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Abstract 
 

The CMIP6 ensemble continues a trend of steady improvement through successive phases of 

Coupled Model Intercomparison Project (CMIP) multi-model experiments. We compare CMIP6 

simulations against those of UKCP-Global, a component of the 2018 release of the UK Climate 

Projections (UKCP18). UKCP-Global consists of a screened subset of CMIP5 models combined with a 

perturbed parameter ensemble (PPE) based on the Met Office HadGEM3-GC3.05 model. Overall, we 

assess the CMIP6 and UKCP-Global ensembles to be similar in quality, based on multivariate 

climatological averages, three major modes of coupled ocean-atmosphere variability and historical 

changes in global average surface temperature. Each individual simulation exhibits a range of variable-

specific errors, none standing out as clearly superior to the others. Some errors (e.g. a systematic warm 

bias in marine stratocumulus regions) are common to both ensembles. During 2010-2020 the observed 

global warming (of ~1.0°C since 1900-1930) lies near the middle of the CMIP6 and UKCP-Global ranges. 

However, most PPE members and some CMIP6 models are cooler than observations during 1960-1990, 

due partly to strong aerosol forcing. 

Projected changes for Scotland and England are compared for the fossil-fuel intensive RCP8.5 and 

SSP5-8.5 emissions scenarios and the strong mitigation scenarios RCP2.6 and SSP1-2.6. The CMIP6 

ensemble confirms the main features of the distributions of surface temperature and precipitation 

changes projected by UKCP-Global and UKCP-Probabilistic (the probabilistic projections component of 

UKCP18), although some notable differences are also found. By the 2070s, all three sets of projections 

show central estimates of warming that are larger in summer than in winter, in England than in 

Scotland, and under intensive compared with mitigated greenhouse gas forcing. However, few CMIP6 

simulations lie within the lowest 25% of winter warming outcomes projected by UKCP-Probabilistic for 

Scotland. 

All precipitation distributions show signals for increase in winter that are confident under strong 

forcing (likelihood ~90%) and reasonably confident (likelihood ~75%) under mitigated forcing. In 

summer, drying is projected to be more likely than not for both countries and scenarios, with the 

exception that CMIP6 indicates no preferred sign for Scotland under low emissions. For England, the 

intensity of summer rainfall reductions at the dry end of the distributions is somewhat less pronounced 

in CMIP6 than in the UKCP datasets, under the high emissions scenarios.    

Neither CMIP6 nor UKCP-Global produces a preferred sign for future changes in the winter North 

Atlantic Oscillation (NAO). However, studies of daily weather regimes report shifts towards cyclonic or 

zonal types at the expense of anticyclonic patterns, in both datasets. UKCP-Global (but not CMIP6) 

favours a future shift to the positive phase of the summer NAO, arising mainly from the PPE simulations. 

Both ensembles show that a positive (negative) shift in the phase of summer NAO is associated with 

reductions (increases) in future July-August rainfall. However, the modelled relationships tend to be 



weaker than observed, implying that the influence of summer NAO changes on UK rainfall and soil 

moisture may be underestimated.  

UKCP18 also includes sets of regional and local projections at high spatial resolution. Currently 

these are based exclusively on driving PPE simulations and show narrower uncertainty ranges than 

CMIP6, UKCP-Global and UKCP-Probabilistic, especially in summer. This applies when the regional 

projections are presented per unit global warming, as well as in a scenario-based format as changes for 

specific periods that include uncertainties in global temperature response. These results underline the 

importance of accounting for structural modelling uncertainties in regional impact assessments, with 

addition of CMIP5-driven simulations planned for the regional and local UKCP datasets. In addition, 

more research is needed to understand the influences and sampling characteristics of a wider set of 

drivers of regional extremes in UKCP, including changes in regional storm dynamics as well as 

thermodynamic influences linked to average levels of future warming.  

Experience in using observations to screen or weight CMIP6, UKCP-Global and UKCP-Probabilistic 

results demonstrates the importance of constraints based on both historical climate change trends and 

aspects of recent climatology. In this “first look” assessment we simply included UK projections from all 

available CMIP6 models, but there is future potential to refine the information by applying suitable 

performance criteria. For example, three configurations of one CMIP6 model, that simulate much 

stronger warming than other models but exhibit some significant climatological biases, could potentially 

be excluded by such an exercise. In general, we conclude that screening or weighting CMIP6 models 

should be based on performance over several variables, and that models should not be screened out 

simply on the basis that they run ‘hot’. 

  



1. Introduction 
The UK climate projections (UKCP) provide national scenarios of climate variability and change for 

the 21st century (see  https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/index). The 

latest major release (UKCP18) included updated projections for the land and marine environments in 

and around the UK (Lowe et al., 2018) as well as datasets of observations from the National Climate 

Information Centre, updated annually (Kendon et al., 2022).  

In UKCP18 the land projections included a probabilistic product (UKCP-Probabilistic), and sets of 

global, regional and local projections (UKCP-Global, UKCP-Regional and UKCP-Local). The original 

releases are described in Murphy et al. (2018) and Kendon et al (2021), with subsequent revisions and 

additions documented in Murphy et al. (2020), Sexton et al. (2020), Harris et al. (2022) and Kendon et al. 

(2023). The probabilistic projections are a statistical synthesis of 348 climate model simulations that 

provide information on uncertainties in future changes. The global, regional and local projections all 

consist of raw model data forming flexible datasets for impacts analysis. These are provided at 

horizontal resolutions of 60km (UKCP-Global), 12km (UKCP-Regional) and 2.2km (UKCP-Local). All 

products cover the UK, while UKCP-Regional and UKCP-Global also include information for Europe and 

worldwide regions, respectively.  

Since UKCP18 was published the international modelling community has produced a new 

generation of climate change projections, via the sixth phase of the Coupled Model Intercomparison 

Project (CMIP6, Eyring at al., 2016). Lee et al. (2021) assessed CMIP6 projections in the Sixth Assessment 

Report (AR6) of the Inter-Governmental Panel on Climate Change (IPCC). They will be widely used in 

studies of global and regional climate change during the next few years (e.g. Brunner et al., 2020a; 

Palmer et al., 2021). 

In this report we compare the UKCP-Global and UKCP-Probabilistic projections against CMIP6 

results. Section 2 describes the data, followed by assessment of the historical performance of coupled 

ocean-atmosphere model simulations from CMIP6 and UKCP-Global in section 3. A comparison of the 

CMIP6 and UKCP projections follows in section 4. We focus on a limited selection of key diagnostics 

presented in a similar format to their counterparts in the UKCP18 science report (Murphy et al., 2018), 

tracing how CMIP6 models perform against the criteria upon which UKCP18 results were originally 

assessed. 

Our approach is to assemble all CMIP6 models from which data is available for the diagnostic in 

question. We do not attempt to screen the multi-model ensemble to eliminate poorly performing 

models (e.g. McSweeney et al., 2015), or to reduce the influence of “near-neighbour” models that share 

a majority of component modules and hence simulate similar outcomes for historical and future climate 

(e.g. Sanderson et al., 2015). Neither do we attempt to attach relative weights to alternative models, 

based on either performance or similarity criteria (e.g. Knutti et al., 2017).  

https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/index


In this sense, our comparison provides a first look at CMIP6 models in the context of the UKCP 

scenarios. There is potential to update this simple approach in the future, by applying screening and/or 

weighting methods to derive refined estimates of UK climate changes from CMIP6. Since such methods 

were used extensively in the production of the UKCP18 Global and Probabilistic projections (see section 

2), the present comparison is not like-for-like in this respect. We provide examples of the potential 

impact of screening CMIP6 models in section 4, to demonstrate how such an approach can influence 

projected changes provided for impacts analysis.   

2. Data and scenarios 
a. UKCP-Probabilistic 
The probabilistic projections in UKCP18 were based on 348 perturbed parameter ensemble (PPE) 

simulations derived from a single climate model (HadCM3), augmented by twelve earth system model 

projections from the CMIP5 archive (Taylor et al., 2012). These add uncertainties arising from alternative 

choices in model structure to the parametric uncertainties represented by the PPE simulations. A 

Bayesian framework (Sexton et al., 2012; Harris et al., 2013; Sexton and Harris, 2015) is used to combine 

this information with a set of observational constraints, using emulation techniques to construct 

probability distribution functions (pdfs) that express broad ranges of possible outcomes for climate 

variability and change during the 21st century. The updated methodology for UKCP18 is described in 

more detail by Murphy et al. (2018).  

The probabilistic projections are presented in an “emissions-driven” format, representing the 

combined effects of uncertainties in physical and carbon cycle feedbacks in response to a prescribed 

pathway of future greenhouse gas emissions. They are available for five such pathways: The SRES A1B 

scenario (Nakicenovic and Swart, 2000) plus the RCP2.6, 4.5, 6.0 and 8.5 scenarios (Moss et al., 2010). In 

this report, we consider results from RCP2.6 and 8.5 (see section 2d). 

In section 4b we compare 5th-95th percentile ranges from UKCP-Probabilistic against the full ranges 

available from CMIP6 and other UKCP components. This presentation of the pdfs is chosen because we 

expect extreme outcomes in the tails of the distributions to be more sensitive to limitations in the 

statistical assumptions required in the methodology (UKCP18 Technical Note, 2019). Nevertheless, the 

occurrence of simulated outcomes in other products outside the 5-95% ranges of UKCP-Probabilistic 

does not necessarily indicate inconsistency with the latter, since we expect a 10% probability of seeing 

such outcomes.       

b. UKCP-Global 
The 28 simulations included in UKCP-Global (Murphy et al., 2018) were sourced from two climate 

model ensembles.  

Fifteen members were contributed by a PPE based on HadGEM3-GC3.05, a coupled model closely 

related to the Met Office model contributed to CMIP6 (HadGEM3-GC3.1, Williams et al., 2018). One PPE 

member used standard (unperturbed) parameter values, the others included perturbations to 47 



atmosphere model parameters. These were selected from ~3000 candidate parameter sets, reduced to 

25 by applying multivariate screening criteria to retrospective 5-day weather forecasts and five-year 

atmosphere-only simulations using prescribed sea surface temperatures (Sexton et al., 2021). These 

were then reduced to 15 members for use in UKCP, following further evaluation of coupled ocean-

atmosphere simulations (Yamazaki et al., 2021). The coupled simulations (GC3.05-PPE) included flux 

adjustments to restrict the development of regional biases in sea surface temperature (SST) and surface 

salinity. 

Thirteen members were provided by a subset of CMIP5 models, selected from 31 candidates by 

McSweeney et al. (2018).  The selection criteria included several global and regional performance 

metrics drawn mainly from published literature. Application of these identified 13 models (CMIP5-13) 

that provided good multivariate skill in their historical simulations (in the context of other CMIP5 

models). The selection also prioritised structural diversity in the selection of alternative model 

components, achieved by measuring the degree of similarity in historical simulation biases (Sanderson 

et al., 2015). The emissions scenarios and forcing strategies for UKCP-Global and CMIP6 are described in 

section 2(d) below. 

c. CMIP6 
For each diagnostic in sections 3 and 4, we use results from all CMIP6 models for which data are 

available (Appendix). Ensemble sizes vary from 29 to 64 and are stated in each figure. Data is derived 

from coupled ocean-atmosphere models of the physical climate system and from earth system models. 

The latter simulate additional biogeochemical processes including dynamic vegetation modules (Song et 

al., 2021), the Earth’s carbon cycle and aspects of non-aerosol atmospheric chemistry (e.g. Mulcahy et 

al., 2022). However, all simulations considered here were run in “concentration-driven” mode, in which 

atmospheric concentrations of CO2 and other greenhouse gases are prescribed from standard time-

dependent profiles rather than being predicted interactively. No flux adjustments were used in the 

CMIP5-13 or CMIP6 simulations. 

No pre-screening based on model quality criteria is applied to the CMIP6 data. We use one 

simulation per model. This avoids implicitly upweighting models for which several simulations are 

contributed to the CMIP6 data archive as an ensemble distinguished by different starting conditions. 

Some modelling centres are now producing large initial-condition ensembles to provide insights into the 

impacts of the internal (unforced) component of climate variability in a changing climate (Deser at al., 

2020; Lehner et al., 2020). However, we focus here on CMIP6 as a multi-model ensemble that 

represents the combined effects of uncertainties due to internal variability and model formulation in a 

“one-model-one-vote” format.  



d. Emissions scenarios 
In UKCP18, results from UKCP-Global were initially made available for RCP8.5, a fossil-fuel intensive 

scenario widely used in CMIP5 (Collins et al., 2013). It drives strong responses useful for identifying 

characteristic climate change signals and understanding their origins. More recently, UKCP-Global data  

 

Figure 1. Comparison of CO2, CH4 and N2O concentrations (a, c, e) and effective radiative forcing (ERF, b, 
d, f) for the RCP and SSP scenarios used in concentration-driven CMIP5 and CMIP6 simulations 
respectively. The SSP5-8.5 scenario features higher CO2 concentrations than RCP8.5, largely due to use of 
updated carbon cycle settings in the SSP5-8.5 calculations. RCP8.5 emissions with the SSP5-8.5 carbon 
cycle settings (shown as a thin dashed line in panel a) would produce intermediate CO2 concentrations. 
However, methane and nitrous oxide concentrations are lower in SSP5-8.5 than in RCP8.5. Panel (f) 
shows the total ERF for each scenario, resulting from the combined effects from all greenhouse gas and 
aerosol constituents. The coloured plumes show uncertainty ranges for ERF in the SSPs, during 2080-
2100. Reproduced from Tebaldi et al. (2021) (their Figure A7), in which more details are available. This 
work is distributed under the Creative Commons Attribution 4.0 License. 



 

for RCP2.6 was added. This assumes strong climate change mitigation measures and reaches a CO2 

concentration of approximately 400 parts per million (ppm) by 2100, compared with ~900 ppm in 

RCP8.5 (Figure 1, reproduced from Tebaldi et al., 2021). The UKCP-Global results for RCP2.6 include the 

15 members of GC3.05-PPE, plus ten CMIP5-13 members for which RCP2.6 results are available (Fung et 

al. (2020) report results from nine of these). 

The CMIP5-13 and GC3.05-PPE ensembles both used coupled ocean-atmosphere model 

configurations in which greenhouse gas concentrations are prescribed (Yamazaki et al., 2021).  The 

CMIP5-13 simulations all use standard concentration pathways for the relevant RCP scenario (Figure 1). 

For trace gases other than CO2, standard concentration time series were also used in GC3.05-PPE. 

However, for CO2 a range of pathways were prescribed in different GC3.05-PPE members, consistent 

with uncertainties in carbon cycle feedbacks diagnosed from UKCP-Probabilistic (Figure 2, taken from 

Murphy et al., 2018).  For a given RCP scenario, ranges of future change projected in UKCP-Global are 

driven purely by uncertainties in physical climate responses in the case of CMIP5-13, whereas those 

from GC3.05-PPE arise from uncertainties in both physical responses and the component of radiative 

forcing associated with carbon cycle processes (Yamazaki et al., 2021).  

