


# Met Office User Forum 2023

Thursday 9<sup>th</sup> November 2023



www.metoffice.gov.uk



## **Today's Speakers:**





## Today's Session:

- 1. Welcome and Introductions
- 2. International Activities
- 3. Finances
- 4. National Aviation Service
- 5. SWIM services including SESAR & PCP
- 6. Aviation Research and Development
- 7. 3-month weather outlook brief
- 8. Specific issues raised by members
- 9. Any other business
- 10. Date of Next Meeting



### **International Activities**

Mark Gibbs Head of Transport

© Crown Copyright 2023, Met Office

www.metoffice.gov.uk

## Content

- 1. World Area Forecast System (WAFS) upgrade
- 2. Volcanic Ash Advisory Centres (VAAC) changes
- 3. Secure Aviation Data Information Service (SADIS)



### World Area Forecast System (WAFS) upgrade

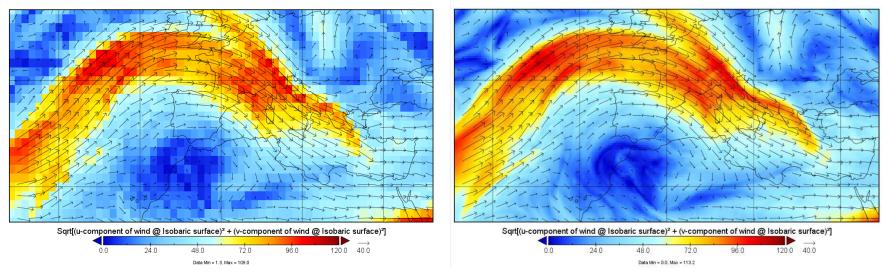
# WAFS gridded data upgrade

- Many more vertical levels
- More timesteps
- Wind, temperature, relative humidity, geopotential height at 0.25 degree resolution

Upgrade is associated with Amendment 81 to ICAO Annex 3, effective November 2024 but we will have this new data available from end of 2023.






## WAFS gridded data upgrade

#### Current 1.25 degree resolution

New 0.25 degree resolution

wind vector @ FL300 (300hPa)





| Flight<br>Level | ICAO<br>Standard<br>Atmosphere<br>pressure level<br>(hPa) | Geopotential<br>Altitude | Wind | Temperature | Turbulence<br>Severity | lcing<br>Severity | Humidity |
|-----------------|-----------------------------------------------------------|--------------------------|------|-------------|------------------------|-------------------|----------|
| FL050           | 843.1                                                     | X                        | х    | x           |                        | х                 | ×        |
| FL060           | 812.0                                                     | Х                        | Х    | х           |                        | х                 | Х        |
| FL070           | 781.9                                                     | Х                        | Х    | х           |                        | Х                 | Х        |
| FL080           | 752.6                                                     | x                        | х    | x           |                        | х                 | ×        |
| FL090           | 724.3                                                     | х                        | х    | ×           |                        | х                 | х        |
| FL100           | 696.8                                                     | х                        | х    | x           | x                      | x                 | ×        |
| FL110           | 670.2                                                     | х                        | х    | х           | х                      | х                 | х        |
| FL120           | 644.4                                                     | х                        | х    | х           | х                      | х                 | х        |
| FL130           | 619.4                                                     | х                        | х    | х           | х                      | х                 | х        |
| FL140           | 595.2                                                     | х                        | х    | х           | x                      | x                 | x        |
| FL150           | 571.8                                                     | х                        | х    | х           | х                      | х                 | х        |
| FL160           | 549.2                                                     | х                        | х    | х           | х                      | х                 | х        |
| FL170           | 527.2                                                     | х                        | х    | х           | х                      | х                 | х        |
| FL180           | 506.0                                                     | х                        | х    | x           | x                      | х                 | x        |
| FL190           | 485.5                                                     | х                        | х    | х           | х                      | х                 |          |
| FL200           | 465.6                                                     | х                        | х    | х           | х                      | х                 |          |
| FL210           | 446.5                                                     | ×                        | x    | ×           | ×                      | x                 |          |
| FL220           | 427.9                                                     | х                        | х    | х           | х                      | х                 |          |
| FL230           | 410.0                                                     | х                        | х    | х           | х                      | х                 |          |
| FL240           | 392.7                                                     | ×                        | х    | x           | x                      | ×                 |          |
| FL250           | 376.0                                                     | х                        | х    | х           | х                      | х                 |          |
| FL260           | 359.9                                                     | х                        | х    | х           | х                      | х                 |          |
| FL270           | 344.3                                                     | ×                        | x    | ×           | ×                      | х                 |          |
| FL280           | 329.3                                                     | х                        | х    | х           | х                      | х                 |          |
| FL290           | 314.9                                                     | х                        | х    | х           | х                      | х                 |          |
| FL300           | 300.9                                                     | x                        | х    | x           | x                      | x                 |          |
| FL310           | 287.4                                                     | х                        | х    | х           | х                      |                   |          |
| FL320           | 274.5                                                     | x                        | x    | х           | х                      |                   |          |
| FL330           | 262.0                                                     | х                        | х    | х           | х                      |                   |          |
| FL340           | 250.0                                                     | x                        | x    | x           | x                      |                   |          |
| FL350           | 238.4                                                     | х                        | х    | х           | х                      |                   |          |
| FL360           | 227.3                                                     | x                        | x    | x           | х                      |                   |          |
| FL370           | 216.6                                                     | х                        | х    | х           | х                      |                   |          |
| FL380           | 206.5                                                     | х                        | х    | х           | х                      |                   |          |

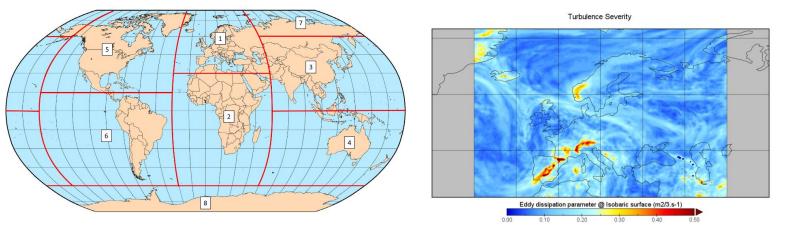
### Vertical Levels

| FL390 | 39000 | х | 196.8 | × | х | x |  |
|-------|-------|---|-------|---|---|---|--|
| FL400 | 40000 | х | 187.5 | х | х | х |  |
| FL410 | 41000 | x | 178.7 | × | х | х |  |
| FL420 | 42000 | х | 170.4 | х | х | х |  |
| FL430 | 43000 | х | 162.4 | х | х | х |  |
| FL440 | 44000 | х | 154.7 | х | х | х |  |
| FL450 | 45000 | x | 147.5 | × | x | x |  |
| FL460 | 46000 | х | 140.6 | х | х |   |  |
| FL470 | 47000 | х | 134.0 | х | х |   |  |
| FL480 | 48000 | х | 127.7 | × | х |   |  |
| FL490 | 49000 | х | 121.7 | х | х |   |  |
| FL500 | 50000 | х | 116.0 | х | х |   |  |
| FL510 | 51000 | х | 110.5 | х | х |   |  |
| FL520 | 52000 | х | 105.3 | х | х |   |  |
| FL530 | 53000 | x | 100.4 | × | x |   |  |
| FL540 | 54000 | х | 95.7  | х | х |   |  |
| FL550 | 55000 | х | 91.2  | х | х |   |  |
| FL560 | 56000 | х | 87.0  | х | х |   |  |
| FL570 | 57000 | х | 82.8  | х | х |   |  |
| FL580 | 58000 | х | 79.0  | х | х |   |  |
| FL590 | 59000 | х | 75.2  | х | х |   |  |
| FL600 | 60000 | х | 71.7  | х | х |   |  |

#### Data shown in blue is what is currently available.

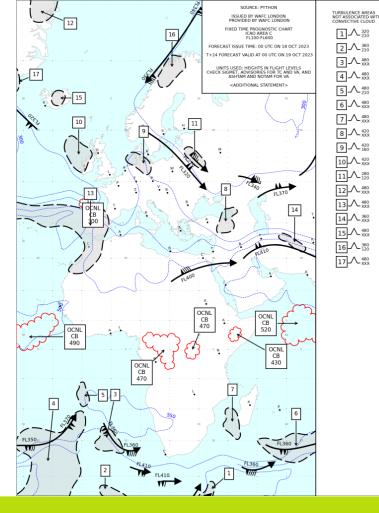
Note: Data will be produced for exact pressure levels e.g., 392.7hPa for FL240 instead of the current 400hPa

## WAFS gridded data upgrade


Forecast timesteps

| Upper-air grid point forecasts 1-hourly intervals |                                                    | 3-hourly intervals                          | 6-hourly intervals                                                |  |  |
|---------------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|--|--|
| Wind, temperature, geopotential altitude          | 6, 7, 8, 9, 10, 11, 12,<br>13, 14, 15, 16, 17, 18, | 27, 30, 33, 36, 39, 42,<br>45 and 48 hours* | 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114 and 120 hours*      |  |  |
| Flight level and temperature of<br>tropopause     | 19, 20, 21, 22, 23 and 24 hours*                   |                                             |                                                                   |  |  |
| Direction, speed and flight level of maximum wind |                                                    |                                             | Note data from 72hours onward<br>will only be produced for two of |  |  |
| Humidity                                          |                                                    |                                             | the four daily model runs.                                        |  |  |
| Cumulonimbus extent, base and top                 | 6, 7, 8, 9, 10, 11, 12,<br>13, 14, 15, 16, 17, 18, | 27, 30, 33, 36, 39, 42,<br>45 and 48 hours* | Not provided                                                      |  |  |
| lcing                                             | 19, 20, <mark>21</mark> , 22, 23 and               |                                             |                                                                   |  |  |
| Turbulence                                        | 24 hours*                                          |                                             |                                                                   |  |  |

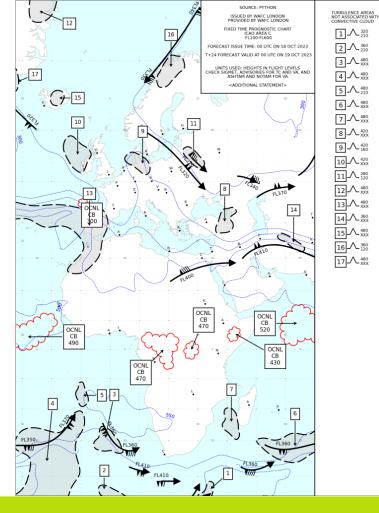
Timesteps shown in blue is what is currently available.


