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[1] In this study, we present the collation and analysis of the gridded land-based dataset of
indices of temperature and precipitation extremes: HadEX2. Indices were calculated based on
station data using a consistent approach recommended by the World Meteorological
Organization (WMO) Expert Team on Climate Change Detection and Indices, resulting in the
production of 17 temperature and 12 precipitation indices derived from daily maximum and
minimum temperature and precipitation observations. High-quality in situ observations from
over 7000 temperature and 11,000 precipitation meteorological stations across the globe were
obtained to calculate the indices over the period of record available for each station. Monthly
and annual indices were then interpolated onto a 3.75� � 2.5� longitude-latitude grid over the
period 1901–2010. Linear trends in the gridded fields were computed and tested for statistical
significance. Overall there was very good agreement with the previous HadEX dataset during
the overlapping data period. Results showed widespread significant changes in temperature
extremes consistent with warming, especially for those indices derived from daily minimum
temperature over the whole 110 years of record but with stronger trends in more recent
decades. Seasonal results showed significant warming in all seasons but more so in the colder
months. Precipitation indices also showed widespread and significant trends, but the changes
were much more spatially heterogeneous compared with temperature changes. However,
results indicated more areas with significant increasing trends in extreme precipitation
amounts, intensity, and frequency than areas with decreasing trends.
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1. Introduction

[2] The research into climate extremes has progressed enor-
mously over the last few decades [Nicholls and Alexander,
2007; Zwiers et al., 2012]. This has been largely due to inter-
national coordinated efforts to collate, quality control, and
analyze variables and events that represent the more extreme
aspects of climate. One such effort has been led by the Expert
Team on Climate Change Detection and Indices (ETCCDI)1

(http://www.clivar.org/organization/etccdi), who have facili-
tated the calculation of climate extremes indices based on daily
temperature and precipitation data. This has been made possi-
ble through the provision of free standardized software for data
analysis and quality control and through the organization of
regional workshops to fill in data gaps in data-sparse regions
[Peterson and Manton, 2008]. Unfortunately, the availability
of daily observational high-quality data is limited for many
regions of the globe. This is due to several reasons including
a lack of suitable data but also because many countries have
strict polices about data sharing. However, often National
Meteorological Services are more willing to share derived
indices, i.e., annual and/or monthly values derived from daily
data that represent the number of days above or below a
temperature or precipitation threshold for example. This helps
to gain information about climate extremes from regions
where daily data are not readily available to the scientific
community. Thus, the development of the ETCCDI climate
indices has enabled regional and global (both station and
gridded) datasets to be developed [Zhang et al., 2011] in a
comparable way. One such global gridded dataset, HadEX,
was developed by Alexander et al. [2006, henceforth
A2006]. HadEX contains the 27 indices recommended by
the ETCCDI (see Zhang et al. [2011] and http://cccma.seos.
uvic.ca/ETCCDI/list_27_indices.shtml) on a 3.75� � 2.5�
longitude-latitude grid from 1951 to 2003. In general, one
index value was computed per grid box per year, although
for some of the indices (e.g., hottest day/night, wettest day)
seasonal values were also made available.
[3] HadEX currently represents the most comprehensive

global gridded dataset of temperature and precipitation
extremes based on daily in situ data available. It has been
used in many model evaluation [e.g., Sillmann and Roekner,
2008; Alexander and Arblaster, 2009; Rusticucci et al.,
2010; Sillmann et al., 2012] and detection and attribution
studies [e.g., Min et al., 2011; Morak et al., 2011], in addi-
tion to climate variability and trend studies (e.g., A2006).
Nonetheless, it covers a relatively short period (53 years)
and contains numerous data gaps both in space and time,
and this is particularly the case for the precipitation indices.
[4] The purpose of the current study is to update HadEX

to develop the HadEX2 dataset and to document and assess
this new dataset. This new version of the dataset contains
many more input station data than the earlier version of the
dataset and covers a much longer period, 1901 to 2010. In
the next sections, we describe the data and indices used as

input to HadEX2, the gridding method used to develop grids
of the different extremes indices, and the analysis of this
dataset over global land areas.