New emissions scenarios were used in CMIP6. In these, alternative pathways of future radiative 

forcing and socioeconomic activity were combined to develop a set of Shared Socioeconomic Pathways 

(SSPs, O’Neill et al., 2013).  We focus on CMIP6 results from two SSPs, chosen to provide continuity with 

the RCPs (Tebaldi et al., 2021). These are SSP1-2.6 and SSP5-8.5, the numbers representing the 

approximate radiative forcing1 in Wm-2 reached by the end of the 21st century (Figure 1).  

The total radiative forcing in SSP1-2.6 is slightly higher than in RCP2.6, the largest differences (of 

~0.3Wm-2) arising during the 2060-2080 period. This arises partly from higher CO2 forcing, and partly 

from other agents.   

While the total radiative forcing is similar between RCP8.5 and SSP5-8.5, Figure 1 shows contrasts 

between the contributions from different greenhouse gases:  CO2 concentrations are higher in RCP8.5 

than in SSP5-8.5, whereas the converse applies to methane and nitrous oxide concentrations. The CO2 

concentrations are derived by driving a simple climate model with the relevant RCP or SSP emissions 

(Riahi et al., 2017), hence the results depend on the carbon cycle feedback prescribed in the simple 

model. The standard RCP concentration pathways were derived assuming a relatively weak carbon cycle 

response (e.g. Figure 2, in which the standard pathway for RCP8.5 (red diamond) lies at the low end of 

the corresponding probability distribution). The SSP pathways were generated using updated carbon 

 
1 These numbers express the radiative forcing following rapid adjustments of the stratosphere. The forcing is 
slightly different when expressed as effective radiative forcing (ERF), which allows for rapid adjustments of the 
troposphere and land surface as well as the stratosphere (Smith et al., 2020a). The lines in Fig. 1f show the time 
series of the stratospherically-adjusted forcing for SSPs, whereas the coloured ranges for 2080-2100 show 
probability distributions for ERF estimated by Tebaldi et al. (2021).  



cycle settings, which partly explain their higher CO2 concentrations compared to RCP counterparts: The 

thin lines in Fig. 1a show that combining the SSP carbon cycle setting with RCP emissions produces CO2 

concentrations closer to the SSP pathways. In response to RCP8.5 emissions, the UKCP-Probabilistic 

distribution encompasses the SSP5-8.5 pathway (whose CO2 concentration in 2099 lies slightly above the 

most likely value shown in Fig. 2), as well as including the standard RCP8.5 pathway at its lower end and 

outcomes above the standard SSP5-8.5 pathway.   

 

Figure 2. Posterior probability distribution (grey curve) from the UKCP probabilistic projections for 
atmospheric CO2 concentration (ppm) in 2099, under carbon emissions prescribed by RCP8.5. Comparing 
this with the corresponding prior distribution (green curve) shows the impact of applying observational 
constraints. Orange circles show concentrations from the CO2 pathways used to drive 14 of the 15 
GC3.05-PPE members. The red circle denotes the standard pathway used in concentration-driven RCP8.5 
simulations. This pathway is used in the CMIP5-13 projections, as well as the GC3.05-PPE member with 
unperturbed parameter settings (STD). Reproduced from Murphy et al. (2018) (their Figure 3.7), in which 
more details are available. 

 

Fyfe et al. (2021) used the CanESM2 model to demonstrate that time-dependent changes in global 

mean surface air temperature (GMST) differ somewhat between corresponding SSP- and RCP-driven 

simulations. For 2081-2100 they found warmer responses in the SSPs (relative to pre-industrial climate), 



despite the similarity in total radiative forcing (Fig. 1). Differences amounted to 0.16°C for SSP1-2.6 cf 

RCP2.6 and 0.55°C for SSP5-8.5 cf RCP8.5. This was attributed to higher CO2 concentrations in the SSP 

datasets, partly offset by the inclusion of a background stratospheric aerosol loading due to small- and 

medium-sized volcanic eruptions that was missing from the RCP simulations. Differences in the 

responses of GMST and Arctic sea-ice extent were also found during the historical period.    

e. Summary 
Below we compare the UKCP projections and CMIP6 results as alternative datasets available for use 

in impacts studies and risk assessments. Several factors are potential drivers of differences in their 

projected outcomes: 

• Use of different climate model ensembles (sections 2a-2c), liable to drive different ranges 

of projected outcomes through alternative representations of physical drivers of climate 

change response (Palmer et al., 2021).  

• Differences in postprocessing strategies to account for model performance (sections 2a, b), 

or the absence of such a strategy in the case of CMIP6 models (section 2c), can also drive 

differences in ranges of response. 

• Variations in applied radiative forcing (section 2d), arising from (a) differences between the 

RCP- and SSP-based concentration pathways (when comparing CMIP5-13 against CMIP6); 

(b) use of an emissions-driven concept in UKCP-Probabilistic and GC3.05-PPE, versus a 

concentration-driven concept in CMIP5-13 and GC3.05-PPE. 

Since our aim is to compare the datasets “as they come” for user applications, we do not 

attempt adjustments to account for differences in external forcing. However, in section 4 we present 

examples of future UK changes expressed per unit change in GMST, which removes approximately the 

globally-averaged influence of contrasts in external forcing and sensitivity of response between the 

alternative datasets.        

3. Comparison of CMIP6 and UKCP projections: Historical evaluation 
a. Assessment of CMIP6 models in IPCC AR6 
Bock et al. (2020) compare the CMIP3, CMIP5 and CMIP6 ensembles. Compared to the average skill 

across the three CMIP phases, most CMIP3 models score worse in simulating the climatological seasonal 

cycle, while most CMIP6 models score better. Improvements across successive generations are found in 

latitude-longitude fields of radiation, hydrological cycle, surface temperature and dynamical variables. 

CMIP6 also shows improvements in simulated vertical distributions of temperature, water vapour, and 

zonal wind speed. 

Based on this study and additional evidence, an assessment of CMIP6 performance was conducted 

in the AR6 Physical Science Basis report.  Overall, Arias et al. (2021) assess that CMIP6 models: “Include 

new and better representation of physical, chemical and biological processes, as well as higher 

resolution, compared to climate models considered in previous IPCC Assessment Reports. This has 



improved the simulation of the recent mean state of most large-scale indicators of climate change and 

many other aspects across the climate system. Some differences from observations remain, for example 

in regional precipitation patterns.” Some CMIP6 models demonstrate improvements in the simulation of 

clouds, including more sophisticated representations of aerosol-cloud interactions and more realistic 

simulation of supercooled liquid droplets with a corresponding increase in cloud optical depths. These 

improvements lead to a stronger shortwave cloud radiative effect in present-day climate, notably over 

the Southern Ocean.  

Figure TS.2 in Arias et al. (2021) summarises developments through successive CMIP experiments, 

demonstrating that average skill (based on pattern correlations of spatial climatological fields) is higher 

for CMIP6, but there is considerable overlap between the envelopes of performance shown by the 

CMIP3, 5 and 6 ensembles. Similarly, the average spatial resolution (horizontally and vertically in the 

atmosphere and ocean components) is finer in CMIP6, but individual models in each multi-model 

ensemble possess a range of resolution choices that is larger than the average inter-ensemble 

differences. 

Overall, the above results confirm that CMIP6 can be viewed as the continuation of a steady trend 

in model improvement across successive CMIP phases. In sections 4b-4d we update our previous 

assessment of climatology, variability and historical changes in UKCP-Global (Murphy et al., 2018; 

Yamazaki et al., 2021), by adding CMIP6 models to provide a new performance benchmark.   

b. Climatology in CMIP6 and UKCP-Global simulations  
For surface air temperature, Figure 3 compares ensemble median biases in the GC3.05-PPE and 

CMIP5-13 components of UKCP-Global against the median bias across 47 CMIP6 coupled models. 

Results are presented for the 20-year average of 1981-2000, for December to February (DJF) and June to 

August (JJA). The patterns of bias for CMIP6 and CMIP5-13 are broadly similar, indicating that in most 

regions the systematic components of model error have the same sign. For example, both ensembles 

show positive median biases in the marine stratocumulus regions off the western coasts of North and 

South America and southern Africa. Bock et al. (2020) conclude that biases in the stratocumulus regions 

arise partly from limited horizontal resolution, since these biases are smaller in higher resolution models 

(e.g. Roberts et al., 2019). Both CMIP5-13 and CMIP6 also show a median warm bias over the Southern 

Ocean and Kazakhstan (Fig. 3), while in DJF many parts of the northern hemisphere continental 

landmasses show a cool bias. 

In GC3.05-PPE the median cool bias in northern hemisphere winter is more pronounced and more 

widespread than in the multi-model ensembles. The Southern Ocean warm bias is also larger, despite 

the use of flux adjustments (absent from the multi-model ensembles). However, in many low-latitude 

marine regions the median bias is smaller in GC3.05-PPE. This is (at least partly) because here the 

application of flux adjustments is more successful in limiting the development of SST biases (Yamazaki et 

al., 2021).  



 

Figure 3. Maps show ensemble median biases in 20-year averages of surface air temperature (°C) in 
December-February (DJF, left) and June-August (JJA, right), relative to observations for 1981-2000 from 
HadCRUT5 (Morice et al., 2021). The top rows show results from the GC3.05-PPE and CMIP5-13 
ensembles that form the UKCP-Global dataset, and the bottom row shows the median bias from 47 
CMIP6 models. The panel below shows root-mean-square errors (RMSE, °C) calculated from the global 
bias fields of every member of each ensemble, for 1981-2000 averages of each meteorological season 
(including March-May (MAM) and September-November (SON)), and of the annual mean. STD is shown 
in red, while open orange circles show five potential PPE members that were excluded from UKCP-Global 
following assessment of their simulations of historical climate (Yamazaki et al., 2021). Some of these lie 
within the range of GC3.05-PPE biases, so are not visible in the plot. 
 

Figure 3 also shows root-mean-square errors (RMSE) for the global climatological fields from each 

simulation, for each season and the annual mean. In all cases, the CMIP6 ensemble shows a wider range 



of scores, including members scoring both better and worse than all CMIP5-13 members. For surface air 

temperature, future application of screening methods to identify a skilful subset of CMIP6 models could 

potentially yield a set that improves on CMIP5-13 performance, by retaining some of the best CMIP6  

models while excluding those showing the most serious biases (e.g. Palmer et al., 2023). The GC3.05-PPE 

scores also lie within the CMIP6 range, the member with standard parameter settings (STD, shown in 

red) being invariably competitive with the best CMIP6 models. Other PPE members produce global 

scores equal to (or slightly better than) the best CMIP5-13 members in all seasons, despite the enhanced 

cold bias found in northern hemisphere winter. 

For context, Figure 3 also shows results from five additional PPE simulations that were dropped 

from the UKCP-Global dataset (Murphy et al., 2018) but included in the 20-member PPE assessed by 

Yamazaki et al. (2021). The screening for UKCP was based on criteria including the strength of the 

Atlantic meridional overturning circulation (AMOC), trends in northern hemisphere surface temperature 

during 1900-2012 and climatological averages of surface temperature and precipitation over Europe 

(Murphy et al., 2018). The additional simulations gave larger annual RMSE compared to the members 

retained in UKCP-Global. However, seasonal and annual RMSE for the additional members lie within the 

ranges spanned by the two multi-model ensembles except in DJF, for which three of the additional 

members simulated particularly large northern hemisphere cool biases. Yamazaki et al. (2021) reported 

(based on an evaluation of multiple variables) that the 20-member version of the PPE was generally 

suitable for use in global climate research applications. 

For precipitation (Fig. 4), the two sets of multi-model patterns again agree on the signs of median 

bias in most regions, suggesting similarity in the systematic component of model error. Both CMIP5-13 

and CMIP6 show an equatorial dry bias in the Pacific basin, with off-equatorial wet biases to the north 

and south in the tropical west Pacific. In DJF an equatorial dry bias is also found in the Atlantic with a 

wet bias to the south, while in JJA this pattern shifts slightly northward, the wet bias lying close to the 

equator. Also common to both ensembles are median dry biases in the south Asian summer monsoon 

and in parts of the extratropical North Atlantic Ocean, with wet biases over the Indonesian warm pool. 

In the Indian ocean sector, wet biases occur off the coast of Madagascar in DJF (in the region associated 

with the southern lobe of the Indian Ocean dipole (Behera and Yamagata, 2001)) and in parts of the 

Arabian Sea in JJA.  Terrestrial dry biases are apparent in parts of northern Eurasia (in DJF) and in south-

eastern Europe (in JJA).  

The bias patterns in the PPE median are generally in phase with those of CMIP5-13 and CMIP6. In 

JJA, the wet biases in the tropical west Pacific in JJA are more pronounced in the PPE. On the other 

hand, dry biases in the north Atlantic are less widespread than in the multi-model ensembles, 

particularly in DJF. The RMSE values reveal a general shift towards reduced biases in individual CMIP6 

models, compared to CMIP5-13. This is apparent in all seasons except JJA, and (in particular) in the 



scores for the annual mean. The scores for GC3.05-PPE members invariably lie within the CMIP6 range 

whereas this is not the case for CMIP5-13 models. 

In general, considerable overlap exists between the scores for the three ensembles in Figs. 3 and 4 

(consistent with the AR6 results summarised in section 3a). An exception is annual mean precipitation, 

for which only a few CMIP5-13 members achieve scores better than the worst of the CMIP6 or PPE 

results. 

 

Figure 4. As Figure 3, for 20-year average biases in precipitation (mm/day) relative to 1981-2000 
observations from the GPCP dataset (Adler et al., 2003). Maps show ensemble median biases, the 
bottom panel shows RMSE values for individual ensemble members.    

 



 

Figure 5. Normalised r.m.s. errors in global, annual spatial fields simulated by the 28 members of UKCP-
Global for 1981-2000. Members of CMIP5-13 are named (see Table 3.1 of Murphy et al., 2018) while 
members of GC3.05-PPE are numbered, with the unperturbed member identified as STD.  The scores for 
each variable are normalised by the score for the best-performing simulation across three ensembles: 
GC3.05-PPE, CMIP5-13 and the 64-member CMIP6 ensemble shown in Figures 6 and 7. Verifying 
observational datasets: HadSLP2 (Allen and Ansell, 2006) for sea-level pressure (slp); CERES (Loeb et al., 
2009) for outgoing short- and long-wave radiative flux at the top of the atmosphere (rsut, rlut); ERA-
Interim reanalyses (Dee et al., 2011) for other variables. In this “heatmap” plot, the worst-performing 
simulations are shown in the darkest shades of purple. The lightest shade denotes the best simulations 
possessing normalised errors of 1.0. Several entries are blank for EC-Earth, due to missing data. 
Precipitation is denoted by pr, surface air temperature by tas, cloud radiative effect and its short- and 
long-wave components by crf, crfsw and crflw; geopotential height at 500 hPa by za500; eastward and 
northward wind and relative humidity at 850 and 200 hPa by ua850, ua200, va850, va200, hur850, 
hur250; temperature at 200 hPa by ta200. Observed climatologies cover 1981-2000 apart from CERES, 
for which 2001-2005 is used because data for the full period do not exist.       
 