# WAFS gridded data upgrade

- New platform for the delivery of WAFS gridded data (SADIS API)
- SADIS API will be a SWIM compliant API that conforms to EUROCONTROL standards.
- Users will be able to take global coverage data or for preset areas (tiles)



# WAFS SIGWX upgrade


- Introduction of multi-timestep SIGWX forecasts
- Current SIGWX T+24 only. New SIGWX T+6 to T+48 at 3-hour intervals. Updated 4x daily.
- New SIGWX better suited for the needs of aviation, particularly short haul and ultralong haul. Users will be able to easily see how SIGWX features evolve and move over time.

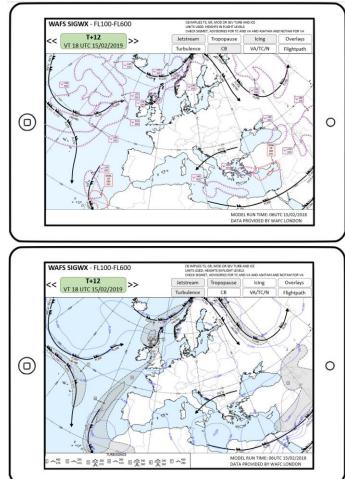


# WAFS SIGWX upgrade

SIGWX content changes:

- Medium Level SIGWX retired. New SIGWX will span FL100 to FL600
- Tropopause height contours instead of spot heights
- Only OCNL/FRQ CB amounts
- Icing areas available for whole globe




# WAFS SIGWX upgrade

SIGWX content changes:

 New SIGWX format being introduced (IWXXM, a form of XML) which users will be expected to integrate into their systems to be able to visualise it in a way that meets their specific needs

e.g., custom colour schemes, toggle layers on and off, change time-step, overlay other data)

- We won't provide briefing charts for the new SIGWX forecasts, apart from the legacy T+24 high level SIGWX map areas which will be retired in Nov 2028.
- The new SIGWX will be available on the SADIS API from January 2024 for testing/setup before it become fully operational in July 2024.



## **More information**

#### November/December 2023

- WAFS gridded data upgrade
- SADIS API's for gridded data becomes operational

#### February 2024

 SADIS API for global OPMET (METAR, TAF, SIGMET etc) data becomes operational

### July 2024

- Multi timestep SIGWX in IWXXM format introduced.
- SADIS API for SIGWX data becomes operational
- Retirement of medium level SIGWX

### July 2026

 Retirement of BUFR format SIGWX

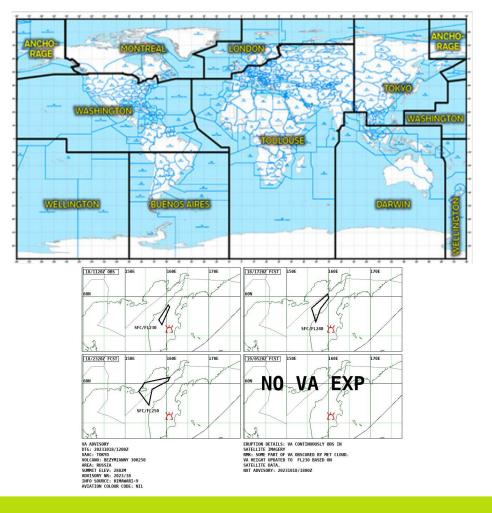
#### November 2027

Introduction of probabilistic
 WAFS forecasts (hazards),
 made available through the
 SADIS and WIFS API's

#### November 2028

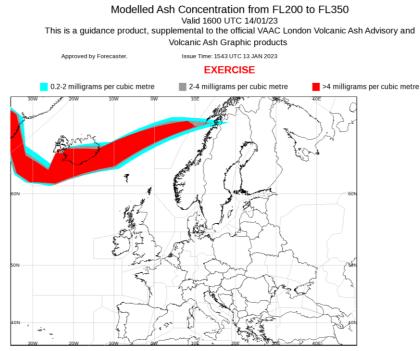
 Retirement of SADIS FTP including the T+24 "paper copy" charts

More information: https://www.metoffice.gov.uk/services/transport/aviation/regulated/wafs-2023




## Volcanic Ash Advisory Centre (VAAC) Changes

### Volcanic Ash Advisory Centres (VAAC)


Met Office is one of nine VAAC's which have been working on the next generation of volcanic ash forecasts.

Iceland Met Office informs us if there is an eruption, and we issue Volcanic Ash Advisories and Volcanic Ash Graphics. These have a limited number of points and are only for "discernible ash"



### Volcanic Ash Advisory Centres (VAAC)

New volcanic ash provision builds on the concentration charts that the Met Office has been producing since 2010.



© Crown Copyright 2023 Source: Met Office

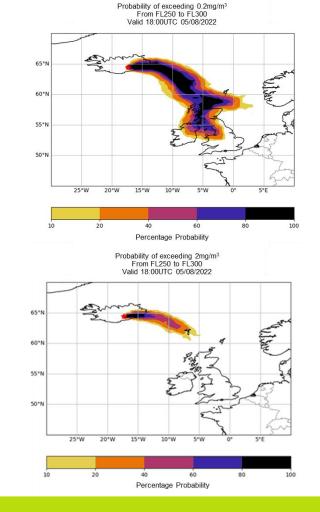
This product has three vertical levels, three concentration bands and four timesteps

## **Quantitative Volcanic Ash (QVA)**

- Being introduced as a new provision into ICAO Annex 3 with Amendment 81(its next update)
- Recommendation for VAAC's "in a position to do so" to provide QVA forecasts in November 2024, then all VAACs by November 2025.
- Stakeholders (IATA, IFALPA, ICCAIA) helped to define the Initial Operating capability in conjunction with the VAAC's



## **Quantitative Volcanic Ash**


Data sets

- 1) A deterministic gridded data set
- 2) The probability of exceeding four different concentration thresholds

|                        | -                                                   |  |  |  |
|------------------------|-----------------------------------------------------|--|--|--|
| Descriptor             | Ranges                                              |  |  |  |
| Very high              | Equal to or above 10 mg/m <sup>3</sup>              |  |  |  |
| High                   | Equal to or above 5 and below 10 mg/m <sup>3</sup>  |  |  |  |
| Medium                 | Equal to or above 2 and below 5 mg/m <sup>3</sup>   |  |  |  |
| Low <sup>a)</sup>      | Equal to or above 0.2 and below 2 mg/m <sup>3</sup> |  |  |  |
| Very low <sup>b)</sup> | Below 0.2 mg/m <sup>3</sup>                         |  |  |  |

a) 0.2 mg/3 is the agreed quantitative threshold for discernible ash.

b) Ash that may be detectable by more sensitive satellite and other remote sensing or in-situ monitoring capabilities.

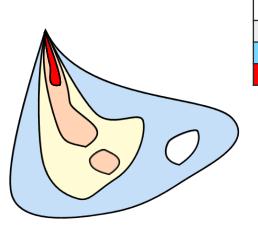


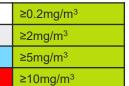
## **Quantitative Volcanic Ash**

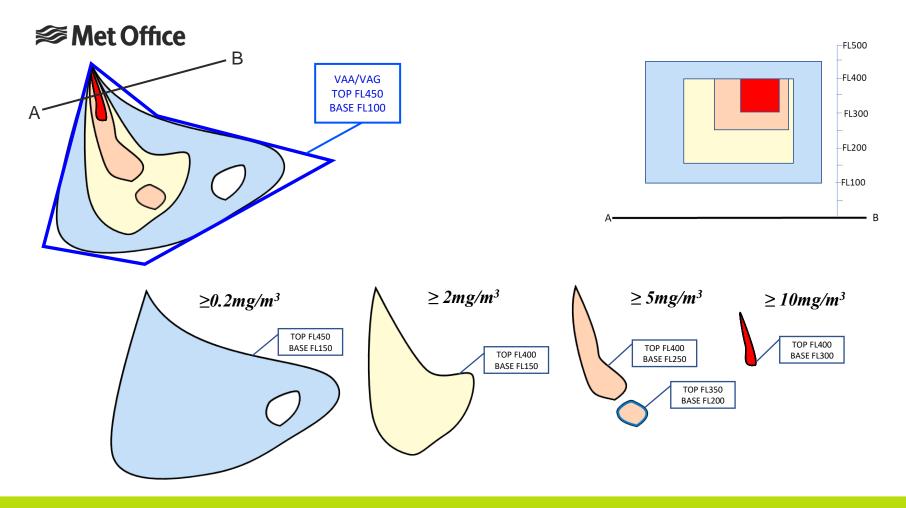
#### Data sets

### Vertical resolution

| From me  | an sea level to and including flight level (FL) 50 |
|----------|----------------------------------------------------|
| Above FL | L 50 to and including FL 100                       |
| Above FL | L 100 to and including FL 150                      |
| Above FL | L 150 to and including FL 200                      |
| Above FL | L 200 to and including FL 250                      |
| Above FL | L 250 to and including FL 300                      |
| Above FL | L 300 to and including FL 350                      |
| Above FL | L 350 to and including FL 400                      |
| Above FL | L 400 to and including FL 450                      |
| Above Fl | L 450 to and including FL 500                      |
| Above FL | L 500 to and including FL 550                      |
| Above FL | L 550 to and including FL 600                      |


Horizontal resolution and forecast timesteps


- 0.25-degree horizontal resolution
- QVA information will be provided in the following three hourly valid time increments: 0, 3, 6, 9, 12, 15, 18, 21 and 24 hours.