2. Data and Indices

[5] All of the climate indices are calculated from daily
observations of precipitation, maximum temperature, and
minimum temperature. The indices calculated for HadEX2
are shown in Table 1. These mostly represent the indices
recommended by the ETCCDI (see http://cccma.seos.uvic.
ca/ETCCDI/indices.shtml), although one of the recom-
mended 27 indices is user-defined (Rnnmm: annual count
of precipitation above a user-chosen threshold) and is there-
fore excluded, and three additional indices are included:
Extreme Temperature Range (ETR), contribution from very
wet days (R95pTOT), and contribution from extremely wet
days (R99pTOT), as these were also included in HadEX
due to their potential to have significant societal impacts.
A total of 29 indices are therefore calculated. The original
station network used in HadEX contained 2223 temperature
and 5948 precipitation stations (see Fig. 1 of A2006). The
total number of stations available for HadEX2 is generally
about twice that available for HadEX (see Table 1) and
includes improved spatial coverage of stations in southern
Africa, South America, Southeast Asia, and Australasia.
The (monthly) index values were calculated only if fewer
than three daily observations were missing in a month and
accordingly fewer than 15 daily observations per year for
the annual indices. If more daily observations were missing,
the climate index was set to a missing value for that specific
month or year. The annual index values were also set to
missing if one of the months was assigned a missing value.
[6] The spatial coverage of stations varies among indices,

and there are many more stations containing precipitation
than temperature data. It is generally necessary to have a
larger number of representative precipitation stations since
the spatial variability of precipitation extremes is much
higher than for temperature extremes [Kiktev et al., 2003;
A2006]. Figures 1a and 1c show the spatial coverage of
stations for an example temperature (TXx) and precipitation
(Rx1day) index. The color coding in the maps in Figure 1
indicates the data source. The largest number of stations
was obtained from international data initiatives including
the following:

1. The European Climate Assessment and Dataset (ECA&D)
[Klok and Klein Tank, 2009], containing approximately
6600 stations from 62 countries across Europe and
North Africa

2. The Southeast Asian Climate Assessment and Dataset
(SACAD)—as ECA&D but currently containing more
than 1000 stations from 11 countries across Southeast
Asia (we removed the Australian stations from this data
set, as a separate data set of high-quality stations was
used for Australia; see Table 2)

3. The Latin American Climate Assessment and Dataset
(LACAD)—as ECA&D but currently containing about
300 stations from seven countries across Latin America

4. The Global Historical Climatology Network-Daily
(GHCN-Daily) [Menne et al., 2012]. Comprising approxi-
mately 27,000 stations globally with daily maximum and

1Joint World Meteorological Organization (WMO) Commission for
Climatology (CCl)/World Climate Research Programme (WCRP)
project on Climate Variability and Predictability (CLIVAR)/Joint
WMO-Intergovernmental Oceanographic Commission of the United
Nations Educational, Scientific and Cultural Organization (UNESCO)
Technical Commission for Oceanography and Marine Meteorology
(JCOMM) Expert Team on Climate Change Detection and Indices.
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minimum temperature and over 80,000 stations with daily
precipitation amounts, GHCN-Daily however is used only
in this study for a subset of stations in the U.S. Although
subjected to a comprehensive set of quality assurance
procedures [Durre et al., 2010], GHCN-Daily data are
not adjusted for artificial discontinuities such as those asso-
ciated with changes in observation time, instrumentation,
and station location. To circumvent this, the subset chosen
for the U.S. followed the analysis byPeterson et al. [2008],
who only selected National Weather Service Cooperative
and First-Order weather observing sites with reasonably
long records. Data were used only from station time series
that were determined (e.g., by the statistical analysis
described in Menne and Williams [2005]) to be free of
significant discontinuities after 1950 caused by changes
in station location, changes in time of observation, etc.