We also assess a broader set of standard climate variables, for UKCP-Global simulations in Figure 5 

and 64 CMIP6 simulations in Figures 6 and 7. RMSE values are provided for annual, global spatial fields 

of climatological averages for 1981-2000. The variables are: surface air temperature, precipitation, sea-

level pressure, outgoing shortwave and longwave radiation at the top of the atmosphere, total, 



shortwave and longwave cloud radiative effect, 500hPa geopotential height and atmospheric 

temperature, relative humidity and zonal and meridional wind components at the 850hPa and 200hPa 

pressure levels. Each RMSE value is normalised by that of the best-performing simulation for the 

relevant variable, which therefore receives a normalised score of 1.0. High values indicate relatively 

poor performance, denoted by darker shading. In general, the UKCP-Global scores in Figure 5 differ  

slightly from those in Murphy et al. (2018), because the best scores are calculated across the larger set 

of simulations resulting from the addition of CMIP6 results. 

 

Figure 6. Normalised r.m.s. errors in global, annual spatial fields simulated by 32 CMIP6 models for 
1981-2000. The scores for each variable are normalised by the score for the best-performing simulation 
across three ensembles: GC3.05-PPE, CMIP5-13 (shown in Fig. 5) and the 64-member CMIP6 ensemble 
shown here and in Figure 7. See Figure 5 for further details.       

 

There are 45 instances of the (best) 1.0 score across the 16 variables, since 2-3 models typically 

achieve results indistinguishable to one decimal place. Of these, 25 instances belong to GC3.05-PPE, 

three to CMIP5-13 and 17 to CMIP6. No simulation achieves a score of 1.0 for more than four variables, 

thus none stand out as clearly superior to other members of the three ensembles. 



If (for the sake of illustration) we take a normalised RMSE exceeding five as an indicator of poor 

relative performance, we find zero instances in GC3.05-PPE, two in CMIP5-13 and 21 in CMIP6. Many of 

the worst scores occur for the 200hPa temperature (ta200) and 500hPa geopotential height (za500) 

fields. For ta200, these arise from pervasive cold biases relative to observations, while for za500 most of 

the poor scores are driven by widespread low biases (also related to cool tropospheric temperatures). 

However, the worst score of 22.7 (for KIOST-ESM) arises from a pattern of large positive biases over land 

accompanied by substantial negative biases over the oceans (not shown). 

 

Figure 7. Normalised r.m.s. errors in global, annual spatial fields simulated by 32 CMIP6 models for 
1981-2000. The scores for each variable are normalised by the score for the best-performing simulation 
across three ensembles: GC3.05-PPE, CMIP5-13 (shown in Fig. 5) and the 64-member CMIP6 ensemble 
shown here and in Figure 6. See Figure 5 for further details.   

 

Amongst GC3.05-PPE members, the worst relative score for an individual variable is 3.3, while for 

CMIP5-13 members there are six instances of scores exceeding 4.0. If we were to take (say) 3.5 as a 

maximum tolerable bias for a future subset of screened CMIP6 simulations, we would identify 28 

models whose worst scores lie below this threshold leaving 36 candidate models. This indicates that 

CMIP6 could form an important component of a future update to UKCP-Global, by contributing 



simulations that show consistently good performance in simulating global climatology, to a degree 

competitive with GC3.05-PPE members and somewhat better than found in CMIP5-13.             

c. Large-scale modes of variability  
We evaluate El Niño-Southern Oscillation events (Figure 8), Atlantic Multidecadal Variability (AMV, 

Figure 9) and the winter North Atlantic Oscillation (NAO, Figure 10) comparing UKCP-Global with results 

from 58 CMIP6 models in Figs. 8 and 9, and 64 in Fig. 10. Our assessment is limited to a simple “top-

down” comparison of the intensity of variability in the relevant index values, preceded by a brief survey 

of current understanding of their properties and influences. 

ENSO influences climate anomalies in many world regions (Trenberth and Caron, 2000), especially 

in the tropics through its effects on the Walker circulation.  Teleconnections from ENSO to seasonal 

European climate are weaker, but specific influences are revealed by detailed analysis of observations. 

For example, Fereday et al. (2008) found negative seasonal correlations between El Niño and a 

circulation pattern resembling the positive phase of winter NAO, except for November–December which 

shows the opposite relationship. In addition, Toniazzo and Scaife (2006) found that only weak or 

moderate El Niños show the canonical negative NAO response in winter, while the strongest events 

drive high pressure to the west of Europe that results from a tropospheric wave train originating from 

the tropical Atlantic. 

The NAO and AMV indices are important drivers of variability in European climate (e.g. Hurrell et 

al., 2003; Sutton and Dong, 2012; O’Reilly et al., 2017; Rousi et al., 2020). The positive (negative) phases 

of NAO drive higher (lower) winter precipitation and temperatures in northern Europe. For AMV, 

notable influences on the UK include (in the positive phase) dry precipitation anomalies in spring and 

wet anomalies in summer. AMV also exerts broader influences on decadal and longer time scales that 

include rainfall in northeast Brazil and the Sahel, Atlantic hurricanes and North American (as well as 

European) summer climate (Knight et al., 2006). 

AMV is associated with low-frequency variability in the ocean circulation in the North Atlantic 

(Delworth and Mann, 2000), but understanding the relative influences of internally-generated and 

externally-forced variability remains an active topic of research. Booth et al. (2012), Bellucci et al. (2017) 

and Bellomo et al. (2018) identify an external influence from anthropogenic aerosol forcing in climate 

model simulations of the 20th century, while evidence of volcanic influence is also reported in studies of 

observations and models (e.g. Swingeduow et al., 2017; Mann et al., 2021). 

Internal NAO-driven variability contributes significantly to uncertainty in projected European 

anomalies during the next few decades, but in historical data the dominance of internal variability 

makes it difficult to identify any potential forced signal (Deser et al., 2017). Blackport and Fyfe (2022) do 

find positive trends in observed NAO and North Atlantic jet stream data from 1951-2020. These lie 

outside (for the jet data) and at the top end of (for NAO data) ranges found in a large ensemble of 

coupled model simulations. Blackport and Fyfe conclude that the discrepancies could arise from either 



the presence in observations of an anthropogenically-forced signal missing from the models, or from the 

failure of models to simulate sufficient internal variability in North Atlantic-European circulation on 

multidecadal time scales. 

On the decadal time scale, Ineson and Scaife (2011) find a model response to minima in solar 

forcing resembling the negative phase of NAO. O’Reilly et al. (2019) suggest that observed AMV can (to 

a substantial degree) be explained as an ocean response to accumulated atmospheric forcing from NAO. 

Evidence from initialised decadal predictions supports this conclusion (Smith et al., 2020b). O’Reilly et al. 

(2019) find a weaker forcing from the NAO in model simulations, compared to observations. However, 

Lai et al. (2022) report that NAO is the dominant driver of AMV in HadGEM3-GC3.1-MM (the version 

using a horizontal atmospheric resolution of ~60km, shared by GC3.05-PPE members), in a 500-year pre-

industrial simulation containing fixed external forcing.  

 

Figure 8. Intensity of El Niño events, measured as the standard deviation of monthly anomalies of the 
NINO3.4 index (°C, defined in main text). NINO3.4 values are provided for each member of the GC3.05-
PPE (orange, with STD in red) and CMIP5-13 (blue) ensembles (excluding EC-EARTH), and from an 
ensemble of 58 CMIP6 models (green). The observed value (black) is obtained from the HadISST dataset 
(Rayner et al., 2003). In each case, the standard deviation is calculated by pooling linearly detrended 
time series for each month of the year during 1900-2005. Whiskers show 5th-95th percentile sampling 
ranges for each standard deviation, calculated by applying a 20-year sliding window to the pooled 
monthly anomalies. 

 

We quantify ENSO intensity using monthly SST anomalies in the NINO3.4 region of the equatorial 

Pacific (Trenberth, 1997). AMV is defined as annual means of North Atlantic SST (averaged over 0-60°N 

and 0-80°W) minus global mean SST (Trenberth and Shea, 2006). Winter NAO is defined as the 

December-February mean difference in sea-level pressure (slp) between Iceland and Gibraltar. This 



“Atlantic pressure gradient” definition of McSweeney and Yamazaki (2020) differs from the standard 

index definition (Hurrell, 1995) by avoiding normalisation of annual slp differences by their standard 

deviation. This is done to include the absolute magnitude of temporal slp variability in the model 

assessment metric.  

In each case, time series of values from 1900-2005 are linearly detrended to remove 

(approximately) forced signals on the centennial time scale, and then used to calculate the standard 

deviation of index variability. These are shown as dots in Figs. 8-10. In the case of NINO3.4, the standard 

deviation is calculated from pooled time series of monthly anomalies, whereas one value per year is 

available for the NAO and AMV calculations. The circles represent our best estimate of the long-term 

average intensity, while the whiskers show associated 5th-95th percentile uncertainty ranges. These 

ranges reflect the influence of low frequency modulation in the intensity of monthly or annual 

anomalies, estimated by applying a sliding window to the data of 20 years for NINO3.4 and NAO and 50 

years for AMV. 

For NINO3.4 (Fig. 8), the uncertainty ranges for UKCP-Global simulations show significant overlap 

with the observed range (black whiskers), the sole exception being EC-EARTH for which the simulated 

intensity is too low. However, the best-estimate intensities lie above the upper limit of the observed 

range for two PPE members and three CMIP5-13 models.  CMIP6 models show a wide range of ENSO 

amplitudes: Three models show clear negative biases and eleven show clear positive biases (based on 

lack of overlap with the observed range), while 34 models simulate a best-estimate value above the 

observed range. This NINO3.4 metric could offer useful discriminatory power as a screening criterion in 

selection of a future subset of CMIP6 models for use in impacts studies, alongside other model 

assessment variables covering a range of influences on global and European climate (section 4d). 

For AMV (Fig. 9), every CMIP6 model exceeds the observed standard deviation. In CMIP5-13, five 

members lie close to the observed value, the remainder simulating larger intensities than observed. 

GC3.05-PPE simulates a range of best-estimate values that encompasses the observations, avoiding the 

large positive biases seen in many of the multi-model simulations but including four members with weak 

AMV intensities. The largest uncertainty ranges are also found in members of the CMIP6 ensemble, 

some of which exceed the observed range considerably. This indicates large variability on time scales up 

to 50 years. 

On time scales of 50 years or longer, Mavilia et al. (2018) find that observations and some climate 

models show spectra revealing larger variability than would be expected from a red noise process. They 

also conclude that longer time series are required to estimate spectral power reliably for periods 

exceeding 30 years, and that (partly for this reason) the diagnosed characteristics of AMV can be non-

stationary when calculated from longer (multi-century) model simulations. In Figure 9, the intensity 

calculated from the full time series lies above or near the top end of the uncertainty ranges derived 

from the 50-year sub-samples, in observations and some simulations. Consistent with the results of 



Mavilia et al. (2018), this suggests the presence of a significant component of AMV variability on the 

centennial time scale.  

 

Figure 9. Standard deviation of the annual mean AMV index (defined in main text), calculated from time 
series for 1900-2005 following linear detrending. AMV values are provided for each member of the 
GC3.05-PPE (orange, with STD in red) and CMIP5-13 (blue) ensembles (excluding EC-EARTH), and from an 
ensemble of 58 CMIP6 models (green). The observed value (black) is obtained from HadISST. Whiskers 
show 5th-95th percentile sampling ranges for each standard deviation, calculated by applying a 50-year 
sliding window to the AMV time series. 

 

In some simulations, long-term climate drift may contribute to AMV on centennial and longer time 

scales. For example, Ridley et al. (2022) find that secular adjustment of the deep ocean to a small 

imbalance in the planetary radiation budget causes a step change of ~0.5°C in global surface 

temperature in HadGEM3-GC3.1-LL after ~500 years of a simulation with constant external forcing. This 

is caused by the onset of deep convection in the Weddell and Ross Seas. Therefore, some coupled 

models may need to be spun up for 1000 years or more to achieve an initial state sufficiently stable to 

avoid such adjustments during their climate change scenario experiments. These caveats imply that the 

results from Figure 9, while useful as an indication of model performance, should be treated with 

caution in a more formal screening or weighting exercise. 

All UKCP-Global simulations exceed the observed amplitude of interannual variability in winter NAO 

(Fig. 10), though the associated uncertainty ranges overlap with the observed range in all but three 

cases. Most CMIP6 models also show positive biases, though a few ensemble members reproduce the 

observed value closely while GISS-E2-2-H simulates a level weaker than observed. Many simulations 

reveal broader uncertainty ranges than observations. Our uncertainty ranges relate to 20-year time 

windows. However, Woollings et al. (2015) find clear physical differences between NAO variability on 



interannual-decadal (<30 year) and multidecadal (>30 year) timescales: On the shorter timescale the 

NAO is dominated by variations in the latitude of the North Atlantic jet and storm track, whereas on the 

longer timescale it represents changes in their strengths. In the HiGEM model, Woollings et al. (2015) 

identify SSTs in the sub-polar gyre (associated with AMOC variability) as an important influence on these 

multidecadal variations. Given the importance of winter NAO as a driver of variability in European 

climate, establishing a suitable tolerance level for simulation biases may be an important consideration 

in the selection of CMIP6 models for impacts analysis (section 4d).       

 

Figure 10. Standard deviation of the winter NAO index (hPa, defined in main text), calculated from time 
series for 1900-2005 following linear detrending. NAO values are provided for each member of the 
GC3.05-PPE (orange, with STD in red) and CMIP5-13 (blue) ensembles (excluding EC-EARTH), and from an 
ensemble of 64 CMIP6 models (green). The observed value (black) is obtained from HadISST. Whiskers 
show 5th-95th percentile sampling ranges for each standard deviation, calculated by applying a 20-year 
sliding window to the NAO time series. 
 

d. Historical changes in global mean surface temperature  
Observed changes in GMST since the industrial revolution are influenced by factors that also play a 

key role in determining the magnitude of future changes. These include anthropogenic forcing from 

greenhouse gases and aerosols, and climate system responses in the form of ocean heat uptake and 

climate feedbacks (e.g. Smith et al., 2021, Charles et al., 2020). The magnitude of anthropogenic aerosol 

forcing remains highly uncertain (e.g. Smith et al., 2021), and is influenced by natural emissions that are 

also uncertain (Carslaw et al., 2013). Volcanic eruptions and internal variability affect the diagnosis of 

feedbacks from the historical record, particularly through their effects on global patterns of SST 

anomalies (Gregory et al., 2020). Episodes featuring relatively warm SST anomalies in the tropical 

western Pacific, with cooler anomalies to the east, are associated with periods of relatively weak 



feedback. Due to this “pattern effect”, feedback estimates derived from 1981-2010 indicate lower 

sensitivity to greenhouse gas forcing than estimates derived from earlier decades in the historical 

record, or from simulations of the response to large increases in greenhouse gas forcing (Andrews et al., 

2022).     