# **Quantitative Volcanic Ash**

### Data sets

3) A SIGWX like data set that can be used for situational awareness (will be created from the deterministic gridded data).







www.metoffice.gov.uk

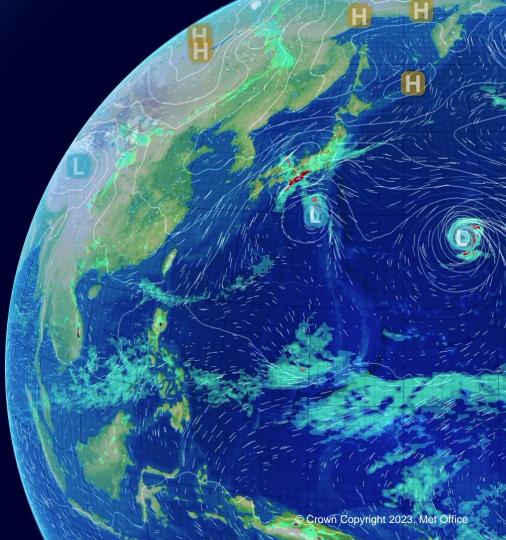
© Crown Copyright 2023, Met Office

## **Quantitative Volcanic Ash**

- QVA forecasts will be provided for "Significant" volcanic ash clouds
- Exact definition still being defined but is likely to include:
  - an ash cloud with a vertical extent to at least FL 300, and/or
  - an ash cloud within (or expected to move within) approximately 100nm of a commercial aerodrome

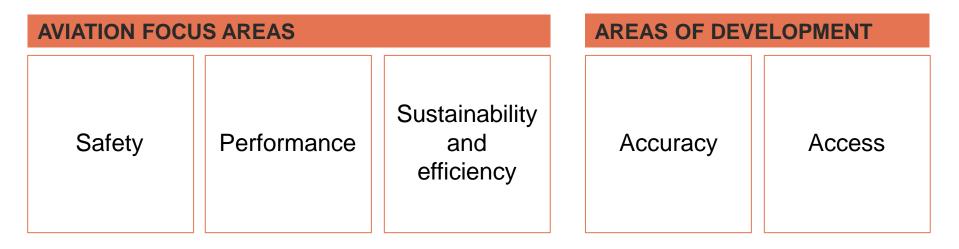


## **Quantitative Volcanic Ash**


- QVA forecasts be distributed using a SWIM compliant API that conforms to EUROCONTROL standards.
- Alongside this there will be a notification system that users can listen to, which will alert to new QVA data being published.
- New QVA and the QVA API expected to go live in November 2024.

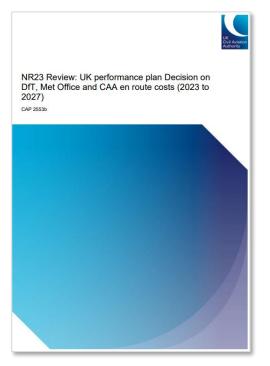





## Update on Finances

Mark Gibbs Head of Transport






## Aims of the Met Office for Aviation Services



Corporate target of net-zero by 2030

## NR23 Decision (CAP2553b)

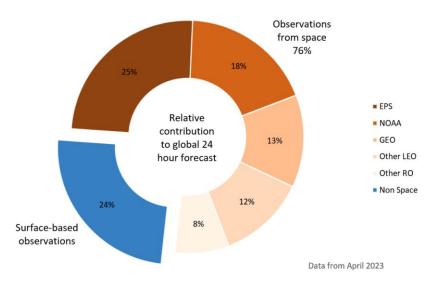


#### **Our Decision**

2.10 For the reasons set out above and in our Initial Proposals, our Decision on Met Office Determined Costs for NR23 is as set out in Table 2.2 below.

#### Table 2.2 Met Office NR23 Determined Costs (nominal and 2020 prices)

| £m                                                     | 2023 | 2024 | 2025 | 2026 | 2027 | NR23<br>Total |
|--------------------------------------------------------|------|------|------|------|------|---------------|
| National Capability and International<br>Subscriptions | 19.2 | 23.6 | 25.8 | 25.9 | 26.4 |               |
| Aviation MET Service Delivery                          | 8.2  | 8.1  | 6.8  | 6.7  | 6.6  |               |
| Aviation MET Service Development                       | 7.6  | 7.5  | 6.7  | 6.6  | 6.8  |               |
| Total Determined Costs (nominal)                       | 35.0 | 39.2 | 39.3 | 39.2 | 39.7 | 192.4         |
| Total Determined Costs (2020 prices)                   | 29.5 | 32.7 | 32.8 | 32.5 | 32.5 | 160.0         |


Source: Met Office



Met Office NR23 costs were originally set in 2022 prices. This means the updated inflation data has had a minor impact on both nominal and 2020 CPI prices.

### National Capability & International subscriptions





- An annualised charge to PWS recovers the total cost of EUMETSAT programmes over their life.
- The current EUMETSAT charge is artificially low as current programmes have had their lives extended
- 2025 cost is a better reflection of these costs.

### Meteosat (geostationary) – From MSG to MTG

From 2024 15 minutes 12 1-3km

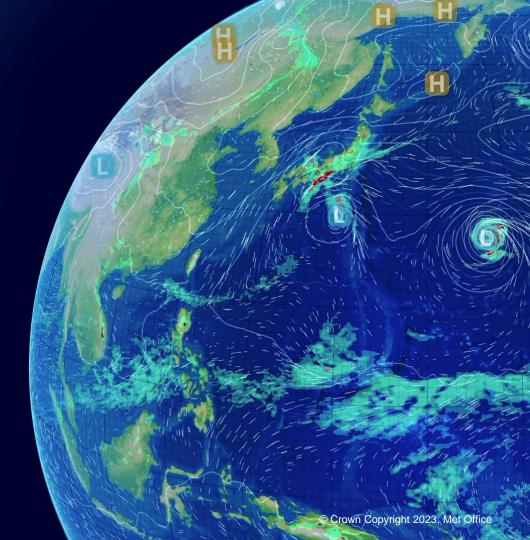
→ 10 minutes (5 → 2.5 min rapid scan) → 16 spectral channels → 0.5-2km pixel size

NEWLightning detectionNEWHyperspectral IRNEWUV sounding (Sentinel-4)

### Metop (polar) – towards second generation

From 2025 More capable Imager, IR sounder, MW sounder, Scatterometer, GNSS radio occultation

- NEW Ice cloud imager
- NEW Microwave imager
- NEW Multi-Viewing Multi-Channel Multi-Polarisation Imager

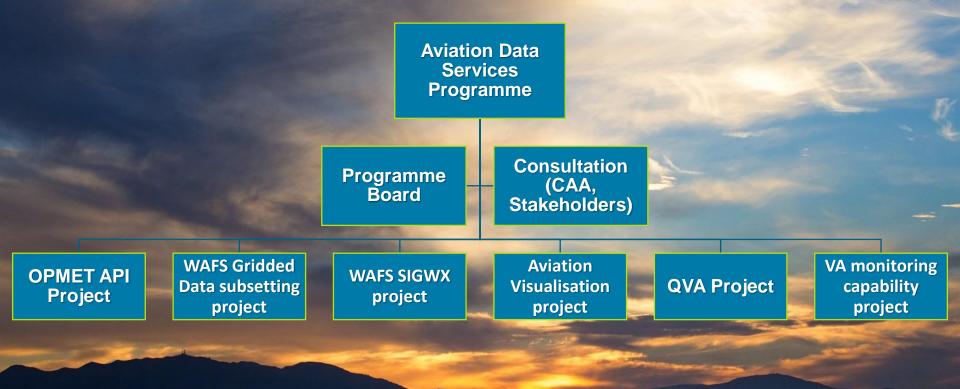

## 2023 Finances

- Determined cost £32.93m + CPI for CY2023 £35.0m
- Current forecast for 2023 £35.3m
  - Utilising underspend from previous years
  - Key variances
    - +£2.5m ADS development (AVS lifecycling)
    - -£1.1m VA monitoring (delayed to 2024)
    - -£1m National Met Programme



### National Aviation Services

**Darren Hardy** Snr National Aviation MET Advisor




## Content

- 1. AVS Vision and Goals
- 2. Understanding the 'As Is'
- 3. User Research Findings
- 4. 'To Be' Solution Options & Analysis
- 5. Roadmap timeline
- 6. Potential lifecycle enhancements
- 7. Future Data Services



### **Aviation Visualisation Service**



www.metoffice.gov.uk

© Crown Copyright 2023, Met Office



### **AVS Vision & Goals**



Determined following consultation within the NR23 programme of work



# Vision and Goals for AVS

# Why?

1. An unavoidable programme to re-platform services and maintain regulatory operation

2. Re platforming the services presents an opportunity to:

- modernise existing services
- simplify the services to reduce cost and so we can adapt to future user need
- Be more user focussed
- Showcase value of MO products

3. The services were designed and built in isolation of each other at different times so the experiences are inconsistent

# Vision and Goals for AVS

### **The Vision**

#### (what we want to achieve)

- To maintain the Met Office's commitment to safety and regulatory compliance with the associated reputational benefits.
- To build and run the service in the most sustainable and cost-efficient way ensuring value to users.
- Ensure **users** have a **consistent** experience, and they are engaged and **satisfied** with the services they use, **now** and in **the future**.

#### Goals (how we will measure success) 2. We will ensure user 1. We will keep and 3. We will use a maintain the strengths robust technology satisfaction. of current services. strategy & grounding. **יצ**י (°....) 5. We will use **best** 4. We will be able to 6. We will improve adapt with the most practice and align visibility and quality of appropriate across MO. metrics & information implementation of future (cost/risk/performance) enhancements. MND 7. Aspiration to exit legacy technical dependencies by March 2025. Further enhancements beyond that.



