</li> <li>No protection from future telecom expansion</li> </ul> | Stopband<br>(bandwidth = t <sub>2</sub> - t <sub>1</sub> )<br>2620-2690 MHz<br>f <sub>L</sub> f <sub>H</sub> |

### RFI INVESTIGATION WITH BAND-REJECT FILTERS AT THE KING RADAR SITE (F=2750MHZ)



a: PPI TX is OFF and EL angle is at 0.4°

- There are multiple strong RFI radials Strongest/Widest is at 66°
- b: A band reject (notch) filter was tuned to 2117 MHZ and added to the receiver chain
  - There was no improvement to RFI suppression
- c: The band reject filter was tuned to 2665MHZ and added to the receiver chain
  - · There was no improvement to RFI suppression
- d: The band reject filter was tuned to 2685MHZ and added to the receiver chain
  - · There was a significant improvement to the RFI level
  - The filter has a attenuation of 50 dB at 2685MHz
  - The attenuation at the receiver frequency (2.75 GHZ) was measured less than 0.1 dB
  - The cable/connectors attenuation were measured around 2.5 dB

#### RFI FILTER TESTING - BANDPASS FILTER CASFT, APRIL 2023

Without filter – Tx OFF

With filter – Tx Off

With filter – Tx ON



Customized filters and cables with low insertion loss ~ measured at 0.6dB

### SENSITIVITY EVALUATION WITH BANDPASS FILTERS





#### Without **RFI** filters

#### With **RFI** Filters

## DISTRIBUTION OF OBSERVED DBZ (BEFORE/DURING)



The minimum reported values increased during the test period as expected. The change appears to be larger than expected (1 to 1.5 dBZ). This is based on output data with 0.5 dBZ resolution so the perceived change may be a result of that coarse resolution.

## **NEXT STEPS**

- One more experiment at a radar site with extreme RFI contamination
- User consultation to determine which and how many sites need mitigation measures
- Customize

# Thank you Merci