While simulated historical and future changes in GMST are correlated, the relationship therefore 

involves significant uncertainties (e.g. Tokarska et al., 2020), and is likely to depend on which parts of 

the historical record are used to derive the observational constraint (e.g. Nijsse et al., 2020). For 

example, the prescribed biomass burning dataset used to force CMIP6 models contained a spurious 

increase in interannual variability during 1997-2014. This led to additional warming in the northern 

hemisphere extratropics (and hence GMST) in the CESM2 model, due to an increase in net downward 

short-wave radiation seen also in other CMIP6 models (Fasullo et al., 2022). Nevertheless, comparison 

between observed and simulated changes in GMST is an important test of model credibility, underlined 

by the decision in AR6 to present an observationally-constrained range for future GMST changes (Lee et 

al., 2021). This was obtained by synthesising three approaches based on different methods and using 

historical surface temperature changes from different periods (Liang et al., 2020; Tokarska et al., 2020; 

Ribes et al., 2021). 

Here, we defer consideration of formal constraints for future work (see section 1), showing 

unconstrained results from 38 CMIP6 models alongside UKCP-Global simulations in Figure 11 (top 

panel). The model GMST data are simple global averages of annual surface air temperature, expressed 

as anomalies relative to 1900-1930. Two datasets of verifying observations are provided (Cowtan and 

Way, 2014; Morice et al., 2021), both of which blend terrestrial surface air temperature data with SSTs 

to construct GMST values. In CMIP5 model data, blended estimates of GMST for recent decades are 

slightly cooler than those based on air temperature alone, the average difference amounting to ~0.1°C 

by 2010 (Richardson et al., 2016). Masking to exclude regions of missing data in observational datasets 

was also found to reduce CMIP5 estimates of warming since ~1990. The datasets used in Fig. 11 apply 

statistical infilling techniques to adjust for this masking bias. The Cowtan and Way (2014) data (their 

version 2.0) was created by infilling the HadCRUT4 dataset of Morice et al. (2012) to create globally 

complete fields. The Morice et al. (2021) values use the newer HadCRUT5 dataset: Compared to 

HadCRUT4, it extends coverage in data-sparse regions and provides an improved analysis in data-rich 

regions, but some areas of missing data remain. The (relatively small) differences between the two 

observed time series illustrate the impact on the observed anomalies of differing data coverage and 

processing strategies. 

By 2010-2020, both datasets show an overall warming close to 1.0°C. For this decade, AR6 concludes 

that global surface temperature increased by 1.09°C (relative to the 1850-1900 baseline used in their 

assessment), with a 90% uncertainty range of 0.95 to 1.20°C (Arias et al., 2021). The recent observed 



warming in Fig. 11 lies well within the envelope of simulated changes, for both the CMIP6 ensemble and 

UKCP-Global. 

Figure 11. Time series of annually and globally averaged surface air temperature anomalies relative to a 
1900-1930 baseline. Lower panel shows results from 1900-2100, from members of the GC3.05-PPE 
(orange) and CMIP5-13 (blue) ensembles contributing to the set of 28 UKCP-Global projections, and from 
an ensemble of 38 CMIP6 models (grey). The historical simulations account for external forcing due to 
anthropogenic and natural agents, switching to the RCP8.5 scenario after 2005 (UKCP-Global 
projections) and to the SSP5-8.5 scenario after 2014 (CMIP6 projections). The upper panel shows the 
same data to 2020, using a smaller y-axis temperature range and adding verifying observations. These 
are taken from HadCRUT5 (solid black line, Morice et al. 2021) and Cowtan and Way (2014) (dashed 
black line). Both datasets combine SST data with air temperatures over land, using statistical techniques 
to estimate results in regions of missing data. See text for further details.  

 

The ranges of historical warming in UKCP-Global and CMIP6 models are similar throughout, apart 

from one GC3.05-PPE member that shows a cooler outcome than other simulations between 1990 and 

2010. This is one of two members that exhibit a significant long-term weakening of AMOC, along with a 

cooling in GMST, when run for 200 years using anthropogenic and natural external forcings held fixed at 

early-industrial values for 1900 (Sexton et al., 2020). This climate drift is likely to have contributed to the 

particularly cool outcome simulated for recent decades by this PPE member. More generally, most PPE 

members lie below the observations during 1950-1990. This is probably due (at least partly) to strong 



anthropogenic aerosol forcing in the northern hemisphere, with strong cooling following major volcanic 

eruptions also a likely influence (Yamazaki et al., 2021). 

During 1950-1990, CMIP5-13 and CMIP6 ranges encompass observations. Bock et al. (2020) find a 

mean cool bias of -0.07°C during this period, from an analysis in which CMIP6 data was masked to match 

data coverage in HadCRUT4. Zhang et al. (2021) analyse six CMIP6 earth system models (three of which 

are included in Fig. 11), finding excessive cooling in the northern hemisphere during this period. This 

“pothole cooling” is attributed mainly to strong forcing from aerosol-cloud interactions. Zhang et al. (op. 

cit.) also assess corresponding coupled -ocean atmosphere simulations containing less sophisticated 

representations of aerosol and/or tropospheric chemistry processes, four of which are included in Fig. 

11: Most of these also show a pothole cooling during 1960-1990, albeit less pronounced than the 

corresponding earth system model configurations. 

After 1990 GC3.05-PPE members tend to warm more rapidly than observations, resulting in levels of 

response broadly consistent with observations by 2010-2020 (excepting the single member discussed 

above). The multi-model average warming in CMIP5-13 and CMIP6 is also close to observations by 2010-

2020, while the range of anomalies across all three ensembles covers ~0.7-1.8°C. The observed increase 

in GMST was slower during 1998-2012 compared with the previous and subsequent periods. The muted 

warming during 1998-2012 (often termed the “hiatus”, e.g. Trenberth, 2015) was assessed by AR6 to be 

temporary, with very high confidence (Arias et al., 2021).  

e. Summary  
The evaluation diagnostics of sections 3b-d demonstrate an overall level of performance from the 

UKCP-Global simulations that is competitive with the CMIP6 ensemble. Both sets of simulations exhibit a 

range of biases across their individual members, with evidence of a systematic component to the biases 

for some variables. The results also demonstrate potential to identify a subset of the most skilful CMIP6 

models that could contribute to an improved UKCP-Global dataset in the future.        

4. Comparison of CMIP6 and UKCP projections: Future changes 
 

a. Future changes in global mean surface temperature  
Figure 11 (bottom panel) shows projected future changes to 2100 for annual GMST (relative to 

1900-1930), comparing UKCP-Global results for RCP8.5 with 38 CMIP6 projections for SSP5-8.5, a 

scenario with similar total radiative forcing by 2100 (section 2d). Neither set of projections is formally 

constrained by historical GMST changes (see section 3d), though their status differs through application 

of climatology-based screening to select UKCP-Global but not CMIP6 members (section 2b cf 2c).  Both 

sets of projections provide a broad range of changes that grows with time as the applied forcing and 

modelled responses develop through the 21st century. By 2100, the combined set of changes (across all 

66 simulations) ranges from ~3.0-8.0°C, with a central estimate of ~5.0°C. 



From 1990 onwards, GC3.05-PPE members warm faster than most CMIP5-13 counterparts, hence 

there is limited overlap between their envelopes of change by the end of the 21st century. Therefore, 

combination of the perturbed parameter and multi-model ensembles was essential to achieve a diverse 

range of GMST outcomes in UKCP-Global, with the PPE and CMIP5-13 supplying the upper and lower 

portions respectively. The stronger warming in GC3.05-PPE is driven by weaker levels of total climate 

feedback (and hence higher values of ECS2) compared to most CMIP5-13 members (Yamazaki et al., 

2021). This restricted range of PPE feedbacks arises partly from a performance constraint exerted by the 

simulation of longwave cloud radiative effect, biases in which led to exclusion of potential PPE members 

simulating lower values of ECS (Rostron et al., 2020).  Yamazaki et al. (2021) identify use of a range of 

CO2 concentration pathways as a second driver of high warming in GC3.05-PPE, since those sampled by 

most PPE members lie above the standard pathway used in all CMIP5-13 members (Fig. 2) and hence 

supply a larger radiative forcing. 

Another potential driver of the large projected GMST changes in GC3.05-PPE is the efficiency of 

global ocean heat uptake. GC3.05 uses the NEMO (Nucleus for European Modelling of the Ocean) 

model, in common with the HadGEM3-GC31-LL configuration of HadGEM3-GC3.1. However, the 

ACCESS-CM2 model (Bi et al., 2020), which uses the same atmosphere component as HadGEM3-GC31-LL 

but a different ocean model, simulates stronger ocean heat uptake and therefore a lower characteristic 

rate of transient warming (Liu et al., 2023).  

The CMIP6 range of GMST projections is slightly broader than that of UKCP-Global. This underlines 

the importance of considering a diverse range of warming outcomes in applications using UKCP data, 

particularly where these are framed to consider time-dependent impacts conditioned on a particular 

choice of emissions scenario (e.g. Arnell et al., 2021).  

In contrast to Figure 11, projected GMST changes from UKCP-Probabilistic are observationally 

constrained using historical surface temperature changes, by assigning Bayesian weights to alternative 

outcomes (Sexton et al., 2012; Harris et al., 2013; Murphy et al., 2018). For 2080-2099 relative to 1981-

2000, applying the constraints reduces the 5-95% range for GMST changes under RCP8.5 emissions from 

~2.3-6.6°C to ~2.7-5.6°C, the upper limit lying well below that of those of the unconstrained ranges in 

Fig. 11. While the constrained GMST projections in AR6 are derived exclusively from historical GMST 

changes (section 3d), the UKCP-Probabilistic results include also constraints based on recent 

climatology. These play a role alongside historical temperature changes in reducing the projected range 

(Hegerl et al., 2021). Challenges relevant to use of screened or constrained projections are discussed 

further in section 4d.  

 
2 Equilibrium climate sensitivity (ECS) is a standard benchmark of the climate system response to external forcing, 

defined as the steady-state response of GMST to a sustained doubling of atmospheric CO2 concentration (IPCC, 

2021: Annex VII: Glossary). Assuming the climate system is stable, the total climate feedback parameter (λ) must 
be negative. It determines ECS through the relationship ECS= -∆F/λ, where ∆F is the radiative forcing arising from a 
doubling of CO2 (e.g. Sherwood et al., 2020). Hence, weaker (less negative) values of λ result in higher ECS.   



 

b. Future changes for the UK  
Figure 12 shows time series of winter precipitation anomalies (relative to 1981-2000) for England 

from 41 CMIP6 models, to illustrate basic properties of the CMIP6 dataset. Grey lines are individual 

seasons from each model, while coloured lines show multi-decadal anomalies estimated using a low-

pass Butterworth filter to attenuate variability on time scales of 1-30 years. The spread in the coloured  

Figure 12. Time series of winter precipitation anomalies (%, relative to a 1981-2000 baseline) for 
England, from 41 CMIP6 models for the SSP5-8.5 scenario. Grey lines show annual anomalies, coloured 
lines show low-frequency anomalies. The latter are obtained by applying a Butterworth filter to remove 
variability on 1-30 year time scales. The spread in these reveals the impacts of modelling uncertainties in 
long-term climate change signals, plus the effects of multidecadal climate variability. The wider spread in 
the envelope of the grey lines demonstrates the additional effects of variability on 1-30 year time scales.   
 



lines indicates the impact of different long-term climate responses to the concentration-driven SSP5-8.5 

forcing. By 2100, the low-pass filtered responses range from little change to an increase of ~75%. 

Undulations in each coloured line suggest the presence of significant multi-decadal variability (see 

section 3c). In a multi-scenario analysis of CMIP6 models, Lehner et al. (2020) find that internal 

variability dominates the total spread in decadal averages of regional precipitation anomalies during the 

2020s, while model uncertainty grows to become the largest contributor by the middle of the 21st 

century. Scenario uncertainties exert a minor influence at these time scales, but typically explain ~15% 

of total uncertainty by the end of the century. In a single-scenario setting such as Fig. 12, we may 

therefore expect internal variability to contribute substantially to the range of low-frequency responses 

during the next few decades, while the influence of long-term climate change feedbacks is likely to 

become the main driver of spread at longer lead times. Figure 12 shows a growth of spread beyond the 

2040s that appears to corroborate this, however a quantitative analysis of components of response is 

not attempted here. 

The CMIP6 results show several extreme winters during the recent historical period, in the same 

50-75% range explored by the wettest observed events during the 20th century (e.g. Fig. 5.6a of Murphy 

et al., 2018). The largest simulated event during this period reaches 92%, a level not exceeded till after 

2070 beyond which several events beyond 100% emerge. Intermittency in the occurrence of record 

precipitation extremes is also found in hourly events, based on analysis of UKCP-Local projections 

Kendon et al. (2023). In these UKCP-Local results, accounting for climate change (via the RCP8.5 

scenario) leads to an increase of 20% in the occurrence of regional hourly records in winter. For UK 

average precipitation, the increases in occurrence are 40% for hourly accumulations, and 70% for the 

seasonal average.   

While occurrence of the very wettest winters is noisy in Fig. 12, there is a notable increase in events 

exceeding 50%, associated with a secular shift of the seasonal distribution towards higher precipitation. 

Nevertheless, very dry winters (precipitation 50% or more below historical climatology) continue to 

occur through the 21st century. Qualitatively, these changes in seasonal distributions are consistent with 

those from UKCP-Probabilistic (Sexton and Harris, 2105; Murphy et al., 2018). 

Figure 13 shows corresponding results for surface air temperature in summer. Results for individual 

summers show that anomalies of 2°C become commonplace by the middle decades of the 21st century, 

and unusually cool by 2100. This is consistent with results reported by McCarthy et al. (2019), using 

UKCP-Probabilistic to assess the changing risk of exceeding the joint UK record experienced in 2018 (of 

~1.7°C, calculated relative to 1982-2010 in their case). 

The range of multidecadal changes becomes very wide by 2100 (~2-12°C). The top end is inflated by 

three configurations of the E3SM1 model. The most extreme changes should not be ruled out of  



Figure 13. Time series of anomalies in summer surface air temperature (°C, relative to a 1981-2000 
baseline) for England, from 41 CMIP6 models for the SSP5-8.5 scenario. As in Figure 12, grey lines show 
annual anomalies, coloured lines show low-frequency anomalies following application of a Butterworth 
filter to remove variability on 1-30 year time scales. 