# Understanding the 'As Is'



# **Existing Estate Summary**

### **Services**

### ABS

- A service used by the UK Aviation community to plan their flights up to 2 days in advance. 30,000 users.
- In general, users would like more data and an easier way to access the service.

#### **NWR**

- A service very similar to ABS used for situational awareness by airlines and airport operations.
- A more granular control version of the threshold settings would be valuable for a range of users.

#### **OpenRunway**

- Current commercial offering from Met Office mainly used by airports and airlines.
- · Most organisations only use OR during the winter months.

#### **HeliBrief**

- Used by Emergency Service Helicopter Operators for constant awareness of weather and Offshore Helicopter Operators to plan flights.
- The service includes additional, specific information. Users need similar info to users of other services, but their requirements are especially time critical.

# **Design Approach**

#### Workstreams

#### **Service Design**

- Assess holistic 'as-is' landscape by speaking to SMEs/stakeholders and conducting desk research
- Support user research planning, facilitation and synthesis

#### **User Research**

- Plan and conduct user research with participants from different user groups who use the various existing services
- Synthesise raw findings

#### Output

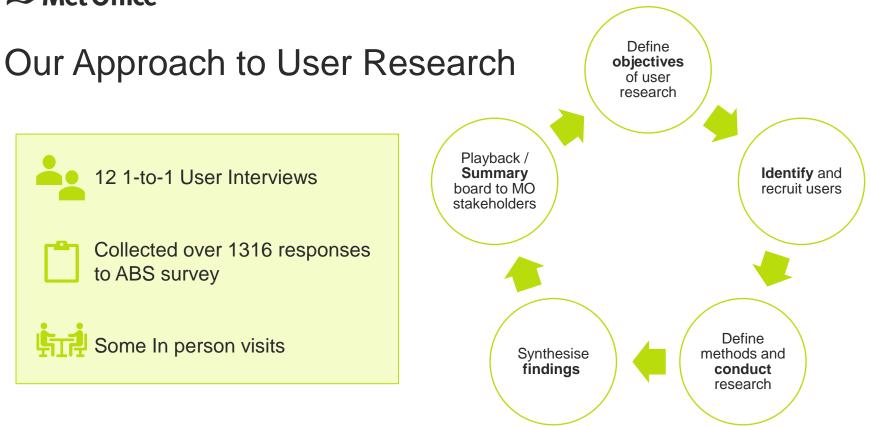
Consolidated information to create an artefact which communicated the options and provide evidence for recommendation

Created an artefact that communicated key insights, pains and opportunities for user groups and services



# User Research findings

"It would be good if there is a hub, one place for a single service" - Network Weather Resilience user




# **Overview of User Research**

### Aim of User Research

To better understand MO service user's role, needs and frustrations to understand how things work now and where things can be improved.

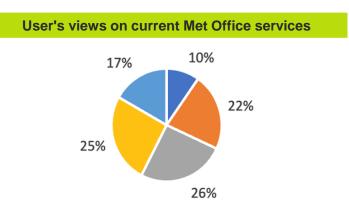
- Identify primary and secondary users of the services
- Understand how users are currently using weather information to make flight and operational decisions
- Identify what users are trying to achieve
- Learn about the different weather tools users use to make flight decisions
- Understand where/if services overlap or depend on each other (from a user perspective)
- Understand appetite for change
- Uncover pain points and opportunities



# Key Customer Insights

These are just some of the high-level insights from the user research

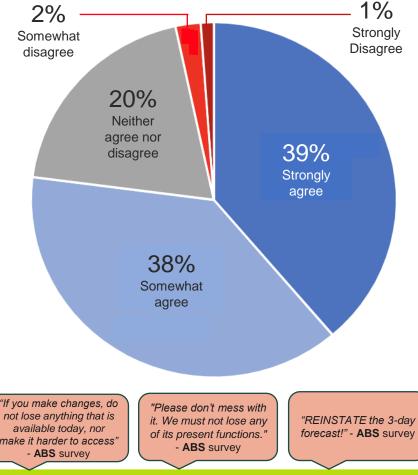
| As a user I <mark>need</mark>                                                                                                                                                    | My <mark>pain</mark> points are…                                                                                                                                                                                                                                                                                                                                        | Opportunities to address these are                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| to reduce unnecessary operating costs                                                                                                                                            | <ul> <li>Information essential for work and safety is behind a paywall and some paid Met Office data is available for free on other apps</li> <li>Some airports only use OR during key winter months</li> </ul>                                                                                                                                                         | <ul> <li>If there is other data available on services, would be good to have the option to obtain relevant parts of what they have</li> <li>Make premium service free</li> </ul>                                                                                                                                                                                                                                                                                                       |  |  |
| <ul> <li>a visual display of information</li> <li>to understand important information at a glance</li> </ul>                                                                     | <ul> <li>Users rely heavily on weather visualisations across MO services for at a glance information, but cluttered maps and raw coded data adds mental processing</li> <li>There's a lack of customisation, thresholding and colour coding in particular, which make it harder to gain a quick understanding and limit guidance for less experienced pilots</li> </ul> | <ul> <li>Have a customisable list of airports for TAF, METAR<br/>and warnings and remove default of balloon sites showing</li> <li>Be able to set personal RAG thresholds. Ideally for<br/>each site</li> <li>Personalised homepage with info for quick overlay</li> </ul>                                                                                                                                                                                                             |  |  |
| <ul> <li>access to any information that can help make safer flying decisions</li> <li>information critical to operations to be available (e.g TAFS, METARS, overlays)</li> </ul> | <ul> <li>Some users were aware of more than one service and were surprised that different data was available in different services</li> <li>People go to other websites to get information they feel they are missing</li> <li>Short term forecasting: missing detail, no way to pick out any detail on it</li> </ul>                                                   | <ul> <li>Emergency service pilots feel it would be good for people to have access to more site-specific data to support safer flying decisions</li> <li>It would be good if there is a hub - one place for all information, a single service</li> <li>Users suggested consolidating services (e.g Merge Helibrief and GA products into something coherent - GA map provides greater time resolution, but Helibrief shows METAR AND TAF data when an airfield is highlighted</li> </ul> |  |  |


# **Current View of Met Office Services**

- There is a high level of trust for the Met Office brand and data.
- Weather visualisations are key for planning and decision making for all users.
- Some users are keen to adopt the Met Office's aviation weather visualisation services more widely in their organisation if they fulfil their needs better.

The ABS survey found only **10%** of users agree that **'the service provides all the information they need in one place**'. Some users are looking at alternative weather visualisation services to get any additional information.

At least **15%** of people are **using another service to help fill information gaps, some of which are weather related**.


This strongly supports the idea of providing more weather data to more users in one place.



- The service provides all information I need in one place
- The service provides accurate data
- The service is reliable
- The service provides relevant data for my operation
- The service provides timely data

# Appetite for Change

- User Research suggests that users have a keen appetite to . change
- 77% of users from the ABS survey agreed that they were open • to the idea of change
- 20% of users remained neutral .
- And **3%** were **not** open to change. However, feedback ٠ indicates that resistance to change may be due to previous digital service changes making the service harder to use and/or removing valuable information.



"I'm open to change" -Helibrief user

"Anything that improves communication is helpful" -**OpenRunway** user

"A change to the name wouldn't bother me" - Helibrief user

not lose anything that is make it harder to access"

© Crown Copyright 2023, Met Office

www.metoffice.gov.uk



# 'To Be' Solution & Analysis

# 'To Be' Solution Options

#### **Option 1 (recommendation)**

- One Aviation Service for all needs which is configurable to meet the needs of different user groups.
- One webpage to communicate purpose and features of service, one point of access, one consolidated (but customisable) landing page

#### Option 2

- Two Aviation Services: One exclusively for HeliBrief customers with specific data, and one for all other needs.
- Two webpages to communicate purpose and features of services, two points of access, two landing pages

#### **Baseline option**

• Rebuild existing 4 UIs on top of new architecture

#### Criteria for assessing options

- User Needs from User Research Sessions & Survey
- Met Office Needs and viability for regulatory compliance and business benefits
- Technology feasibility and best practice, design principles and supportability
- Total Cost of Ownership
- Branding implications and impact on customers of change

# Recommended 'To Be' Service – Option 1

#### Concept:

- One Aviation Service for all needs which is configurable to meet the needs of different user groups
- One webpage to communicate purpose and features of service, one point of access, one consolidated (but customisable) landing page

#### **Key Points:**

- We believe this option can meet a wide range of user needs (and empower them) through customisation and user type controlled access to specialised data sets
- This is the most cost-effective option as savings can made by building, maintaining and supporting one service
- It would be easier to adapt to future user needs as features could be rolled out to all users or an organisation
- · Most efficient delivery sequence to re-platform and migrate users, and deliver tangible outcomes quickest

#### Access Model:



Premium Account Manual Validation

**0** 

Organisational Account Manual Validation

Specific Access Account (Existing Helibrief users)

Manual Validation



Individual Account

Automated Validation

# Recommended 'To Be' Service – Option 1

One Aviation Service for all needs which is configurable to meet the needs of different user groups.