[7] Other stations used in this study have been supplied by
the authors either through their personal research or from the
National Meteorological Service in that country. For all
regions, at least one of the authors had access to the daily data
from which the indices were calculated. Therefore reference
could always be made to the original data should quality issues
arise during the analysis (see Table 2). Additional stations
were obtained through ETCCDI regional workshops, although

in a small number of cases the raw data were not available and
only the derived indices were provided.
[8] While the level of quality control varies from country

to country, in most cases the data have been carefully
assessed for quality and homogeneity by researchers in the
country of origin. For example, Canada supplied homo-
genized daily temperatures up to 2010 for 338 stations
[Vincent et al., 2012] and a high-quality adjusted precipita-
tion data set for 464 stations [Mekis and Vincent, 2011].
Australian temperature records were updated from those
used in HadEX, adjusting for inhomogeneities at the daily
timescale by taking account of the magnitude of discontinu-
ities for different parts of the distribution, increasing the
number of stations available to 112 and extending the
record back in time to 1910 [Trewin, 2012]. Indian data have
only been used from India Meteorological Department
(IMD) observatory stations where exposure conditions have
remained the same and meteorological instruments are
maintained as per WMO guidelines. In Argentina and
Uruguay, stations with known inhomogeneities or long
periods without data were excluded from the index calcula-
tion. In the case of the ETCCDI workshop data, extensive
postprocessing and analysis was performed [e.g., Aguilar
et al., 2009; Caesar et al., 2011; Vincent et al., 2011] to
ensure data quality and homogeneity. Note therefore that

Table 1. The Extreme Temperature and Precipitation Indices Available in HadEX2 along with the Number of Stations That Was Included
for Each Indexa

ID Indicator Name Indicator Definitions Units
Number of
Stations

TXx Hottest day Monthly maximum value of daily max temperature �C 7381
TNx Warmest night Monthly maximum value of daily min temperature �C 7390
TXn Coldest day Monthly minimum value of daily max temperature �C 7381
TNn Coldest night Monthly minimum value of daily min temperature �C 7390
TN10p Cool nights Percentage of time when daily min temperature< 10th percentile % 6619
TX10p Cool days Percentage of time when daily max temperature< 10th percentile % 6619
TN90p Warm nights Percentage of time when daily min temperature> 90th percentile % 6617
TX90p Warm days Percentage of time when daily max temperature> 90th percentile % 6598
DTR Diurnal temperature range Monthly mean difference between daily max and min temperature �C 7365
GSL Growing season length Annual (1st Jan to 31st Dec in NH, 1st July to 30th June in SH) count

between first span of at least 6 days with TG> 5�C and first span after
July 1 (January 1 in SH) of 6 days with TG< 5�C (where TG is daily
mean temperature)

days 6843

ID Ice days Annual count when daily maximum temperature <0�C days 7120
FD Frost days Annual count when daily minimum temperature <0�C days 7150
SU Summer days Annual count when daily max temperature >25�C days 7168
TR Tropical nights Annual count when daily min temperature >20�C days 7179
WSDI Warm spell duration index Annual count when at least six consecutive days of max temperature

> 90th percentile
days 6600

CSDI Cold spell duration index Annual count when at least six consecutive days of min temperature
< 10th percentile

days 6594

Rx1day Max 1 day precipitation amount Monthly maximum 1 day precipitation mm 11588
Rx5day Max 5 day precipitation amount Monthly maximum consecutive 5 day precipitation mm 11607
SDII Simple daily intensity index The ratio of annual total precipitation to the number of wet days (≥ 1mm) mm/