 

consideration, simply on the basis that they are outliers compared to other models. However, E3SM 

simulates a weak AMOC and a strong cool bias in North Atlantic SSTs, accompanied by excessive sea -ice 

in the Labrador Sea (Golaz et al., 2019). This may contribute to an extremely strong warming projected 

at high latitudes in the North Atlantic/European sector (not shown), in comparison with other CMIP6 



models. E3SM1 also simulates the highest transient climate response (TCR3) and the lowest ocean heat 

uptake efficiency amongst 31 CMIP6 models analysed by Liu et al. (2023). They find that CMIP6 models 

with fresh biases in surface salinity (amongst which E3SM exhibits the largest) may be less plausible 

because excessive vertical stratification in ocean density restricts heat uptake, leading to transient 

GMST warming that is too rapid. This is likely to play a role in enhancing the UK warming in E3SM1. 

Similarly, the strong surface and atmospheric feedbacks implied by a high ECS of 5.3°C may also 

contribute to the large UK changes in E3SM1. However, several other CMIP6 models (including 

HadGEM3-GC3.1) also possess ECS values exceeding 5°C, a level assessed as very unlikely but plausible 

by AR6 (Arias et al. (2021), see also discussion in section 4d). A future screening exercise could 

potentially lead to exclusion of the E3SM1 simulations, based partly on the biases described above. 

However, this is left for future consideration. 

Projected 20-year mean changes for Scotland and England are shown in Figure 14, for 2061-2080 

relative to 1981-2000. For CMIP6 models, the surface temperature and precipitation changes confirm 

that the broad ranges of response shown in Figs. 12 and 13 apply to Scotland as well as England. CMIP6 

models with high GMST warming tend to produce larger regional warming in the UK, through the 

expected influence of global changes on regional responses (e.g. Frieler et al., 2012). In addition, Pan et 

al. (2023) find that CMIP6 models using the NEMO ocean tend to simulate a larger polar amplification of 

projected warming in the northern hemisphere in winter, compared to those using a different ocean 

component. This is driven by larger increases in heat transport through the Barents Sea opening and 

stronger increases in convective mixing in the Arctic in NEMO models, which include the Met Office 

submissions to CMIP6. The warmest CMIP6 responses in Fig. 14 all feature high GMST responses and/or 

use of NEMO. HadGEM3-GC3.05 also used NEMO, which may contribute (alongside large GMST 

changes) to the large UK temperature changes found in GC3.05-PPE.  

There is invariably substantial overlap between the CMIP6 ranges and those of UKCP-Global and 

UKCP-Probabilistic, indicating a reasonable level of consistency between the CMIP6 and UKCP 

projections. For winter precipitation in England, for example, each dataset suggests that an increase is 

almost certain, with potential values extending to ~40% at the upper ends of the ranges. The advent of 

CMIP6 information therefore reaffirms that projections derived from contemporary climate models 

involve substantial uncertainties, that should be accounted for robustly in user applications (Fung et al., 

2018). 

 
3 TCR is defined as the GMST response to a hypothetical 1% per year (compounded) increase in atmospheric 
carbon dioxide concentration from the pre-industrial level to the time of doubling at year 70 (IPCC, 2021: Annex 
VII: Glossary). It provides a characteristic measure of the time-dependent response in scenarios featuring steady 
increases in greenhouse gas forcing, accounting for both global ocean heat uptake and the surface and 
atmospheric feedbacks that influence ECS. 



Nevertheless, some noteworthy differences exist between the three sets of projections: 

• The three E3SM1 variants discussed above contribute the outlying surface temperature 

responses in Fig. 14, for both countries and seasons.  

• For winter surface temperature in Scotland, relatively few CMIP6 simulations and no 

UKCP-Global outcomes lie within the lowest quartile of the UKCP-Probabilistic 

distribution. This results partly from broader sampling of low-end GMST responses in 

UKCP-Probabilistic (Murphy et al., 2018), and partly from the representation of patterns 

of warming per unit rise in GMST (Fig. 15, discussed below). 

• For winter precipitation in Scotland, all but one of the CMIP6 and UKCP-Global members 

suggests a maximum increase of ~30%, while UKCP-Probabilistic suggests a chance of 

about 20% of a larger increase. 

• For summer rainfall, the CMIP6, UKCP-Probabilistic and UKCP-Global datasets all suggest 

that a reduction in the 20-year mean is more likely than in increase (for both regions). 

However, for Scotland the CMIP6 and UKCP-Probabilistic data suggests a higher chance 

of an increase than UKCP-Global. For England, UKCP-Probabilistic and UKCP-Global 

results suggest a maximum plausible drying exceeding 50%, whilst for the CMIP6 

ensemble the largest drying is slightly less pronounced (~40%). No single climate model 

ensemble can be assumed a priori to cover all possible outcomes. Therefore (pending 

further investigation) the driest responses in the UKCP datasets should continue to be 

regarded as plausible outcomes for consideration in impacts analyses.  

Figure 14 also includes projections from UKCP-Regional and UKCP-Local. The black lines show 

the nesting strategy used to produce these limited-area simulations, in which SSTs and lateral boundary 

conditions from twelve GC3.05-PPE members drove 12km regional climate model simulations for 

Europe (Murphy et al., 2018; Tucker et al., 2021), which in turn drove twelve 2.2km simulations for the 

UK (Kendon et al., 2021).  Results from both datasets are being used to study spatially-detailed hazards 

and impacts in future UK climate (e.g. Arnell et al., 2021; Garry et al., 2021; Hanlon et al., 2021; Slater et 

al., 2022). UKCP-Local also offers new capability to obtain credible projections of phenomena such as 

hourly precipitation (Chan et al., 2023; Kendon et al., 2023), hail, lightning (Kahraman et al., 2022), 

extreme windstorms (Manning et al., 2022) and heat stress in urban environments (Keat et al., 2021). 

The other projections in Fig. 14 provide an uncertainty context for UKCP-Regional and UKCP-Local. 

This is because UKCP-Probabilistic and UKCP-Global include results from multi-model ensembles 

whereas UKCP-Regional and UKCP-Local are currently derived exclusively from perturbed variants of 

GC3.05. This limits representation of temperature changes in the regional and local ensembles, 

particularly in summer - UKCP-Probabilistic, UKCP-Global and CMIP6 suggest a change of ~50% or more 

for a cooler outcome than any of the limited-area simulations. For precipitation, average summer 



responses in UKCP-Regional and UKCP-Local all show reductions (with one exception for Scotland), 

levels of drying for England amounting to ~20-55%. These capture the dry ends of the distributions from 

CMIP6, UKCP-Probabilistic and UKCP-Global, but not their less dry or positive outcomes. 

Figure 14. Projected changes for 2061-2080 relative to 1981-2000 for Scotland and England in winter 
(lower panels) and summer (upper panels), for surface air temperature (°C, left panels) and precipitation 
(%, right panels). Boxes and whiskers show the 5, 10, 25, 50, 75, 90 and 95% probability levels from 
UKCP-Probabilistic. Orange dots (STD in red) denote members of GC3.05-PPE and blue dots members of 
CMIP5-13, together comprising the UKCP-Global projections. Green dots show results from the 41 CMIP6 
models of Figs. 12 and 13. Also shown for context are the regional climate model projections of UKCP-
Regional (pink) and the convection-permitting projections of UKCP-Local (light green). The black lines 
show which global and regional simulations drive which regional and local simulations, respectively. The 
members driven by STD are shown in darker shading. These CMIP6 and UKCP projections were forced by 
the SSP5-8.5 and RCP8.5 emissions scenarios respectively. 

 



A forthcoming update (planned for late 2023 or early 2024) will add four UKCP-Regional and UKCP-

Local projections driven by CMIP5 models (three of which are members of CMIP5-13), introducing some 

multi-model information. In cases where skilful large-scale predictor variables can be identified (e.g. 

Chan et al., 2018), it may be possible to emulate a broader set of plausible impacts by building 

downscaling relationships between UKCP-Regional or UKCP-Local and their driving global simulations 

(Addison et al., 2022). 

In winter, UKCP-Local projects an envelope of increases in precipitation shifted higher than its 

driving inputs. For England, one UKCP-Local member projects an increase exceeding 45%, higher than 

any CMIP6 simulation and beyond the 95th percentile of UKCP-Probabilistic. The larger increases in the 

2.2km model are associated with an increase in convective showers, triggered over the sea and 

advected inland (Kendon et al., 2020). In the driving 12km simulations, maritime increases in convective 

precipitation do not extend over the land, since the showers are parameterised locally and the model 

lacks a dynamical representation of their movement. The same limitation applies to all the simulations 

included in UKCP-Global and UKCP-Probabilistic. 

Figure 15 shows regional results equivalent to Figure 14, but with the linear influence of global 

average warming removed by regressing 21st century winter and summer changes against GMST. This 

allows the influence of projected patterns of response to be isolated, subject to the caveat that 

potential non-linear influences of GMST on the regional patterns are neglected (Tebaldi and Arblaster, 

2014). This presentation is also a useful guide for UK changes expected under prescribed levels of global 

warming (GWLs), such as the set of derived projections for 2°C and 4°C GWLs provided by Gohar et al. 

(2018) in UKCP18. Such a characterisation features prominently in AR6 (Arias et al. (2021) and 

https://interactive-atlas.ipcc.ch/)  and the third UK climate change risk assessment (CCRA3, Betts and 

Brown 2021). Use of GWLs is also a common form of presentation in impacts studies (e.g. Hanlon et al., 

2021; Arnell et al., 2021b). 

The distributions of normalised response from CMIP6 and UKCP-Probabilistic show a good level of 

consistency for Scotland, the exception being that CMIP6 does not support the upper quartile of winter 

precipitation responses found in the pdfs. 

For England, there is good consistency in winter for both variables. In summer, there is reasonable 

overlap of ranges of normalised rainfall response, with the CMIP6 range shifted to slightly less dry 

responses compared with UKCP-Probabilistic. For summer surface temperature, CMIP6 populates the 

lower three quartiles of the UKCP pdf, but no CMIP6 simulations lie within the upper quartile. However, 

the non-normalised CMIP6 projections for English summer do sample the upper quartile of the pdfs (Fig. 

14), due to the regional impact of high GMST responses in some CMIP6 members. 

In UKCP-Global, normalised responses from CMIP5-13 generally cover much of the CMIP6 range, 

but with gaps in sampling due to the smaller ensemble size. Summer rainfall in Scotland is an exception, 

https://interactive-atlas.ipcc.ch/


since several CMIP6 models produce wetter normalised changes than any UKCP-Global members. For 

winter precipitation and summer temperature in England, one CMIP5-13 member lies clearly above the 

CMIP6 range in each case. However, these outcomes are plausible (albeit unlikely) according to UKCP-

Probabilistic, lying near the 95th percentile of the relevant pdfs. 

 

Figure 15. Projections of normalised changes during the 21st century (relative to 1981-2000) for Scotland 
and England in winter (lower panels) and summer (upper panels), for surface air temperature (°C, left 
panels) and precipitation (%, right panels). Normalised changes are calculated by linearly regressing 
seasonal changes against corresponding annual changes in GMST.  Projections are from UKCP-
Probabilistic (boxes and whiskers), UKCP-Global (orange and blue dots), UKCP-Regional (pink dots), 
UKCP-Local (light green dots) and 41 CMIP6 models (darker green dots). See Fig. 14 for further details. 
These CMIP6 and UKCP projections were forced by the SSP5-8.5 and RCP8.5 scenarios respectively. 

 

The GC3.05-PPE outcomes are more tightly constrained, particularly for surface temperature in 

summer. These constraints are transmitted to the UKCP-Regional and UKCP-Local projections, whose 

normalised temperature responses follow closely those of the driving global simulations. In studies of 



regional impacts conditioned on GWLs (e.g. Hanlon et al., 2021), this implies that uncertainty ranges for 

indicators influenced by average levels of regional warming (such as hot weather hazards) are likely to 

provide an incomplete picture of future risks. However, central estimates of change for such metrics 

should be more reliable, since the median normalised response in GC3.05-PPE lies close to those of 

CMIP5-13, CMIP6, and UKCP-Probabilistic. 

For precipitation, ranges of normalised responses in UKCP-Regional follow their driving GC3.05-

PPE simulations closely, except for Scotland in winter where the average normalised increase is 

somewhat smaller. In UKCP-Local, normalised changes in winter are shifted significantly higher 

compared with the GC3.05-PPE results, consistent with the enhanced contribution of convective 

precipitation (Kendon et al., 2020, discussed above). In summer, rainfall changes per unit global 

warming are generally similar to the GC3.05-PPE ranges, although for England two UKCP-Local members 

project larger normalised drying (approaching 15% per °C) than any of the driving global projections. 

In Figure 16 we return to presentation of full (non-normalised) changes, considering simulations 

driven by the RCP2.6 and SSP1-2.6 scenarios. In this case, results from ten CMIP5-13 members and 35 

CMIP6 models are available. All fifteen GC3.05-PPE members are included, but no UKCP-Regional or 

UKCP-Local results are available for RCP2.6. We consider changes for 2061-2080 relative to 1981-2000 

(as in Figure 14). Fung et al. (2020) also show UKCP-Probabilistic and UKCP-Global results for 2081-2100 

relative to the same baseline. In these strong mitigation scenarios, GMST changes for 2061-2080 range 

from ~0.5-2.5°C in UKCP-Probabilistic (Murphy et al., 2018), UKCP-Global (Fung et al., 2020) and CMIP6 

models (Tebaldi et al., 2021). These bounds are considerably cooler than those for RCP8.5 and SSP5-8.5 

(Fig. 11). Lower increases in GMST play a leading-order role in limiting regional warming (e.g. Frieler et 

al., 2012), hence the individual England and Scotland changes in Fig. 16 never exceed ~3.2°C. In contrast, 

there are several outcomes exceeding 5°C for the high emissions scenarios (Fig. 14), especially for 

England in summer. Note, however, that SSP1-2.6 results are not available for the three E3SM1 

configurations projecting extreme warming in Fig. 14. 

Under SSP1-2.6 the CMIP6 models project wide ranges of change for all UK variables (Fig. 16), that 

encompass those found in UKCP-Probabilistic and UKCP-Global. Modelling uncertainties in regional 

climate response are likely to play the main role in driving the projected ranges of change (e.g. Lehner et 

al., 2020). Differences in applied radiative forcing are also likely to contribute, for two reasons: (a) The 

standard RCP2.6 concentration pathway used in CMIP5-13 models gives a radiative forcing ~10% smaller 

than the SSP1-2.6 pathway used in the CMIP6 ensemble (section 2d) - this may contribute to the higher 

average levels of warming found in CMIP6 compared with CMIP5-13 (Fig. 16); (b) GC3.05-PPE and UKCP-

Probabilistic sample a range of CO2 pathways in their RCP2.6 distributions. As in the RCP8.5 case (Fig. 2), 

the standard RCP2.6 concentration pathway lies near the low end of the sampled range of CO2 

outcomes. Therefore, the average radiative forcing applied in CMIP5-13 is smaller than in GC3.05-PPE 



and UKCP-Probabilistic, while their sampling of forcing uncertainties contributes alongside response 

uncertainties to their ranges of projected outcomes.      