#### **AVS Project Vision**

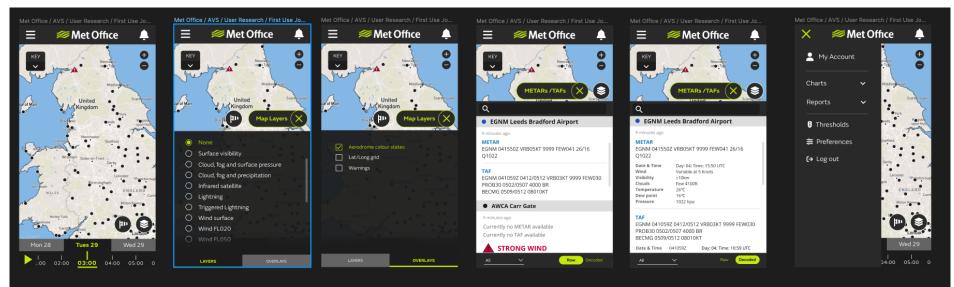
Aviation Visualisation Services maintain the Met Office's commitment to safety and regulatory compliance with the associated reputational benefits. The
services are built and run in the most sustainable and cost-efficient way ensuring value to users. Users have a consistent experience, and they are engaged
and satisfied with the services they use, now and in the future.

| main                                            | will keep and<br>ntain the<br><b>ngths of current</b><br>ices     | We will ensure <b>user</b><br>satisfaction                                                | We will use a robust<br>technology strategy<br>& grounding                 | We will be able to<br>adapt with the most<br>appropriate<br>implementation of<br>future enhancements | We will use <b>best</b><br>practice and align<br>across MO                | We will improve<br>visibility and quality of<br>metrics & information<br>(cost/ risk/<br>performance) | Aspiration to exit<br>technical<br>dependencies by<br>March 2025. Further<br>enhancements<br>beyond that. |
|-------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Consolidating the services will incorporate the | Consistently refer back<br>to user research<br>insights (strongly | Most cost effective for build (by 20%)                                                    | Having one service to<br>update makes it easier<br>and more cost effective | Single design system,<br>user experience and<br>shared, standardised                                 | Single source of user<br>management for usage<br>insights across all user | Most efficient delivery sequence to re-platform                                                       |                                                                                                           |
| stren                                           | strengths of each                                                 | indicate users satisfied                                                                  | Easiest and cost                                                           | to adapt and apply new                                                                               | components                                                                | groups                                                                                                | and migrate users, and deliver tangible                                                                   |
| service so that all users benefit.              | with unified system)                                              | effective to maintain                                                                     | beneficial features to the relevant users.                                 | Recognisable                                                                                         | Easiest to track usage                                                    | outcomes quickest                                                                                     |                                                                                                           |
|                                                 | RAG thresholds and opening on map from                            | Continuously engage with users                                                            | Most sustainable                                                           | A single source of truth                                                                             | standards will be used within the service                                 | and get feedback on<br>user needs to adapt<br>service in future                                       |                                                                                                           |
| NWR                                             | Users are fearful of                                              |                                                                                           | of aviation data that is common for all users                              |                                                                                                      |                                                                           |                                                                                                       |                                                                                                           |
| MET                                             | METAR/TAF lists from                                              | change making the experience worse                                                        |                                                                            | and maintainable                                                                                     |                                                                           | Complexity of attributing HB vs ANSP                                                                  |                                                                                                           |
| Helik                                           | prief (improved)                                                  | The satisfaction of<br>HeliBrief users needs<br>to be considered as<br>they have had most |                                                                            |                                                                                                      |                                                                           | Funding allocation to<br>one aviation service<br>development                                          |                                                                                                           |

input into their service



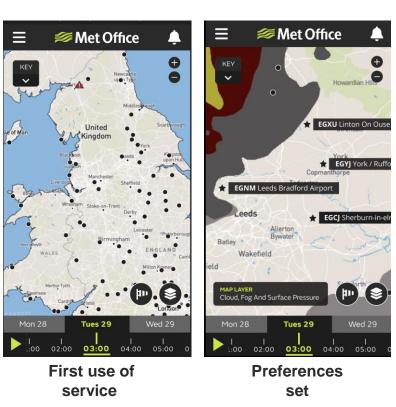
# Roadmap Timeline


| <b>≋Met</b> 0<br>Roadr                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feedback<br>Additiona<br>METARs | al data i.e.<br>, Warning<br>charts, sc | js, F215                                                                                                                         |                                                     |                                                                                                 | Decommission<br>existing services              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|
| Trying out different<br>design solutions to<br>issues learnt about<br>during discovery.<br>1 Dataset<br>Surface<br>visibility<br>map layer<br>AVS Alpha | And Standards region of the second se | Release 2                       | OpenR<br>Aviatior                       | eliBrief<br>tunway<br>n Briefing Services<br>k Weather Resilience<br><i>Parallel run, live us</i><br>AVS Public Beta<br>Releases | er feedback and user<br>AVS Public Beta<br>Releases | r <i>migration</i><br>AVS Live with<br>Base Offering<br>(achieves<br>regulatory<br>obligations) | AVS<br>enhancements<br>and premium<br>features |
| Q4 2023                                                                                                                                                 | Q1 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q2 202                          | 4                                       | Q3 2024                                                                                                                          | Q4 2024                                             | Q1 2025                                                                                         | 2025                                           |
|                                                                                                                                                         | ict Team / Spec<br>Team for beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ialist                          |                                         |                                                                                                                                  | Hurricane<br>Lanca<br>B                             |                                                                                                 |                                                |

www.metoffice.gov.uk



# **Product Design**


- · Web service, not an app but 'Mobile first'
- · Have sought very initial user feedback on basic design
- Many more iterations and feedback engagements to follow



# **Product Design**

### Top level early insights:

- Overall appetite towards the new service was positive. All participants highlighted that the ability to customise the landing page adds value
- Several users expressed that they prefer the display of METARS and TAFS in other applications
- Too many touchpoints
- Emphasis on ensuring all data is relative to their operations
- Positive response to entering the service & landing on a base map
- Let me know if you wish to be involved in testing!



**Met Office** 

# Potential lifecycle enhancements

We've heard what users are asking for and it's on our radar for future enhancements...

| Site specific<br>observation data  | Site specific model<br>forecast data                                                   | Ingestion of 3 <sup>rd</sup><br>party observation<br>data                     | Customisable<br>TAF/METAR colour<br>coding                                  | Customisable<br>TAF/METAR lists<br>(with colour coding) |
|------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------|
| Defence cross<br>section forecasts | Integration of<br>Monim data within<br>HeliBrief (a 'one<br>stop' shop)                | Improved<br>functionality of<br>Weather map<br>service                        | Webcam access                                                               | Probabilistic<br>weather map<br>layer(s)/data           |
| Icing weather map<br>layer         | Metadata (Tide<br>time data &<br>aerodrome<br>elevations)                              | Decoded<br>TAFs/METARs                                                        | Ultra hi-res data<br>(i.e. using 300 m<br>model output once<br>operational) | Temperature trends                                      |
| Merged overlays<br>feature         | A 'timestamp'<br>showing exactly<br>when weather map<br>layer data has been<br>updated | Creation of a range<br>of UK aviation data<br>for 3rd party<br>systems (APIs) | Access point for<br>commercial<br>aviation services                         | OR service<br>enhancements                              |



# **Future Data Services**

# Future data services

- A focus on API enabled data in response to feedback...
- NR23 delivers evolving Aviation requirements

#### Features:

• Data held in the **cloud** (as an enabler)



- Hi-res API enabled data for 3<sup>rd</sup> party app providers (in-flight data, EFBs, flight following software)
- Extensive data (i.e., Aviation Briefing Service products and map layer data)
- Apply Industry standards

An EU standard requirement for ATM data (inc MET)
 consistent data management
 Intersperable

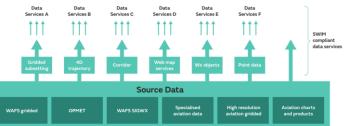
✓Interoperable

#### This will:

- Improve the ability for users to discover and access Met Office data
- Allow users to take only the data they need (known as data sub-setting)
- We want to engage with Aviation community.

# Future data services

#### Capabilities:


- Web Coverage Services will expose gridded data sets and enable flight planners/app providers to sub-set the data to select the levels, timesteps and area relevant to a specific application
- Web Feature Services enable the retrieval of four-dimensional trajectory information and corridor information applicable to specific flight routes
- Web Map Services will allow users to download georeferenced tile images that can be displayed on downstream systems.
- Provision of weather objects/features (e.g., areas enclosing hazardous weather)
- Provision of spot data
- Provision of aviation specific charts and written forecasts

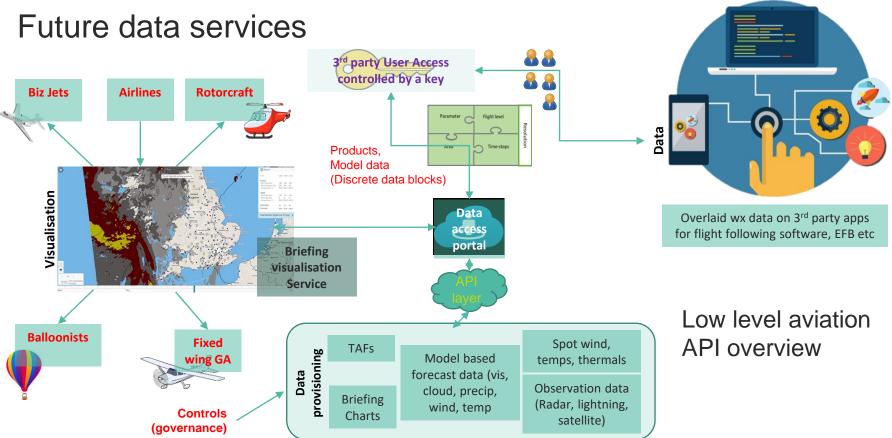

#### Accessing these:

Illustration showing the variety of different source data and available formats for new aviation data services

These capabilities will be accessed via a series of APIs, all recorded within the Eurocontrol SWIM Registry. Two main types of API will be provided:

- Streaming API: enables a user to subscribe to a particular data feed, and whenever new data becomes available, they will be notified and either provided with this data as a payload or directed to where to pick it up.
- Request-Reply API: enables ad-hoc requests for data to be made, and suits activities such as trajectory and corridor requests in which the route being flown changes each time





www.metoffice.gov.uk



# SESAR Services: Harmonised Turbulence & 3D Radar

### **Emma Corrigan** European Aviation Manager

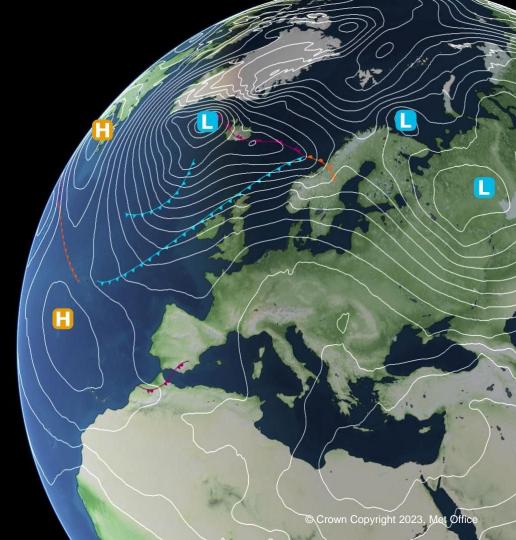


**Microsoft Teams** 

# **Recording for MOUF**

2023-11-06 14:06 UTC

Recorded by Emma Corrigan Organized by


Emma Corrigan



# **SWIM services**

Lauren Donohue

**Aviation Business Manager** 



# Why do these Services matter?

- Pilot Common Project evolved into the Common Project 1 (<u>EU 2017/373</u>)
- While the Exit from the EU means that UK organisations are not bound by CP1, the UK does still have PCP in <u>CAP779</u> and <u>CAP1711</u>.
- MET information (regardless how it is delivered) can be used to support operations. What decisions do you make that could have additional support?