day
11607

R10mm Number of heavy precipitation days Annual count when precipitation ≥10mm days 11607
R20mm Number of very heavy precipitation days Annual count when precipitation ≥ 20mm days 11588
CDD Consecutive dry days Maximum number of consecutive days when precipitation< 1mm days 11602
CWD Consecutive wet days Maximum number of consecutive days when precipitation≥ 1mm days 11583
R95p Very wet days Annual total precipitation from days> 95th percentile mm 11580
R99p Extremely wet days Annual total precipitation from days> 99th percentile mm 11580
PRCPTOT Annual total wet day precipitation Annual total precipitation from days≥ 1mm mm 11588
*ETR Extreme temperature range TXx – TNn �C 7159
*R95pTOT Contribution from very wet days 100 * R95p / PRCPTOT % 11300
*R99pTOT Contribution from extremely wet days 100 * R99p / PRCPTOT % 11300

aMost indices are recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI) (see http://cccma.seos.uvic.ca/ETCCDI/
list_27_indices.html) except those marked with an asterisk. Indices in bold represent those that are also available monthly.
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because of the updates to high-quality station availability for
many regions, HadEX2 provides not just an extension of
stations used in HadEX but rather represents the latest acqui-
sition of high-quality station data around the globe.
[9] Table 2 indicates the sources of all the data used in this

study, and relevant references where applicable. However,
since the spatial coverage deteriorated in some cases
between HadEX and HadEX2, particularly for Africa and

parts of South and Central America, the station coverage
was supplemented using existing stations from HadEX
where there were no stations in HadEX2 within a 200 km
radius of a HadEX station. This provided about an additional
200 stations for temperature indices and 280 stations for
precipitation indices. While the addition of HadEX stations
offers some improvement in coverage, data included in
HadEX2 are still sparse at the beginning and end of the
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-50

0

50

(a) HadEX2 TXx  7381 stations (b) DLS TXx

0 200 400 600 800 10001200
km

-50

0

50

(c) HadEX2 Rx1day 11588 stations (d) DLS Rx1day

Authors ETCCDI workshops ECAD/LACAD/SACAD

GHCN-Daily HadEX

Figure 1. Maps indicate locations of stations used in HadEX2 for an example temperature and precipi-
tation index. (a) TXx and (c) Rx1day. Sources of data (see text) are color coded. (b and d) The decorrela-
tion length scales (in km) for each latitude band for TXx and Rx1day, respectively for annual (solid line),
January (dotted line), and July (dashed line). Thin gray lines indicate the borders of latitude bands used for
grouping the stations when calculating the decorrelation length scales (see text for details).
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record in addition to some stations only having short
records. Particularly in the most recent years since 2006,
there is a decrease in the number of available observational
data, which also leads to a strong decline in spatial coverage
of HadEX2 during the last 5 years (Figure 2). Data for both
temperature and precipitation prior to 1950 are mostly
confined to Eurasia, North America, Southern South America,
Australasia, and India (precipitation only).
[10] To ensure consistency in the calculation of indices

among regions, the RClimDex/FClimDex software packages
were used (see Zhang et al. [2011] and http://cccma.seos.

uvic.ca/ETCCDI/software.shtml). Percentiles required for
some of the temperature indices (Table 1) were calculated
for the climatological base period 1961–1990 using a boot-
strapping method proposed by Zhang et al. [2005]. The
bootstrapping approach is intended to eliminate possible
inhomogeneities at the boundaries of the climatological base
period due to sampling error. The percentiles are calculated
only if at least 75% of nonmissing daily temperatures are
available during the base period. In addition, problems with
data precision have arisen in some countries such as round-
ing to whole degrees in recording, and this can also affect

Table 2. References and Contacts for Data Used to Create HadEX2a

Source Region/Dataset Contact Reference(s) if available

Arab region workshop Paper author: m.donat@unsw.edu.au Donat et al. [2012b]
Argentina Paper author: mati@at.fcen.uba.ar Rusticucci [2012]
Australia Paper author: b.trewin@bom.gov.au Trewin [2012]
Brazil http://www.inmet.gov.br, Paper author: jose.marengo@inpe.br
Canada Paper authors: Lucie.Vincent@ec.gc.ca (for temperature);