 

Figure 16. As Figure 14, but for CMIP6 and UKCP projections forced by the SSP1-2.6 and RCP2.6 
emissions scenarios respectively. Projected changes are for 2061-2080 relative to 1981-2000. Details as 
in Fig. 14, except that only 10 ensemble members are available for CMIP5-13 (blue dots) and 35 for the 
CMIP6 multi-model ensemble (green dots). Results for RCP2.6 are not available from UKCP-Regional or 
UKCP-Local. 

 

Several simulations show changes outside the 5-95% range of the pdfs, or beyond the extremes of 

the set of UKCP-Global realisations. For summer rainfall, the CMIP6 results are distributed around zero 

response, suggesting (in contrast to the UKCP products) only a weak preference for drying over England, 

and no clear preference for Scotland. In both cases, several CMIP6 models simulate increases of 10% or 

more, wetter than any UKCP-Global members and higher than the 95th percentile of UKCP-Probabilistic. 

For England, the 95th percentile is associated with a summer rainfall increase of 7.3%. Six CMIP6 models 



lie above this level, suggesting a larger chance than UKCP-Probabilistic of a higher outcome. However, 

the 99th percentile of the pdfs (not shown in Figs. 14-16) reaches +15.2%, higher than all but one of the 

CMIP6 results.   

The CIESM model (Lin et al., 2020) projects a winter cooling of ~2°C for Scotland and ~0.8°C for 

England, both outliers compared to other simulations (Fig. 16). This model also simulates a small cooling 

for Scotland in summer and a small warming for England, the coolest and second coolest response 

respectively amongst CMIP6 members. This cool UK response occurs despite a high ECS of ~5.7°C in 

CIESM, although its TCR3 of ~2.2°C lies well below those of several other models possessing ECS>5.0°C, 

including CanESM5, E3SM-1-0, HadGEM3-GC31-LL and UKESM1-0-LL (Liu et al., 2023). 

In CMIP6, the seasonal surface temperature increases invariably show examples warmer than the 

95th percentile of UKCP-Probabilistic. This occurs most frequently for Scotland temperature in summer, 

five CMIP6 models exceeding the 95th percentile warming of 2.4°C. This suggests a chance of ~15% of 

exceeding this level, cf 5% according to the pdfs. Whilst the warmest CMIP6 responses lie well above 

2.4°C only two exceed 2.9°C, the warming associated with the 99th percentile of the pdfs (not shown).  

For winter precipitation, most CMIP6 members simulate an increase in both countries, though a 

few produce a decrease in common with UKCP-Global. The largest reductions in CMIP6 occur in 

Scotland. These arise from UKESM1-0-LL and HadGEM3-GC31-LL, whilst HadGEM3-GC31-MM simulates 

little change in this period. During 2061-2080, UKESM1-0-LL also simulates reduced Scottish 

precipitation under SSP5-8.5 emissions, while HadGEM3-GC31-LL projects little change. All other CMIP6 

models project wetter responses (Fig. 14). The UK models are closely related to STD (red dots in Figs. 14 

and 16), which also simulates little change for Scottish precipitation under RCP8.5 and a reduction under 

RCP2.6. The LL configurations use coarser horizontal resolution in their atmosphere and ocean 

components, but in most respects all four models possess similar representations of physical climate 

system processes. However, a configuration of HadGEM3-GC3.1 using higher resolution (~50km in the 

atmosphere and ~1/12th degree in the ocean) projects a large increase in winter UK precipitation. This is 

traced to a northward shift in the Gulf Stream (absent from lower resolution configurations), that drives 

a strengthening of cyclone activity across the North Atlantic (Moreno-Chamarro et al., 2021). 

Further investigation is needed to understand differences between the extremes of the 

precipitation and temperature ranges projected by the different products in Fig. 16, including the 

potential impact of screening CMIP6 models. This is underlined by the relevance of these strong 

mitigation scenarios to the national target to achieve net zero carbon emissions by 2050, set out in the 

2008 Climate Change Act (see https://www.legislation.gov.uk/ukpga/2008/27/contents).                    

  

c. Future changes in circulation  
We provide a brief discussion of projected circulation changes, focusing on winter and summer 

North Atlantic Oscillation (NAO and SNAO) as the leading modes of seasonal variability in slp (Hurrell et 

https://www.legislation.gov.uk/ukpga/2008/27/contents


al., 2003; Folland et al., 2009). We use the Atlantic pressure gradient definition of winter NAO 

(McSweeney and Yamazaki (2020), described in section 3c). Following Folland et al. (2009), the SNAO is 

defined as the leading empirical orthogonal function (EOF) of slp in July-August (“high summer”), over 

the region 90°W-30°E, 40-70°N.  

Figure 17 shows projected winter NAO changes for 2061-2080 relative to 1981-2000, comparing 

UKCP-Global results (RCP8.5) against those from 36 CMIP6 models (SSP5-8.5). The CMIP6 results show 

no clear preferred sign for NAO response, projecting a range of changes between ~±6hPa. However, 

only five models simulate a reduction larger than -2hPa, whereas ten models project an increase 

exceeding +2hPa. A similar range emerges from UKCP-Global. The ensemble-mean change in CMIP5-13 

is small (McSweeney and Yamazaki, 2020), with a subset of members contributing negative NAO 

responses to UKCP-Global. In contrast, GC3.05-PPE members favour a positive response, contributing 

most of the largest changes. Overall, combination of the PPE and MME datasets achieves a fuller 

representation of plausible outcomes in UKCP-Global, that is supported by the CMIP6 evidence. 

Projected decline in Arctic sea-ice drives an equatorward shift in the winter mid-latitude 

westerlies in the northern hemisphere. This contributes to a “tug-of-war” with the effects of global 

ocean warming since the latter drives a poleward shift by increasing the meridional temperature 

gradient in the upper troposphere. However, current climate models underestimate the influence on 

the mean zonal flow of feedbacks from transient eddy activity. If this systematic bias was corrected, the 

poleward shift driven by sea-ice decline might “win” the tug-of-war (Smith et al., 2022; Screen et al., 

2022). This would lead to weakening of the zonal flow in the latitude band 55-65°N, hence favouring a 

shift to the negative phase of winter NAO (Deser et al., 2016).    

Whilst Fig. 17 provides an overview of projected changes at the seasonal time scale, analysis of 

sub-seasonal variability is required to understand the implications for future winter weather. For UKCP-

Global, Murphy et al. (2018) showed a projected increase in the occurrence of winter storms over the 

UK, with a more muted increase in CMIP5-13. Pope et al. (2022) analysed future changes in daily 

weather patterns in UKCP-Global, using the 30-pattern classification of Neal et al. (2016). Pope et al. 

found increased occurrences of patterns associated with cyclonic conditions and strong westerly winds 

in the PPE, at the expense of anticyclonic weather patterns associated with blocked conditions. Similar 

results were found in CMIP5-13, but typically with smaller ensemble-mean signals of change and greater 

spread in the ensemble ranges for specific weather types. 

 

 



 

Figure 17. Projected changes in the winter NAO index for 2061-2080 relative to 1981-2000, with 
corresponding UK precipitation changes (%). Results show the GC3.05-PPE (orange) and CMIP5-13 (blue) 
members that comprise UKCP-Global, and simulations from 36 CMIP6 models (green). The NAO index is 
expressed as the average Atlantic pressure gradient (hPa) between Gibraltar and Iceland (McSweeney 
and Yamazaki, 2020). The CMIP6 and UKCP projections were forced by the SSP5-8.5 and RCP8.5 
scenarios respectively. 

 

In a set of CMIP6 models, Fabiano et al (2021) use an EOF-based method to identify four daily 

weather clusters in the Euro-Atlantic sector: two of these resemble the positive and negative phases of 

the NAO, the others Scandinavian blocking and Atlantic ridge regimes. They find a general improvement 

in skill in CMIP6, compared with a CMIP5 ensemble. In the future projections, they find increases in the 

frequency and persistence of the positive NAO pattern, alongside decreases in the frequencies of the 

Scandinavian blocking and Atlantic ridge patterns. In SSP5-8.5, Fabiano et al. find little change in the 

ensemble-mean frequency of their negative NAO pattern. However, modest increases do occur for SSP 

scenarios with lower forcing, implying that both the positive and negative phases of NAO become more 

frequent at the expense of the other two regimes. In SSP5-8.5, Dorrington et al. (2022) find a future 



trend towards less persistent Euro-Atlantic blocking regimes in a set of 20 CMIP6 models, coupled with 

an increase in zonal flow conditions associated with the low-level jet in the central North Atlantic.  

A caveat is that the papers discussed above use different statistical methodologies to identify 

daily weather regimes. A common analysis (beyond the scope of this report) would be required to 

understand more precisely the similarities and differences between the changes projected in UKCP-

Global and CMIP6, and their process-drivers. 

Figure 18 shows projected SNAO anomalies and their relationship to July-August (JA) rainfall, for 

2061-2080 relative to 1981-2000. Here, we consider rainfall averaged over the whole UK (cf the national 

averages of Fig. 14). Following Bladé et al. (2012), slp anomalies from observations and each model 

simulation are projected onto the observed EOF to establish time series of an SNAO index. This index 

represents the principal component (PC) time series for observations, and a “pseudo” PC for each model 

simulation4. The top row of Fig. 18 confirms that this approach identifies (essentially by construction) an 

index of temporal variability in the models representing similar patterns of regional slp to that 

associated with the observed SNAO. This pattern features an slp dipole with (in its positive phase) high 

pressure over the UK and low pressure over Greenland. The positive phase is also associated with dry 

anomalies in JA rainfall over NW Europe, the largest anomalies being centred over the UK and southern 

Norway. Ensemble-mean patterns from GC3.05-PPE, CMIP5-13 and CMIP6 all reproduce this pattern 

reasonably well (Fig. 18, second row), although the intensities of the UK and Norwegian anomalies are 

underestimated. In the observations, a wet response over southern Europe is also associated with 

positive SNAO. Again, the ensemble-mean patterns capture this, albeit with reduced amplitude. In the 

CMIP3 multi-model ensemble, Bladé et al. (2012) found a similar error to be related to poor simulation 

of the upper-level circulation response to a positive SNAO. 

In CMIP6, projected changes in SNAO show no preferred sign (Fig 18, bottom panel). Simulations 

showing increases in JA rainfall possess neutral or negative SNAO index changes, while the driest 

simulations (reductions in rainfall of 25% or more) show neutral or positive index changes. This 

relationship is expected, given the historical SNAO-rainfall relationship. The weaker amplitude of the UK 

rainfall response in the CMIP6 ensemble -mean suggests that the ensemble may underestimate the 

impact of a potential future shift towards the positive or negative phases of the SNAO in the real world. 

However, the scatter in the relationship also reveals that additional drivers must be at play in the CMIP6 

projections of summer rainfall change. Potential candidates include earlier snowmelt, positive feedbacks 

between soil moisture and cloud cover and increased moisture content in maritime air carried over the 

 
4 This procedure for deriving simulated SNAO index values differs from that used to create a similar diagram in the 
UKCP18 Science Report (Murphy et al. (2018), their Figure 5.5). There, model-specific EOF patterns most 
resembling the observed EOF were derived separately for each simulation. In the present report, projecting the 
model data onto the observed EOF improves the correspondence between the simulated and observed regional 
correlations of slp and precipitation (top two rows of Fig. 18). A caveat is that the SNAO index derived from the 
pseudo-PC will explain slightly less variance of simulated psl, cf the Murphy et al. (2018) approach.      



UK by the prevailing westerlies (Rowell and Jones, 2006), and also decline in AMOC strength (Jackson et 

al., 2015). 

 

Figure 18. Summer North Atlantic Oscillation (SNAO) and its teleconnection to mean July-August (JA) 
precipitation in observations and the UKCP-Global and CMIP6 ensembles. SNAO is defined as the first 
EOF of sea-level pressure (slp) anomalies over the region 90°W-30°E, 40-70°N in the HadSLP2 dataset of 
observations. Observed and simulated slp anomalies are projected onto the observed EOF to establish 
time series of SNAO indices. This index represents the principal component (PC) time series for 
observations, and a “pseudo” PC that captures the effects of the same circulation pattern in each model 
simulation (see text). The top row shows temporal correlations of local slp with these SNAO index 
timeseries for observations and the GC3.05-PPE, CMIP5-13 and CMIP6 ensembles, during 1950-2010. The 
model maps are ensemble-mean correlations averaged across 15, 13 and 36 members respectively. The 
second row shows correlations of JA precipitation with the SNAO index during 1979-2010 for 
observations (GPCP, Adler et al., 2003) and during 1950-2010 for the three model datasets, displaying 
ensemble-mean correlations in the latter cases. Lower panel shows projected changes in the SNAO index 
for 2061-2080 relative to 1981-2000 with corresponding JA precipitation changes (%) for the UK, for 
members of the GC3.05-PPE (orange), CMIP5-13 (blue) and CMIP6 (green) ensembles. The filled circles 
denote models that produce a realistic SNAO pattern as a leading mode of simulated variability, open 
circles denoting those that do not (details in text). The CMIP6 and UKCP projections were forced by the 
SSP5-8.5 and RCP8.5 scenarios respectively. 



The UKCP-Global projections cover slightly narrower ranges of change for both variables, showing 

a greater preference for positive SNAO changes with a larger fraction of simulations projecting drying of 

30% or more. This tendency is clearest in GC3.05-PPE, suggesting that a shift towards positive SNAO is a 

major driver of the strong projected drying in these simulations. Analysis of daily weather patterns 

(Pope et al., 2022) supports this conclusion, revealing a shift in the PPE towards anticyclonic circulation 

types in summer (in contrast to the winter results discussed earlier). 

The fixed-pattern approach of Fig. 18 allows us to diagnose the impacts of the observed SNAO 

circulation pattern in the model simulations. However, it does not tell us how closely the leading modes 

of slp variability generated by the models4 correspond to the observed SNAO.  This was evaluated using 

the first and second EOFs of simulated slp variability. Models assessed to generate a realistic SNAO 

(filled circles in Fig. 18) are those for which either EOF includes a distinct region of high pressure 

influencing the UK (determined subjectively) and explains at least 20% of slp variance over the analysis 

region. The open circles denote model simulations failing these criteria. On this basis, four GC3.05-PPE 

members, three CMIP5-13 members and eight CMIP6 members do not simulate a realistic SNAO. Such 

an assessment could potentially form part of a future strategy to select a subset of simulations likely to 

provide credible projections of summer changes for NW Europe.  

                 

d. Screening or constraining ensemble projections  
While the comparisons in this report take the simple approach of including all available CMIP6 

models (section 1), the application of observational constraints to raw climate model output is 

recognised as a key step in providing reliable climate projection information for impacts applications 

(e.g. Hegerl et al., 2021). Such strategies were used in UKCP-Probabilistic and UKCP-Global, based on 

weighting (for UKCP-Probabilistic) or screening (for UKCP-Global) sets of historical variables derived 

from the relevant simulations (section 2a, b). Below we provide illustrative examples showing how such 

postprocessing could alter CMIP6 ranges of projected change. 