### What's next for Information Services?

# **Service Descriptions**









#### 3D RADAR Service ...

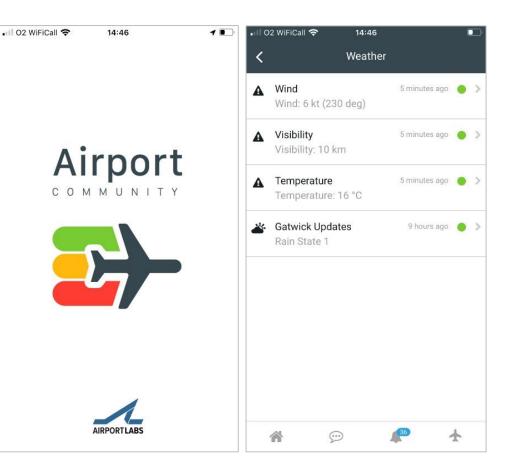
The Pan-European 3D RADAR Service aims to provide a SWIM Compliant access point to high resolution R...

#### 3D RADAR Service ...

The Pan-European 3D RADAR Service aims to provide a SWIM Compliant access point to high resolution R...

#### Harmonised Turbul...

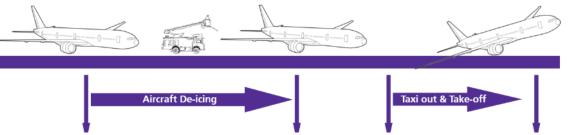
The Harmonised Turbulence Service aims to provide a SWIM Compliant access point to harmonised turbul...


#### Met Office 4D-Tra...

The Met Office 4D Trajectory API service supplies global meteorological data for tailored flight tra...

www.metoffice.gov.uk

# What additional MET information do you need to support?

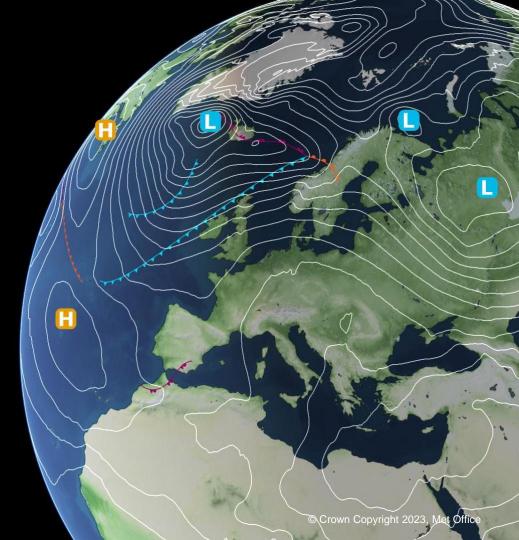

- Airport Operations Plan
- Flight Planning
- Network Operations
- Air Navigation Services
- Air Traffic Flow Management



# What additional MET information do you need to support?

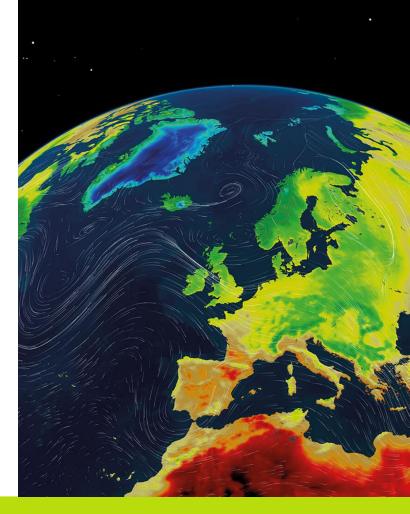
- Baggage
- Runway checks
- Travel to and from an aerodrome
- Choosing efficient flight
   paths/airspace
- Planning for peak periods in passengers or aircraft
- Risk for operations in inclement weather





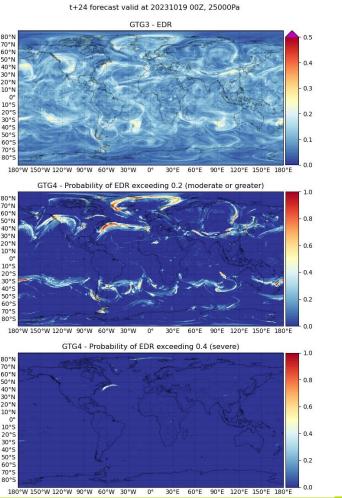



# **Aviation R&D**


### **Piers Buchanan**

**Aviation Science Manager** 



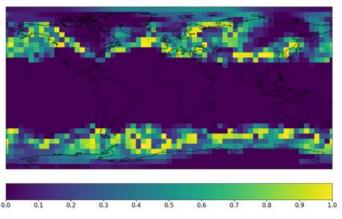

# Purpose of global aviation R&D programme

- To support WAFS service with updated science.
- To monitor and improve WAFS datasets for lcing, Turbulence and Cb forecasts
- To develop ability to produce rapid multitimestep Significant Weather Charts

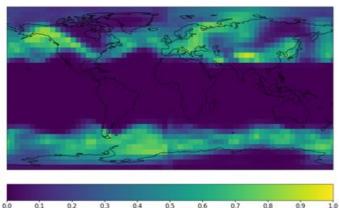


# **Probabilistic Turbulence Update**

- In order to compute probabilities, we need to upgrade to latest version of GTG on new supercomputer.
- Probabilities of moderate or greater or severe turbulence are shown here.
- User outreach exercise for WAFS concluded this simple representation of probabilities is an excelle starting point for understanding how to use probabilities.

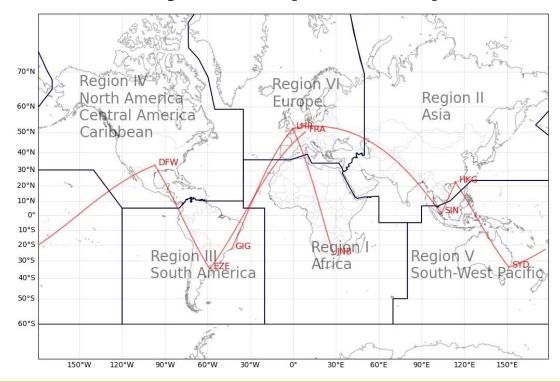



# Machine Learned Icing Index

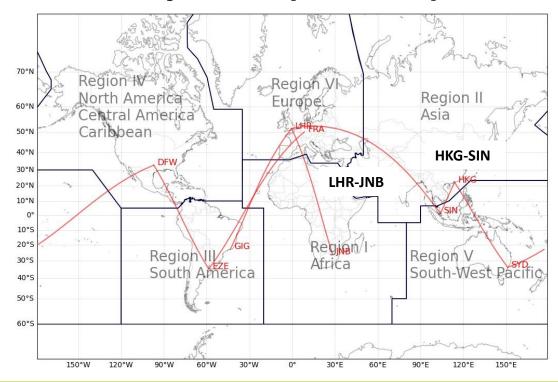

- Goal: to demonstrate a proof-of-concept icing forecast capability
- ERA5<sup>1</sup> reanalysis data used to train CNN<sup>2</sup> at low spatiotemporal resolution out to forecast range of 5 days
- · Basic index with limited input parameters
  - Likelihood of icing (scale 0-1)
- Deterministic output generated
  - Demonstrates skill compared to persistence forecast
- Next step is to generate probabilistic output
- Future work
  - Further tuning to reduce 'smoothing'
  - Increase resolution
  - Trial 'live' with analysis fields and compare to physics-based approach

#### Comparison at 700hPa, valid 2016-02-12 00:00Z

Met Office Basic Icing Index





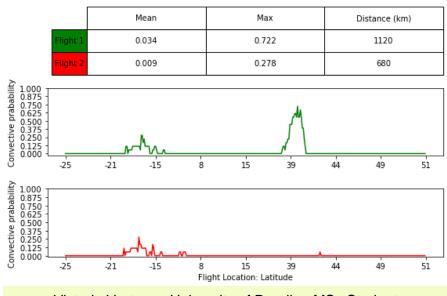




© Crown Copyright 2023, Met Office

# Global WAFS convection forecast. AvRDP2 Project: Proposed Airport Pairs

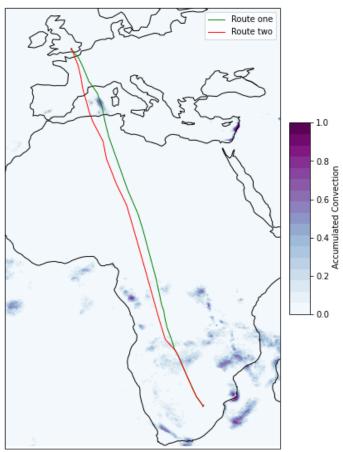


## Global WAFS convection forecast. AvRDP2 Project: Proposed Airport Pairs



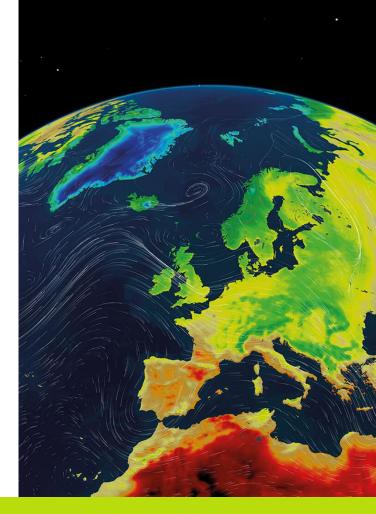

www.metoffice.gov.uk

## LHR-JNB Routing Product for Convection.


### Example: comparing flight routes

Flight statistics: Johannesburg to London (North bound)




Victoria Vertrees, University of Reading MSc Student

February 6th 12Z run: Northbound flight at 30kft



# Purpose of UK aviation R&D programme

- Improving forecasting and understanding of convection, fog and low level cloud.
- Understanding ways to automate (and verify) forecasts currently produced manually.
- Improving weather forecasts for low level aviation.