Eva.Mekis@ec.gc.ca (for precipitation)
Mekis and Vincent [2011]; Vincent et al. [2012]

Chile Paper author: cvilla@meteochile.com Villarroel et al. [2006]
China Chinese Meteorological Administration (CMA) Zhai et al. [2005]; Zhai and Pan [2003]
Congo workshop Paper authors: enric.aguilar@urv.cat;Xuebin.zhang@ec.gc.ca;

manola.brunet@urv.cat
Aguilar et al. [2009]

ECAD The European Climate Assessment and Dataset: http://eca.knmi.nl/ Klok and Klein Tank [2009]
HadEX Climdex project: http://www.climdex.org Alexander et al. [2006]
India Paper author: aks_ncc2004@yahoo.co.in
Latin America Latin American Climate Assessment and Dataset:

http://lacad.ciifen-int.org/download/millennium/millennium.php
New Zealand Paper author: salinger@stanford.edu Griffiths et al. [2003], Salinger and Griffiths [2001]
Peru Paper author: clara@senamhi.gob.pe Oria [2012]
South Africa Paper authors: hewitson@csag.uct.ac.za; Andries.Kruger@

weathersa.co.za; cjack@csag.uct.ac.za
Kruger and Sekele [2012]

Southeast Asia Southeast Asian Climate Assessment and Dataset:
http://saca-bmkg.knmi.nl/

Uruguay Paper author: renom@fisica.edu.uy Rusticucci and Renom [2008]
USA Global Historical Climatology Network - Daily:

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
Durre et al. [2010]; Menne et al. [2012]; Peterson
et al. [2008]

Vietnam workshop Paper author: john.caesar@metoffice.gov.uk Caesar et al. [2011]
West Indian Ocean workshop Paper author: Lucie.Vincent@ec.gc.ca Vincent et al. [2011]

aIn most cases, the indices were calculated by the contact author and sent to the lead author for inclusion in HadEX2.

Figure 2. Time series of annual grid box coverage (out of a total of 2382 land grids for the chosen
longitude-latitude grid) for (a) TXx and (b) Rx1day from 1901 to 2010 for HadEX2 and 1951 to 2003
for HadEX (A2006) after gridding (see text for details). Top panel shows the total number of grid boxes
with nonmissing data globally; bottom panel shows the percentage of land grid boxes with nonmissing
data at each latitude.
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trend estimates for some indices [Zhang et al., 2009]. This
has been accounted for by adding a small random number
to improve the granularity of data and thus making the
estimation of the threshold more accurate [Zhang et al.,
2009; Zhang et al., 2011].
[11] Note, however, that the data for ECA&D, SACAD, and

LACAD were processed slightly differently. These groups
calculate many more indices than those recommended by
ETCCDI, but the output from these datasets is processed
in such a way as to be comparable with the output from
RClimDex/FClimDex for the ETCCDI indices. One exception
is the calculation of very wet days (R95p) and extremely wet
days (R99p). While these indices commonly refer to the
precipitation amount above the respective percentile value,
ECA&D, SACAD, and LACAD instead counted the number
of days when the percentile is exceeded. For this analysis,
we therefore recalculated their data for these two indices
from the calculated values of R95pTOT and PRCPTOT
(i.e., R95pTOT*PRCPTOT/100), so that they matched the
index definition proposed by the ETCCDI, and in turn provi-
ding a consistent analysis approach for all regions. During this
process, we discovered some inconsistencies in a handful of
the SACAD stations which affected the calculation of indices
that required a climatological percentile to be calculated, e.g.,
in some instances the annual value for R99p was the same as
PRCPTOT. This resulted in the removal of five stations in
Malaysia and three stations in Indonesia.