These are based on a screening approach developed by Palmer et al. (2023) (hereafter P23) for 

European projections, in which an initial set of 29 CMIP6 models was reduced to a performance-filtered 

subset of 16 models. The performance filtering used observables selected to capture several driving 

phenomena and regional characteristics important for present and future European climate. These 

include: AMOC, North Atlantic SSTs, 850hPa winds, the North Atlantic/European storm track, blocking 

frequency, terrestrial surface air temperature and precipitation. Performance was assessed using a mix 

of quantitative error metrics and subjective judgement. For each observable poor performers were 

flagged as either “inadequate” or “unsatisfactory”, dependent on the level of bias encountered. Models 

were excluded if they incurred either one or more “inadequate” flags.  

 



Figure 19. Projected changes in surface air temperature for Northern Europe in summer (left) and winter 
(right) for 2081-2100 relative to 1994-2014, from CMIP6 models driven by the SSP5-8.5 scenario. 
Northern Europe is defined as a region including the UK and Scandinavian countries – see Figure S1 of 
Palmer et al. (2023), Supplementary Information at 
https://esd.copernicus.org/articles/14/457/2023/esd-14-457-2023-supplement.pdf. Blue boxes and 
whiskers show the 5th, 25th, 50th (white line) 75th and 95th percentiles from 29 CMIP6 models, labelled 
“unfiltered” because each available model was included without applying performance criteria. Orange 
boxes and whiskers show the same percentiles from a filtered subset of 16 models, selected by assessing 
how well individual models capture a range of large-scale processes important for the representation of 
present-day European climate (Palmer et al., 2023). 

 

   We show winter and summer examples for northern Europe, consisting of surface air temperature 

(Fig. 19) and precipitation (Fig. 20) changes for 2081-2100 relative to 1981-2000 in response to SSP5-8.5 

forcing. For winter temperature, the performance filtering has negligible impact on the median and low-

end (5th percentile) warming but reduces the upper-end (95th percentile) response slightly. The impact of 

screening is somewhat larger in summer, resulting in an increase of ~0.5°C in median warming and a 

smaller interquartile range caused by an upward shift in the 25th percentile response. The upper limit of 

summer warming remains just below 8°C, while the lower limit increases slightly. P23 also find a higher 

median warming in summer for their pan-European region. This occurs because the performance 

filtering excludes all the models possessing low ECS (below 2.0°C) and most with ECS values below 3.0°C, 

whilst more of the high-ECS models are retained.   

For winter precipitation, performance filtering shifts the median response wetter and narrows the 

associated uncertainty range. In summer, the 5th-95th percentile range changes little, however the 

filtered ensemble shows stronger median drying than the unfiltered ensemble.  In central Europe, using 

the P23 filtered subset narrows the range of summer rainfall changes because three ensemble members 

simulating small changes are removed, leaving a consistent drying signal in the retained simulations. 

 

https://esd.copernicus.org/articles/14/457/2023/esd-14-457-2023-supplement.pdf


Figure 20. Projected changes in precipitation (mm/day) for Northern Europe in summer (left) and winter 
(right) for 2081-2100 relative to 1994-2014, from CMIP6 models driven by the SSP5-8.5 scenario. Blue 
boxes and whiskers show ranges of change from 29 unfiltered CMIP6 models. Orange boxes and 
whiskers show corresponding ranges from 16 models surviving filtering to remove those providing the 
least realistic simulations of present-day European climate (Palmer et al., 2023). Further details in Figure 
19. 

 

The model assessment criteria used in Figs. 19 and 20 were derived exclusively from observables 

expressing aspects of recent climatology. P23 considered an alternative method (adapted from Brunner 

et al., 2020a), in which model weights are derived using the historical trend in GMST during 1981-2014.  

In contrast to the performance-filtering method, the global trend approach shifts the distribution of 

projected European warming to lower values (P23, their Fig. 6a). A potential caveat is that the period 

since 1980 favours lower ECS estimates compared with earlier parts of the historical record (Andrews et 

al., 2022), due to the pattern effect discussed in section 3d.  

The UKCP-Probabilistic method uses a weighting approach that combines information based on 

historical trends and recent climatology (see section 4a). Brunner et al (2020a) use a different 

probabilistic framework (ClimWIP) to demonstrate that combining both types of constraint improves 

GMST projections in leave-one-out perfect model tests. In the UKCP-Probabilistic method, the historical 

trend information is derived from large-scale patterns of surface temperature change, global upper 

ocean heat content and atmospheric CO2 concentration (Harris et al., 2013; Booth et al., 2017; Murphy 

et al., 2018), while the climatological information is derived from global spatial patterns of a variety of 

standard model assessment variables (similar in scope to the information in Figs. 5-7), reduced in 

dimensionality using eigenvector analysis (Sexton et al., 2012). The UKCP-Probabilistic approach is based 

on the premise that the weight should represent a broadly-based measure of the overall physical 

credibility of climate model output. This supports potential usage of its results in applications covering a 



range of climate variables across different world regions (e.g. Harris et al. (2010, 2013), Brunner et al., 

2020b). 

In comparison with the P23 screening approach, UKCP-Probabilistic uses a larger quantity of 

observables but lacks the tailored regional focus of the latter. The selection of constraining observables 

is a key choice in the design of screened or weighted regional projections. There is a variety of potential 

choices in the current literature (e.g. Brunner et al., 2020b; Hegerl et al., 2021), for both evaluation 

metrics and the methodological frameworks used to apply them. 

For example, Hausfather et al. (2022) discuss the issue that CMIP6 contains several “hot models” 

with ECS values of 5°C or higher. This contrasts with CMIP3 and CMIP5 (Bock et al., 2020), while AR6 

identifies 2-5°C as the very likely range for ECS (Arias et al., 2021). Hausfather et al. suggest that models 

lying outside the likely AR6-assessed ranges for ECS (or, alternatively, TCR) should be excluded from 

scenario-based impacts studies in which the temporal trajectory of future global warming is important, 

partly on the grounds that they do a poor job of replicating historical temperatures over time. However, 

Bloch-Johnson et al. (2022) dispute such binary recommendations, pointing out that: (a) historical 

warming exerts only a moderate constraint on ECS (significant factors being the large uncertainties 

associated with historical aerosol forcing and time-dependence of climate feedbacks, see section 3d)); 

(b) the upper tail of probabilistic assessments of ECS is sensitive to reasonable variations in 

methodological assumptions (Sherwood et al., 2020). 

In screening and constraint methods, another key challenge is to estimate (either qualitatively or 

quantitatively) a tolerable level of model error. The famous aphorism “all models are wrong, but some 

are useful” (Box and Draper, 1987), along with the presence of common systematic biases in multi-

model ensembles (section 3), frames this task as one of discrimination between “useful” and “wrong” 

models.  This challenge applies both to univariate selection methods (e.g. Hausfather et al., op. cit.) and 

multivariate approaches, requiring sources of uncertainty in the model evaluation process to be 

specified. Dependent on the application in question, these can include observational errors, simulated 

internal variability, emulation errors (where these are used to estimate climate model results) and 

structural model biases. In cases where an observable lies outside the available ensemble of simulated 

historical values but is linked mechanistically to projected changes in impact-relevant variables (e.g. 

Screen et al., 2022), the caveat that the true future outcome could lie outside the range of projected 

changes should be clearly communicated.    

In the UKCP projections, methods to estimate suitable error tolerances are included in: (i) the 

calculation of weights in UKCP-Probabilistic (Sexton et al., 2012); (ii) the screening of potential PPE 

members for GC3.05-PPE in UKCP-Global (Sexton et al., 2021); (iii) screening of CMIP5 simulations for 

UKCP-Global (McSweeney et al., 2018). These specifications involve expert judgements capable of 



exerting a significant influence on the weighted projections or selection of ensemble members (e.g. 

Sexton and Murphy, 2012; Rostron et al., 2020). 

The importance of such choices emerges particularly clearly in cases where different evaluation 

criteria lead to exclusion or down-weighting of different subsets of ensemble members. For example, 

P23 highlight a tension between their historical trend and climatology constraints, which favour 

different ranges of ECS. This underscores the importance of choosing multivariate observables and 

model error tolerances that achieve a suitable balance between quality and sampling criteria. 

In section 4b we noted the growth of interest in GWLs. These provide a way of presenting climate 

projections in the light of the policy-relevant warming targets in the Paris agreement (see  

https://unfccc.int/process-and-meetings/the-paris-agreement). Hausfather et al. (2022) and P23 suggest 

that presenting projections as GWLs might circumvent the need to select or weight CMIP6 models 

according to historical warming trends (see discussion above), on the basis that high ECS may be of 

lesser concern if emphasis is placed on regional patterns of response for a given GWL.  

From an applications perspective, the role of ECS in GWL-based projections depends on whether 

information on timing is also required. In CCRA3 authors were asked to describe climate risks and 

opportunities “for time slices of the 2050s (2040-2070) and 2080s (2070-2100) for scenarios that project 

global warming to stabilise at 2°C ± 0.5°C by 2100, or project global warming to reach 4°C ± 0.5°C in 

2081- 2100” (Betts and Brown, 2021). Thus, emphasis was placed on documenting the time that specific 

GWLs were reached and the temporal pathways towards them, both aspects likely to be influenced by 

ECS. 

From a scientific perspective, an interesting question is whether GWL-based projections (in cases 

where the temporal trajectory is not important) could be based on different sets of observational 

constraints to projections presented as time-dependent scenarios. While ECS may not be of direct 

importance when the time dimension is removed, key processes that drive occurrence of high ECS in 

climate models (especially cloud and surface albedo feedbacks) are spatially heterogeneous in nature 

(Zelinka et al., 2020). Therefore, it is not clear that constraints on climate feedbacks would necessarily 

be of lesser importance in applications focused on regional patterns of climate change for prescribed 

warming levels (e.g. Fig. 16).           

5. Concluding Remarks 
The CMIP6 multi-model ensemble provides a rich new dataset of global climate projections, likely 

to be widely used in studies of regional impacts during the next few years (e.g. Sobolowski et al., 2023).  

Compared with earlier CMIP phases, the CMIP6 ensemble shows improvements in simulation of recent 

climatology across standard model assessment variables covering temperature, cloud, radiative, 

hydrological and circulation variables (Bock et al., 2020; Arias et al., 2021). However, no single model 

https://unfccc.int/process-and-meetings/the-paris-agreement


stands out as clearly superior to other CMIP6 members and the range of performance scores overlaps 

considerably with that amongst CMIP5 models. 

a. Evaluation of UKCP18 and CMIP6 historical simulations  
We revisited the set of global coupled ocean-atmosphere simulations included in the UKCP-Global 

component of UKCP18, using the CMIP6 ensemble as a new comparative benchmark. Despite the 

general improvements in CMIP6 models compared to CMIP5, the historical performance of UKCP-Global 

simulations is competitive with CMIP6 models. This applies to seasonal climatologies of surface air 

temperature and precipitation, in which systematic regional biases in CMIP6 are similar to those in the 

perturbed parameter and multi-model ensembles contributing members to UKCP-Global (see section 

2b). The same applies to annual climatologies for a broader set of climate variables, particularly in the 

case of the perturbed parameter ensemble (GC3.05-PPE). The PPE is derived from a model closely 

related to HadGEM3-GC3.1, the configuration contributed by the Met Office to the CMIP6 ensemble. 

Three major modes of coupled-ocean-atmosphere variability (ENSO, AMV and winter NAO), all of 

which exert important influences on European climate, were also evaluated.  All UKCP-Global and most 

CMIP6 simulations exceed the observed amplitude of interannual variations in NAO. For AMV, all CMIP6 

members simulate greater interannual variability than observed, while UKCP-Global members exhibit a 

range of biases of either sign. Observed and simulated estimates are subject to significant sampling 

uncertainties across different periods, so in many cases the simulation biases are not statistically 

significant. However, some models do show ranges of variability that fail to overlap with observations, 

especially for some CMIP6 simulations of AMV. A caveat is that AMV exhibits significant variability on 

the centennial time scale (Mavilia et al., 2018), limiting the extent to which firm conclusions can be 

drawn from the 1900-2005 time series considered here. For ENSO amplitude (measured using monthly 

anomalies in the NINO3.4 index), uncertainty ranges from all but one UKCP-Global members overlap 

substantially with observations. This is also true for many CMIP6 members, though a minority simulate 

ENSO variability that is clearly too low or too large. 

By the most recent decade (2010-2020), the observed change in global mean surface temperature 

(GMST) relative to 1900-1930 amounts to ~1.0°C. This lies near the middle of the distributions simulated 

by the CMIP6 and UKCP-Global ensembles, whose ranges of change are similar. During 1960-1990, most 

GC3.05-PPE members and some CMIP6 members simulate GMST anomalies cooler than observations, 

due at least partly to strong negative forcing from anthropogenic aerosol emissions. However, most 

GC3.05-PPE simulations warm more rapidly than observations beyond 1990, removing the earlier cool 

bias by the 2010s.        

 In this report CMIP6 data was assembled for evaluation on a simple “one-model-one-vote” basis. 

In contrast, members of UKCP-Global were selected from wider sets of CMIP5 models and GC3.05 

perturbed parameter variants, through application of screening criteria to identify a subset of high-

quality simulations offering a diversity of projected future changes. Our CMIP6 evaluation suggests that 



a screened subset of CMIP6 models could form a potential component of a future update to UKCP-

Global. This depends, however, on future decisions concerning the nature and timing of developments 

to the UKCP land projections, including its probabilistic, regional and local components (see sections 1 

and 2). Further developments in global modelling can also be expected. For example, some modelling 

groups are testing increases in horizontal resolution in the atmosphere and ocean, finding 

improvements in various aspects of simulated climatology compared to lower-resolution counterparts 

included in the CMIP6 scenario experiments (Roberts et al., 2019; Bock et al., 2020). 

b. Projected future changes  
For GMST, CMIP6 models and UKCP-Global both provide a wide range of changes under fossil-fuel 

intensive emissions scenarios (SSP5-8.5 and RCP8.5 respectively). The CMIP6 spread is slightly broader, 

with a combined range (across both ensembles) covering ~3.0-8.0°C by 2100, relative to 1981-2000. In 

the present analysis, neither ensemble is formally constrained by observations of historical surface 

temperature changes. However, the CMIP6 range is reduced when such constraints are applied (Lee et 

al., 2021). This also occurs in UKCP-Probabilistic, the probabilistic projections component of UKCP18. 

We also compared projected changes in surface temperature and precipitation for England and 

Scotland, from CMIP6, UKCP-Global and UKCP-Probabilistic. Qualitatively, the CMIP6 results support 

projected trends in extreme seasonal events from UKCP18. For example, occurrence of winter 

precipitation anomalies exceeding 50% increases during the 21st century under SSP5-8.5 emissions, as 

the distribution of events in individual winters shifts to wetter outcomes. Seasonal anomalies of 2°C 

(that exceed the current UK record) become normal events by ~2050, consistent with UKCP18 advice 

(McCarthy et al., 2019). 