### WesCon WOEST 5<sup>th</sup> June – 25<sup>th</sup> August 2023











Aircraft FAAM- 12 hours

DIMONA - 16 Flights, >45 hours



**Radars** CAMRa, Kepler, NXPol1 & 2, Chilbolton. Lyeham, Wardon Hill 25+ Days

scanning



Radiosonde Larkhill. Chilbolton, Ash Farm, Spire

- View, Reading. Extras: Camborne
- Herstmonceux Aberporth

>350 in total



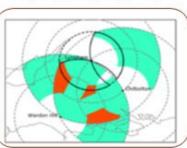
**WxUAS** Breach Hill,

- Heytesbury, Chilbolton,
- Wherwell Forest.

~120 flight

hours. ~700 flights.

First 2km






- Netheravon, Lyneham,
- Chilbolton
- Lidars.
- wind profilers,
- Microwave
- radiometers,
- Stereo cameras
- Masts

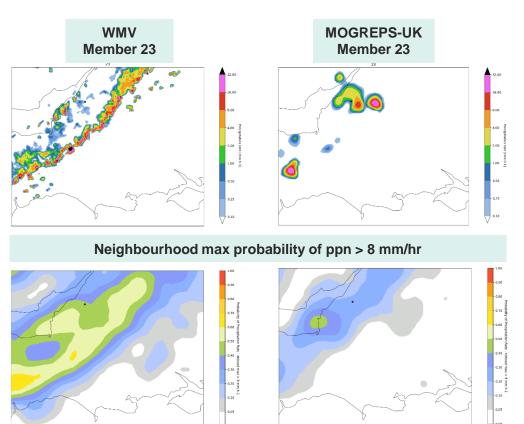
### AWS sites

12 stations 24/7 operation




Doppler Radar network Lyneham, Chilbolton, Wardon Hill




#WesCon2023

Long term observations and 30 Intensive Observations Periods

# 11 July 2023 15 UTC (T+21)



The WMV performs well for deep convection and is able to capture the organisation of features into bands/lines



32. For the probability of heavy precipitation (8+ mm/hr), using the radar observations, in terms of the extensiveness of the probabilities which gives better guidance?

#### More Details

|   | WMV a lot           | 1  |
|---|---------------------|----|
| • | WMV a little        | 16 |
|   | No difference       | 9  |
| • | MOGREPS-UK a lot    | 3  |
|   | MOGREPS-UK a little | 3  |
|   |                     |    |

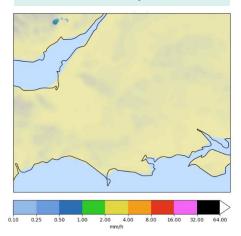


In 61% of cases the WMV was viewed to give better guidance for the *coverage* of heavy ppn vs 16% of cases where M-UK was better.

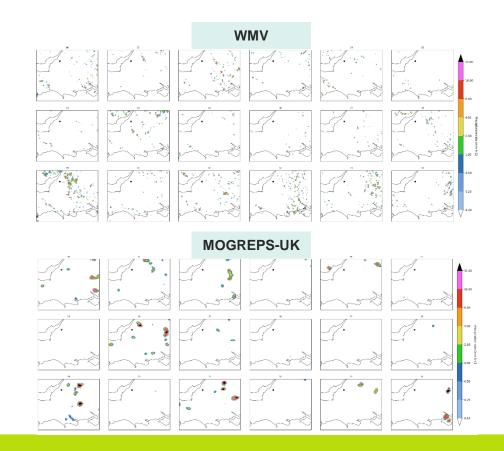
 For the probability of heavy precipitation (8+ mm/hr), using the radar observations, in terms of the probability values, which gives better guidance

#### More Details






In 63% of cases the WMV was viewed to give better guidance for the *probability values* of heavy ppn vs 16% of cases where M-UK was better.


Based on questionnaire responses for 38 cases of heavy precipitation (8+ mm/hr)

# 22 June 2023 12 UTC (T+18)

Radar composite



However, there is an issue with the WMV producing too many small precipitating showers in situations where there should only be shallow clouds. The WesCon observations will help us to better understand, and hopefully solve, this issue.



## **First Guess TAFs**

- Uses BestData (deterministic and probabilistic)
- · Wind and visibility completely included
- Compliant with ICAO rules so can be compared to operational TAFs

- Verified and compared to operational TAFs over 1 year
- Accuracy scores similar, but slightly lower for first guess
- · Gerrity scores show more variation
  - Visibility scores generally lower for first guess
  - Cloud base scores generally higher for first guess
  - Large disparity in scores appears to be due to forecasting of rare events (e.g., fog)

### **Example of Output**

### **First Guess**

TAF EGNJ 161554Z 1618/1703 28005KT 6000 BKN003 BECMG 1618/1621 SCT025 PROB30 1618/1701 3000 BR BECMG 1621/1624 BKN003 BECMG 1700/1703 BKN001=

### Operational

TAF EGNJ 161702Z 1618/1703 VRB04KT 6000 SCT006 BKN030 TEMPO 1618/1703 4000 -RA BR FEW002 BKN006 PROB30 TEMPO 1618/1703 1200 RADZ BKN002=

## **Machine Learning Project**

Use machine learning classifiers to predict when first guess TAFs would go bust

- E.g., for 0900 UTC on Tuesday 24<sup>th</sup> Jan 2023 for Heathrow for lead time T+3, the prediction might be 'visibility too low'
- Adjust weather model data feeding first guess TAFs based on predictions
  - E.g., based on above example, model visibility for that time could be adjusted up by one TAF category

### AIM 1: Reduce bust susceptibility in first guess TAFs

### AIM 2: Improve main verification scores

# Challenges

### **Data limitations**

- Bias
- Availability
- Sparsity of observations

### **Representative Al**

- Follows laws of physics
- Representation of extremes
- Uncertainty quantification

# All Hail Reports (1955-2014) Explainable Al (XAI) Trusted by end users

Tested under different situations Interpretable methods

ML Summer School 2020

**Trustworthy** 

ΑΙ

### Research to Operations

- Pull-through to operations
- Data pipelines
- Useful, usable and used

## Non-CO<sub>2</sub> Emissions Contrails



- Climate impacts from contrails may be greater than from aviation CO<sub>2</sub><sup>1</sup> emissions
- Contrails are short-lived climate forcers
- Operational mitigation strategies could reduce the climate impact of contrails
  - Reduce time in prone formation regions
- Research is required to:
  - Improve current model prediction capabilities
  - Validate models with new observations

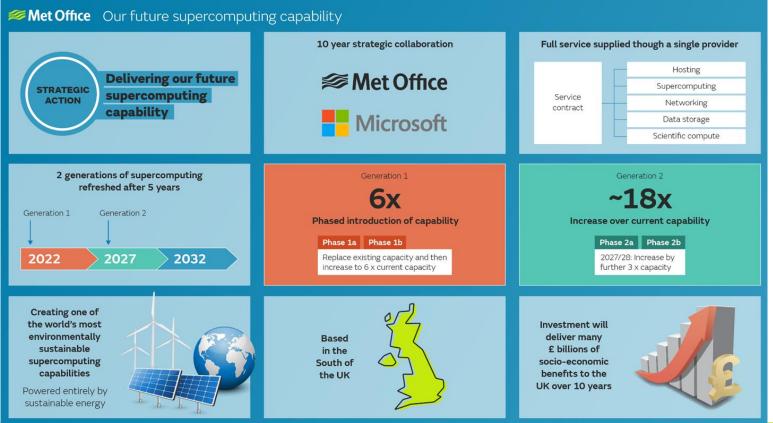


# **R&D highlights - Globally**

Paper on probabilistic icing forecast development

Monitor and continue to verify implemented SigWx Code

> MTG lightning imager compared to our lightning observations.


# **R&D highlights - UK**

WesCon deep analysis of 333m model's ability to predict convection.

Understanding the benefit of existing fog diagnostics compared to new modelling capability.