3. Gridding Method

[12] Our gridding method closely follows that of HadEX
(see Appendix A of A2006 for details of the gridding
procedure) with only some very minor differences. Climate
indices are calculated for each station and then interpolated
onto a regular grid, using a modified version of Shepard’s
angular distance weighting (ADW) interpolation algorithm
[Shepard, 1968]. The ADW gridding algorithm has been
used by a number of studies for gridding similar data sets of
climate extremes [Kiktev et al., 2003; A2006], daily tempe-
ratures [Caesar et al., 2006], or monthly climate variables
[New et al., 2000] and has generally been shown to be a good
method when gridding irregularly spaced data. Gridding
the observations helps to solve several issues, including
uneven station distribution when calculating global averages
[Frich et al., 2002], and to minimize the impact of data quality
issues at individual stations due to averaging.
[13] The ADW interpolation method requires knowledge

of the spatial correlation structure of the station data. We
assume that station pairings greater than 2000 km apart or
stations with short overlapping data will not provide
meaningful correlation information. Therefore, correlations
between all station pairs within a 2000 km radius are calcu-
lated if there are overlapping data for at least a 30 year period.
Correlations are performed on all available data after 1951,
the period when most of the stations used in this study have
good temporal coverage. However, the correlation results
are almost identical even if the period is extended back to
1901 (where suitable station pairings are available). In order
that we can compare HadEX2 results with those from
HadEX, the method of A2006 is followed such that the inter-
station correlations are then averaged into 100 km bins, and a
second-order polynomial function is fitted to the resulting

data assuming that correlations equal 1 at 0 distance. The
decorrelation length scale (DLS) is defined as the distance
at which the correlation function falls below 1/exp(1) and
represents the maximum “search radius” in which station
data are considered for the calculation of grid point values.
In addition, the polynomial function is tested to determine
whether it is a good fit to the data at the 5% significance level
using a chi-square statistic (for an example of this type of
function, see Fig. A1 of A2006). If the function is found
not to be a good fit, then the decorrelation length scale is
set to 200 km, the minimum value set for search radius
distance. This differs slightly from HadEX where the mini-
mum DLS was set to 100 km, but it was decided for HadEX2
that this minimum value should be more reflective of the size
of the grid boxes that were being used. Note that this scale
does not necessarily reflect the observed spatial variability
of precipitation. However, for most indices and latitude
bands, the DLS was found to be greater than 200 km. Only
for the annual Rx1day, R99p, and CWD (see Table 1)
indices is the minimum DLS calculated at a number of
latitudes (e.g., Figure 1d).
[14] Decorrelation length scale values are calculated for

each index separately. As in HadEX, DLS values are
calculated independently for four non-overlapping 30�-
latitude zonal bands between 90�N and 30�S, plus a 60�
band spanning the data-sparse 30� to 90�S latitudes (the
reasons for this are described in Appendix A of A2006
but include a compromise between data density and
actual covariability of indices and the reasoning that tem-
perature variations in particular are more coherent zonally
rather than meridionally). For indices with monthly out-
put, the DLS is calculated for both the monthly and
annual index values. Linear interpolation is used to
smooth the DLS values between bands and avoid discon-
tinuities at the band boundaries. For comparison with
HadEX, we chose the same 3.75� � 2.5� longitude-
latitude grid, resulting in a separate DLS value for each
2.5� latitude band. Examples of the DLS values are given
in Figures 1b and 1d. The interstation correlations and
thus the DLS are, unsurprisingly, generally larger for
the temperature-based indices than for the precipitation
extremes and for monthly rather than annual values.
[15] Grid box values are calculated based on all station