Considering multidecadal average changes, the CMIP6 ensemble develops a very broad range of 

warming signals in response to SSP5-8.5. We illustrated these using changes for 2061-2080 relative to 

1981-2000. Three configurations of the E3SM model contribute large outlier responses that could 

potentially be ruled out in a formal screening exercise, though this is left to future work. Nevertheless, 

the wide CMIP6 ranges show substantial overlap with those of UKCP-Global and UKCP-Probabilistic for 

both precipitation and surface temperature, confirming the continued importance of accounting for the 

relevant uncertainties in impacts studies. 

Some differences occur between CMIP6 and the UKCP18 products. For example, few simulations 

from CMIP6 or UKCP-Global lie within the lowest quartile of UKCP-Probabilistic outcomes for surface 

temperature changes in Scotland. For summer rainfall all three datasets suggest that reductions are 

more likely than increases. However, CMIP6 and UKCP-Probabilistic suggest a larger chance than UKCP-

Global of an increase over Scotland, while in CMIP6 the maximum drying over England is slightly less 

intense than found in the UKCP18 results. 

Surface temperature and precipitation changes were also compared for scenarios including strong 

mitigation measures (RCP2.6 for UKCP18 cf SSP1-2.6 for CMIP6). As expected, ranges of UK warming are 



shifted lower compared to the RCP8.5/SSP5-8.5 results. For UK-Probabilistic, the median warming 

ranges from ~0.8°C (for Scotland in winter) to ~1.6°C (England in summer) for RCP2.6, cf ~1.9°C and 

~3.8°C for RCP8.5. Under SSP1-2.6 the maximum warming amongst CMIP6 models is ~3.2°C (for England 

in summer), though results for the E3SM model (see above) are not available for this scenario. More 

generally, CMIP6 models project ranges of changes for both variables, seasons and countries that 

encompass the UKCP18 results. This underlines the importance of considering alternative adaptation 

pathways under mitigation scenarios, given that regional changes (while smaller than under more fossil-

fuel intensive scenarios) are nevertheless diverse in both the UKCP and CMIP6 datasets. 

Under both SSP scenarios, most CMIP6 models project increases in winter Scottish precipitation 

during 2061-2080. Two configurations of the Met Office model (UKESM1-0-LL and HadGEM3-GC31-LL) 

lie at the low end of the range, with UKESM1-0-LL simulating reduced precipitation in both scenarios. 

Configurations with higher horizontal resolution (HadGEM3-GC31-MM and the corresponding member 

of GC3.05-PPE using standard parameter settings) simulate modest increases or little change.  However, 

a configuration of HadGEM3-GC3.1 using even higher resolution (~50km in the atmosphere and ~1/12th 

degree in the ocean) projects a substantial increase in Scottish (and UK-wide) winter precipitation, 

linked to a northward shift in the Gulf Stream absent from the lower resolution configurations (Moreno-

Chamarro et al., 2021). This demonstrates potential for further evolution in the understanding of 

projected climate change signals as the international community moves to the next phase of CMIP, 

subject to further experiments to assess the effects of enhanced horizontal resolution in different 

models. 

Projected changes in winter NAO show no preferred sign in the CMIP6 ensemble, revealing a 

range of positive and negative changes consistent with UKCP-Global. More detailed analysis of daily 

weather regimes reveals a future shift towards reduced occurrence of anticyclonic patterns 

accompanied by increased frequency of cyclonic or zonal flow conditions, in both sets of projections 

(Fabiano et al., 2021; Dorrington et al., 2022; Pope et al., 2022). 

 The CMIP6 ensemble also shows no preferred sign in its projected changes in July-August SNAO. 

Simulations showing negative (positive) changes in the SNAO index are more likely to show increases 

(reductions) in July-August rainfall. The models tend to underestimate the strength of the observed 

historical relationship between SNAO and UK rainfall. Therefore, the hydrological influence of future 

SNAO changes is also likely to be underestimated, though additional factors will affect the projected 

rainfall changes.  The UKCP-Global projections cover slightly narrower ranges of change for both 

variables, showing a greater preference for positive SNAO changes with a larger fraction of simulations 

projecting drying of 30% or more. This arises from the influence of GC3.05-PPE members, which favour a 

shift to the positive phase accompanied by strong future drying. 



c. Context for detailed studies of regional impacts  
The global modelling results provide context for the downscaled UK projections available from 

the UKCP-Regional and UKCP-Local components of UKCP18. These are based on limited-area regional 

simulations run at 12km and 2.2km respectively (see section 1) that are used extensively to investigate 

future impacts, hazards and extreme events at high spatial resolution (see section 4b). UKCP-Local 

brings new capability for these studies, supporting understanding of potential future changes in hourly 

precipitation, hail, lightning, extreme windstorms and urban heat impacts. In winter, the 2.2km 

simulations project larger increases in seasonal-mean precipitation than the GC3.05-PPE driving 

simulations, because their explicit representation of convective-scale dynamics captures advection of 

maritime showers over land, a process missing from current global models (Kendon et al., 2020).  

The CMIP6 results join the other components of UKCP18 in providing a broader uncertainty 

context for UKCP-Regional and UKCP-Local. The downscaled products are currently derived only from 

GC3.05-PPE members, and consequently sample a limited range of (high-end) surface temperature 

changes in the UK, particularly in summer when the multi-year mean rainfall changes in England are also 

limited to outcomes featuring strong drying. The CMIP6, UKCP-Global and UKCP-Probabilistic results 

emphasise the importance of adding representation of structural modelling uncertainty, by including 

projections derived from alternative international climate models. Accordingly, an update to UKCP-

Regional and UKCP-Local is being prepared, that will add 12km and 2.2km regional projections driven by 

four CMIP5 models. 

Presentation of regional changes conditioned on specific global warming levels (GWLs) is a format 

growing in popularity and used extensively in the latest UK climate change risk assessment (Betts and 

Brown, 2021). When regional changes are expressed per unit global warming, CMIP6 results generally 

show reasonable consistency with ranges of change from UKCP-Global and UKCP-Probabilistic. However, 

no CMIP6 outcomes lie in the upper quartile of the UKCP-Probabilistic distributions for winter 

precipitation in Scotland, or summer temperature in England. 

The GC3.05-PPE (and hence UKCP-Regional and UKCP-Local) members show relatively narrow 

ranges of normalised warming. This implies that GWL-based assessments of indicators bearing a strong 

relationship to average warming are likely to be overconfident, if based solely on UKCP-Regional or 

UKCP-Local in their current form. Central estimates of response are likely to be more reliable, since 

median national warming per unit increase in GMST is similar for the downscaled products and CMIP6, 

UKCP-Global or UKCP-Probabilistic. 

Many applications of UKCP-Regional and UKCP-Local relate to assessments of future extreme 

events, which are subject to a range of potential influences (e.g. Kendon et al., 2010). Some of these 

drivers (such as increases in atmospheric specific humidity or changes in the seasonal cycle of soil 

moisture) may possess relatively strong thermodynamic links to regional temperature changes. Others 

(such as changes in regional storm dynamics, e.g. Chan et al., 2018) could exert influences on local 



extremes that are relatively independent of regional average warming. Therefore, more research is 

needed to understand the influences and sampling characteristics of a broader set of large-scale drivers, 

to evaluate the utility of the existing regional and local UKCP data and understand the potential benefits 

of future updates.      

d.  Creating reliable projections 
Our analysis of UK projections from CMIP6 models provides a “first look” inclusive of all available 

models. The CMIP6 multi-model ensemble provides a rich source of data for potential use in studying 

impacts and risks in the UK and other regions. This would require sub-selection or weighting of CMIP6 

simulations based on qualitative and/or quantitative performance indicators. For such exercises, two 

distinct types of information include metrics expressing: (i) recent climatology (either as long-term 

averages of basic variables, measures of climate variability, or specialised indicators capturing specific 

phenomena); (ii) changes in climate observed since the industrial revolution, in variables such as surface 

temperature or ocean heat content. 

In UKCP-Global, information of type (i) was used to screen potential CMIP5 models, while 

information of both types was used to select GC3.05-PPE variants. In UKCP-Probabilistic, types (i) and (ii) 

were combined to assign weights to alternative realisations of future climate anomalies, each type 

contributing significantly to the constraining impact of the observations (Hegerl et al., 2021). Regarding 

CMIP6 models, IPCC provided constrained projections of GMST by combining three methods based on 

historical surface temperature changes (Lee et al., 2021). Brunner et al. (2020a) found reductions in 

projected GMST changes when applying a set of constraints combining types (i) and (ii), because some 

CMIP6 models with high future warming received lower performance weights. 

For regional projections, Hausfather et al. (2022) suggest that models with possessing ECS or TCR 

values outside likely ranges assessed by IPCC (for example, models with ECS>5°C) should be excluded 

from scenario-based impacts studies in which the temporal trajectory of future global warming is 

important, irrespective of other performance metrics. However, such an approach is questionable 

(Bloch-Johnson et al., 2022), since historical warming exerts only a moderate constraint on ECS due to 

the influences of uncertain factors including historical aerosol forcing and the influence of time-varying 

patterns of warming (Andrews et al., 2019; Sherwood et al., 2020; Smith et al., 2021). 

Palmer et al. (2023) use a set of type (i) criteria to recommend a screened subset of CMIP6 models 

for impacts studies in Europe (section 4d), finding that this approach favours models with high ECS. 

When applying type (ii) criteria, Palmer et al. find that lower ECS models are favoured and the 

distribution of projected European warming shifts to lower values. This highlights the importance of 

specifying appropriate error tolerances in weighting or screening model simulations, to retain an 

appropriate balance between ruling out unrealistic simulations while retaining an ensemble large 

enough to support realistic uncertainty estimates for user applications.  



The CMIP6 results are a potential source of information for a future update to UKCP, alongside new 

results from improved models developed by the Met Office and other modelling centres for the next 

phase of CMIP. Another potential source is ensemble projections created by applying alternative initial 

states to a single climate model (e.g. Lehner et al., 2020). In such an update, priorities would include 

resolving, where feasible, limitations of the current UKCP datasets. For example, the impact of advection 

of maritime showers in enhancing winter precipitation changes over the terrestrial UK is currently 

captured only in UKCP-Local. This effect could potentially be included in a future release of UKCP-

Probabilistic, by combining UKCP-Global and UKCP-Local information in an updated methodology. The 

incomplete representation of uncertainties in UKCP-Regional and UKCP-Local could also be addressed, 

by designing new projections in which the selection of global driving models samples more evenly the 

distributions of UKCP-Probabilistic and UKCP-Global outcomes derived by combining single- and multi-

model information. 

However, plans for a potential major update to the UKCP scenarios are contingent upon ongoing 

research and assessment of priorities and needs for new UK climate information. Prior to any major 

update, additions to the existing UKCP18 results will be produced as opportunities and user needs arise. 

One driver for these will be the next statutory Climate Change Risk Assessment 

(https://www.legislation.gov.uk/ukpga/2008/27/contents).    
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Appendix: CMIP6 models used in each figure 
 
The table below maps usage of CMIP6 models in Figures 3-20. The set of models varies, dependent on 
data availability and timings of the analyses collated in this report. Model configuration details are 
available in IPCC (2021).  In all cases, we use the ensemble member denoted by “r1i1” in the variant 
label used to identify each CMIP6 simulation. This identifies the realisation number and initialisation 
method used in cases where several simulations started from different initial states are available. See 
https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html. 
 

CMIP6 models Figures 

3-4 5-7 8-9 10 11 12-15 16 17-18 19-20 

ACCESS-CM2 X X X X X X X X  

ACCESS-ESM 1-5 X X X X X X X X X 

AWI-CM-1-1-MR X X  X X X X X  

AWI-ESM-1-1-LR  X  X      

BCC-CSM2-MR X X X X X X X X X 

BCC-ESM1 X X X X      

CAMS-CSM1-0 X X X X X X X X X 

CAS-ESM2-0  X X X      

CESM2 X X X X X X  X X 

CESM2-FV2 X X X X      

CESM2-WACCM X X X X  X   X 

CESM2-WACCM-FV2 X X X X      

CIESM X X X X X X X X  

CMCC-CM2-HR4  X X X      

CMCC-CM2-SR5 X X X X X X X X  

CMCC-ESM2  X X X      

CNRM-CM6-1 X X X X X X X X X 

CNRM-CM6-1-HR X X X X  X X X X 

CNRM-ESM2-1 X X X X X X X X X 

CanESM5 X X X X X X X X X 

E3SM-1-0 X X X X X X  X  

E3SM-1-1 X X X X X X    

E3SM-1-1-ECA X X X X X X  X  

EC-Earth3 X X X X X X X X X 

EC-Earth3-AerChem X X X X      

EC-Earth3-CC  X X X      

EC-Earth3-Veg X X X X X X X X X 

EC-Earth3-Veg-LR  X X X      

FGOALS-f3-L X X X X X X X  X 

FGOALS-g3 X X X X X X X X X 

FIO-ESM-2-0 X X X X X X X X  

GFDL-CM4 X X X X X X  X X 

GFDL-ESM4 X X X X X X X X X 

GISS-E2-1-G X X X X X X X X X 

GISS-E2-1-G-CC X X X X      

GISS-E2-1-H X X X X X X X X  

GISS-E2-2-G  X X X      

GISS-E2-2-H  X X X      

GISS-E3-G  X X X      

 
  

https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html
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Table of CMIP6 models used in Figures 3-20, continued from previous page. 
 

CMIP6 models 
(continued) 

Figures 

3-4 5-7 8-9 10 11 12-15 16 17-18 19-20 

HadGEM3-GC31-MM X X X X X X X X X 

HadGEM3-GC31-LL X X X X X X X X X 

IITM-ESM X X  X X X X X  

INM-CM4-8 X X X X X X X X X 

INM-CM5-0 X X X X X X X X X 

IPSL-CM5A2-INCA  X X X      

IPSL-CM6A-LR X X X X X X X X  

IPSL-CM6A-LR-INCA  X X X      

KACE-1-0-G X X X X X X X X X 

KIOST-ESM  X X X      

MCM-UA-1-0  X X X  X X   

MIROC-ES2L X X X X X X X X X 

MIROC6 X X X X X X X X X 

MPI-ESM-1-2-HAM  X X X      

MPI-ESM1-2-HR X X  X X X X X X 

MPI-ESM1-2-LR  X X X      

MRI-ESM-2.0 X X X X X X X X X 

NESM3 X X X X X X X X X 

NorCPM1 X X X X      

NorESM2-LM X X X X X X X  X 

NorESM2-MM  X X X      

SAM0-UNICON X X X X      

TaiESM1 X X X X X X X X X 

UKESM1-0-LL X X  X X X X X X 

UKESM1-1-LL  X  X      

 
 