Detailed report with options for improving low level turbulence forecast

# Supercomputer Update



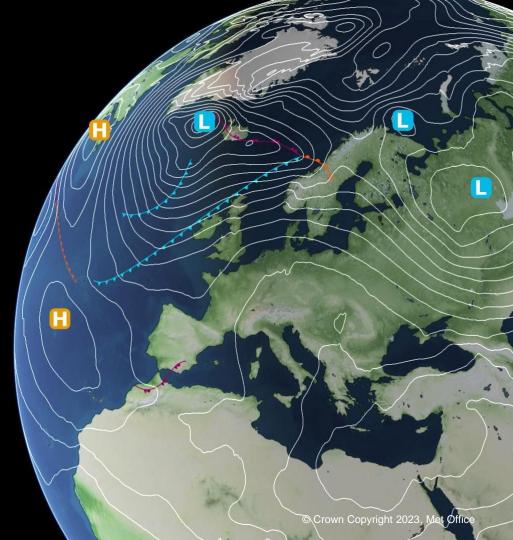
www.metoffice.gov.uk

© Crown Copyright 2023, Met Office

## **Global NWP**

- Increase global ensemble forecast range out to 14-days.
- Retire main deterministic global forecast.
- Upgrade to 10km resolution global ensemble forecasts.
- More frequent (3-hourly) global analyses.
- Introduce experimental 5–6km forecasts as first step towards a future kmscale global ensemble forecast system.

# UK regional NWP


- Retire UKV forecasts beyond the T+12 "NWP nowcast".
- Upgrade to 1.5km resolution UK ensemble forecasts.
- Introduce 300m resolution regional ensemble(s) to improve forecasts for urban areas and high-impact weather.



# **3-month Outlook**

November–December–January

Louise Bailey Operational Meteorologist





## Understanding the outlook summaries

- The outlook uses 3 categories to mark expected conditions on 3 different parameters
  - Temperature: COLD, NEAR AVERAGE, MILD
  - Precipitation: WET, NEAR AVERAGE, DRY
  - Wind speed: CALM, NEAR AVERAGE, WINDY
- Linked to observed UK conditions in past years
- NEAR AVERAGE has a normal likelihood of 60%. Other categories have a normal likelihood of 20%
- Outlook shows how chances of occurrence differ from normal, based on global meteorological pattens. Does not identify which will actually occur



- Warming of UK Climate consistent with wider global warming trends
- Global Weather patterns
  - El Nino/ La Nina- strong El Nino increases likelihood of mild, wet windy weather in late Autumn/early winter and dry, cold conditions in late winter
  - Quasi-Biennial Oscillation- easterly phase favours reduction in strength of W winds over UK
  - Indian Ocean Dipole- strong positive phase increases chances of SW winds during winter
- Agreement with other Met centres around the world



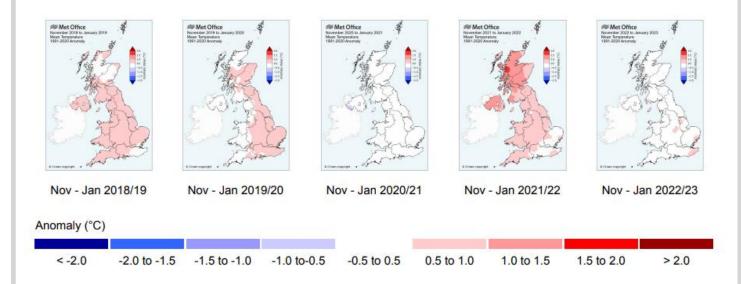
### **One Month Summary: November**

| Temperature                             |                                                    |                                          |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|
| 20%<br>chance the month will be<br>COLD | 60%<br>chance the month will be<br>NEAR<br>AVERAGE | 20%<br>chance the month will be          |  |  |  |  |  |  |  |
| 1.0×<br>the normal chance               | 1.0× ¢                                             | <b>1.0</b> × <b>\$</b> the normal chance |  |  |  |  |  |  |  |
| Precipitation                           |                                                    |                                          |  |  |  |  |  |  |  |
| 20%<br>chance the month will be<br>DRY  | 60%<br>chance the month will be<br>NEAR<br>AVERAGE | 20%<br>chance the month will be<br>WET   |  |  |  |  |  |  |  |
| 1.0×<br>the normal chance               | 1.0× ¢                                             | <b>1.0</b> × <b>\$</b> the normal chance |  |  |  |  |  |  |  |
| Wind speed                              |                                                    |                                          |  |  |  |  |  |  |  |
| 30%<br>chance the month will be<br>CALM | 55%<br>chance the month will be<br>NEAR<br>AVERAGE | 15%<br>chance the month will be<br>WINDY |  |  |  |  |  |  |  |
| 1.5×                                    | 0.9×<br>the normal chance                          | <b>0.8</b> × the normal chance           |  |  |  |  |  |  |  |



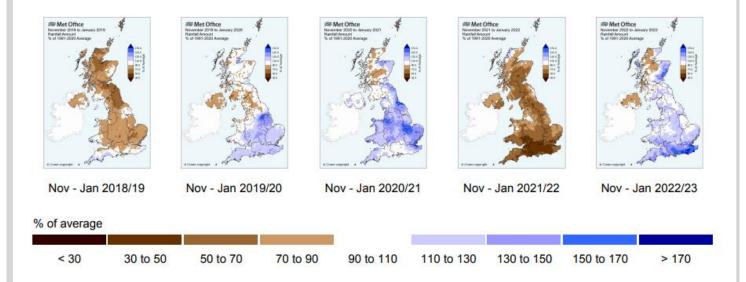
### Three-month summary: Nov Dec Jan

| Temperature                              |                                                     |                                           |  |  |  |  |  |  |
|------------------------------------------|-----------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| 15%<br>chance the season will be<br>COLD | 65%<br>chance the season will be<br>NEAR<br>AVERAGE | 20%<br>chance the season will be<br>MILD  |  |  |  |  |  |  |
| 0.8×<br>the normal chance                | 1.1 × •                                             | <b>1.0</b> ×<br>the normal chance         |  |  |  |  |  |  |
| Precipitation                            |                                                     |                                           |  |  |  |  |  |  |
| 15%<br>chance the season will be<br>DRY  | 60%<br>chance the season will be<br>NEAR<br>AVERAGE | 25%<br>chance the season will be<br>WET   |  |  |  |  |  |  |
| 0.8×<br>the normal chance                | 1.0× +                                              | 1.3× A                                    |  |  |  |  |  |  |
| Wind speed                               |                                                     |                                           |  |  |  |  |  |  |
| 20%<br>chance the season will be<br>CALM | 65%<br>chance the season will be<br>NEAR<br>AVERAGE | 15%<br>chance the season will be<br>WINDY |  |  |  |  |  |  |
| the normal chance                        | 1.1×                                                | <b>0.8</b> × the normal chance            |  |  |  |  |  |  |



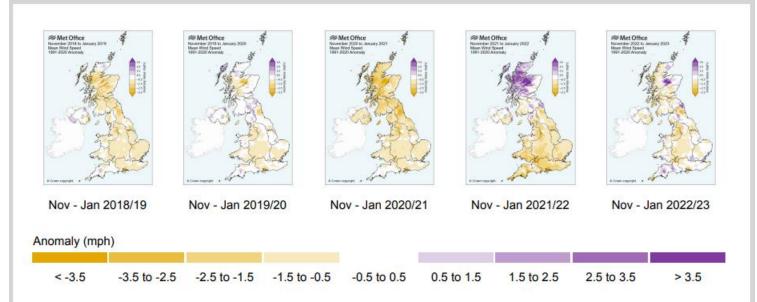

| Same 1-month period over the last 10 years |                 |       |                 |                 |                 |                 |                 |                 |                 |  |
|--------------------------------------------|-----------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
| 2013                                       | 2014            | 2015  | 2016            | 2017            | 2018            | 2019            | 2020            | 2021            | 2022            |  |
| NEAR<br>AVERAGE                            | MILD            | MILD  | COLD            | NEAR<br>AVERAGE | NEAR<br>AVERAGE | COLD            | MILD            | NEAR<br>AVERAGE | MILD            |  |
| DRY                                        | NEAR<br>AVERAGE | WET   | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | DRY             | WET             |  |
| CALM                                       | CALM            | WINDY | CALM            | NEAR<br>AVERAGE | WINDY           | CALM            | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE |  |
|                                            |                 |       |                 |                 |                 |                 |                 |                 |                 |  |

### Same 3-month period over the last 10 years


| 2013-14         | 2014-15         | 2015-16 | 2016-17         | 2017-18         | 2018-19         | 2019-20         | 2020-21         | 2021-22         | 2022-23         |
|-----------------|-----------------|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| NEAR<br>AVERAGE | NEAR<br>AVERAGE | MILD    | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | MILD            | NEAR<br>AVERAGE |
| WET             | NEAR<br>AVERAGE | WET     | DRY             | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | DRY             | NEAR<br>AVERAGE |
| NEAR<br>AVERAGE | NEAR<br>AVERAGE | WINDY   | CALM            | NEAR<br>AVERAGE | NEAR<br>AVERAGE | NEAR<br>AVERAGE | CALM            | NEAR<br>AVERAGE | NEAR<br>AVERAGE |
|                 |                 |         |                 |                 |                 |                 |                 |                 |                 |

### Last 5 years temperatures, difference from average (3-month)




These maps show how November - January temperatures in the last five years differed from the long-term average temperatures shown above in the upper panel. Pink and red colours indicate milder-than-average conditions while blue shades indicate colder-than-average conditions. Detailed information on the climate of the UK is available at www.metoffice.gov.uk/climate.

### Last 5 years precipitation, difference from average (3-month)



These maps show how November - January precipitation in the last five years differed from the long-term average precipitation shown above in the upper panel. Brown colours indicate drier-than-average conditions while blue shades indicate wetter-than-average conditions. Detailed information on the climate of the UK is available at www.metoffice.gov.uk/climate.

### Last 5 years wind speed, difference from average (3-month)



These maps show how November - January wind speed in the last five years differed from the long-term average wind speeds shown above in the upper panel. Yellow colours indicate calmer-than-average conditions while purple shades indicate windier-than-average conditions. Detailed information on the climate of the UK is available at www.metoffice.gov.uk/climate.

# Stay in touch

Our you following our <u>Aviation page</u> on LinkedIn?

Read regular updates from the Met Office with an aviation angle.

General enquiries can be directed to: <a href="mailto:transport@metoffice.gov.uk">transport@metoffice.gov.uk</a>