data within the DLS and weighted according to their
distance from the grid box center using a modified version
of Shepard’s ADW interpolation algorithm (see equation
A2 of Appendix A in A2006). A minimum of three stations
are required to be within the DLS before a grid box value
can be calculated; otherwise a missing data value is
assigned. The weight decays exponentially with increasing
distance, but additional information relating to the angle of
the locations of the stations to each grid box center is also
included to account for how bunched or isolated the stations
are within the search radius. An additional parameter adjusts
the steepness of the decay [Caesar et al., 2006; A2006].
Again for consistency with HadEX, we set this parameter
equal to 4, as this was found to provide a reasonable
compromise between reducing the root mean squared error
(RMSE) between gridded and station data and spatial
smoothing. However, for global, continental, and even
regional averages, the results are almost identical when
using values between 1 and 10 for this parameter.
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[16] Besides updating HadEX for the most recent years, we
also extended the gridded product, although with limited
coverage, back to the first half of the twentieth century,
calculating grids over the period 1901 to 2010. In the next
section, we present trends for two periods: 1951–2010 and
1901–2010. Trends are calculated for each grid box assuming
that index values for the grid box are available for at least 66%
of the years (i.e., 40 years out of 1951–2010 and 73 years out
of the 1901–2010 period) and that data are available through
at least 2003. In order to avoid the spurious influence of
varying spatial coverage, global time series of area-weighted
averages are calculated using only grid boxes that have at least
90% of data during the periods presented (i.e., 54 years out of
the 1951–2010 period and 99 years out of the 1901–2010 pe-
riod). Note that, owing to limited spatial coverage, the “global
time series” are not representative for the entire globe and
rather should be interpreted as “area averages of all sufficiently
covered regions.” Particularly for the 110 year period 1901–
2010, the 90% completeness criterion restricts the grid boxes
contributing to the “global time series” to grid boxes
from North America, Eurasia, Australia, parts of southern
South America, and India (precipitation only). The trends
presented here (Figures 3 to 9) are calculated using Sen’s trend
estimator [Sen, 1968], and trend significance is estimated at the
5% level using the Mann-Kendall test [Kendall, 1975]. This
method was chosen because it makes no assumptions about
the distribution of the variable and some of the climate indices
do not follow a Gaussian distribution. Note that while linear
trends are widely used and an easily understandable measure
for documenting changes in climate indices, they are not
necessarily the best fit to the observed changes presented here.
Therefore, we supplement our global time series plots by also
showing 21 year smoothed functions to represent some of the
decadal variations that have been observed since the beginning
of the twentieth century.

4. Results

[17] Trends (shown as maps) are presented using data for
each index for 110 years since 1901 and for 60 years since
1951, when spatial coverage is more complete and other
observational data sets begin [e.g., Caesar et al., 2006;
Donat et al., 2012a; A2006]. Hatching in Figures 3–9 indi-
cates regions where trends are significant at the 5% level.
[18] While trend maps can obviously highlight regional

detail, the focus of this paper is to assess broad scale changes
in extremes. We therefore mostly limit our discussion of
results to an assessment of global change, while we
acknowledge that regional studies can provide much more
in-depth analysis, although we do draw attention to interes-
ting or unusual regional detail.

4.1. Trends in Annual Temperature Indices

[19] All temperature-related indices show significant and
widespread warming trends, which are generally stronger
for indices calculated from daily minimum (nighttime)
temperature than for those calculated from daily maximum
(daytime) temperature.
[20] For example, the frequency of cool nights based on

daily minimum temperatures is shown to have significantly
decreased almost everywhere during the past 60 years
(Figure 3a). The strongest reductions, up to 3 days per

decade since 1951 are found over eastern Asia, northern
Africa, and in some regions of South America (the average
annual frequency during the 1961–1990 base period is by
definition 36.5 days). Globally averaged, the frequency of
cool nights has decreased by about 50% (18 days) between
the 1950s and the first decade of the 21st century. Corre-
spondingly, at the upper tail of the minimum temperature
distribution, we find a significant increase in the frequency
of warm nights in almost all regions (Figure 3c). Globally
averaged, the frequency of warm nights has increased by
about 55% (20 days in a year) during the past 60 years. Of
the grid boxes with valid data, 98% show significant
( p ≤ 0.05) increases in TN90p and decreases in TN10p,
respectively (Table 3).
[21] Analyzing daytime temperature extremes, we see a

reduction in the number of cool days and an increased
frequency of warm days (Figures 3b and 3d). The changes
in cool and warm days appear to be somewhat smaller com-
pared to the cool and warm night frequency changes. The
trends are also spatially less homogeneous in sign, as slight
cooling trends are found over eastern North America
(the so-called “warming hole,” Portmann et al. [2009]) and
along the South-American west coast areas (in particular
the northern part of Chile). Still, in most regions and in the
global average, there are significant warming trends resul-
ting in less frequent cool and more frequent warm days.
In addition, 77 (84)% of the global land area covered
by HadEX2 shows a significant increase in warm days
(decrease in cool days) (see Table 3).
[22] Mostly warming trends are also apparent in the abso-

lute warmest and coldest temperatures of the year. The
warming is generally stronger for the coldest than for the
warmest value. Since the middle of the twentieth century,
the coldest night (TNn) and coldest day (TXn) of the year,
for example, have significantly increased over much of Asia,
North America, Australia, and southern South America
(Figures 4a and 4b). Warming trends are particularly strong
(up to 1�C per decade) over large parts of Asia. Seventy
percent (52%) of the grid boxes with sufficient data coverage
show significant increases in TNn (TXn) during the 1951 to
2010 period, whereas significant decreases are only found in
3% (4%) of the grid boxes (Table 3). Globally averaged, the
temperature related to the coldest night of the year (TNn) has
increased by about 3�C in the past 60 years.
[23] Warming (but mostly weaker) trends are also found

for temperatures related to the warmest night (TNx) and
the warmest day (TXx) over much of Europe, Asia, and
northeastern North America, whereas a significant decrease
in TXx is found over the eastern U.S. and in South America
over parts of Argentina and Uruguay (Figures 4c and 4d).
On average globally, both TNx and TXx have increased by
about 1�C since the 1950s; however, for TXx similarly high
values as today seem to have also occurred in the 1930s.
Particularly high annual maximum temperatures (TXx)
occurred, e.g., over North America in the 1930s. Sixty-four
percent (32%) of grid boxes show significant increases in
TNx (TXx), as opposed to 3% (6%) with significant
decreases. Over most regions, the increases in TNn are
stronger than increases in TXx. Consequently, the extreme
temperature range (ETR) is reduced, in particular over North
America, Asia, and South America and also on the global
average (not shown).
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Figure 3. Trends (in annual days per decade, shown as maps) for annual series of percentile temperature in-
dices for (left) 1901–2010 and (right) 1951–2010 for (a) cool nights (TN10p), (b) warm nights (TN90p), (c)
cool days (TX10p), and (d) warm days (TX90p). Trends were calculated only for grid boxes with sufficient
data (at least 66% of years having data during the period, and the last year of the series is no earlier than
2003). Hatching indicates regions where trends are significant at the 5% level. The time series show the global
average annual values (in days per year) for the same indices as anomalies relative to 1961–1990 mean values
(thin blue line). The thick blue line shows the 21 point Gaussian filtered data for HadEX2. Note that for the
global average time series only grid boxes with at least 90% of temporal coverage are used, i.e., 99 years during
1901–2010 (see text). Note that in this figure the units were converted to days per year prior to calculation.
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Figure 3. (Continued)
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Figure 4. Trend maps and global average time series for annual indices, (a) coldest night (TNn) in �C,
(b) coldest day (TXn) in �C, (c) warmest night (TNx) in �C, and (d) hottest day (TXx) in �C. Details of
trend and time series calculations as described in Figure 3.
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Figure 4. (Continued)
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[24] Associated with the widespread warming trends,
there is also a tendency toward shorter cold spell duration
(Figure 5a) and, conversely, longer warm spell duration
(Figure 5b) in most areas. These changes are significant for
both indices over most of Eurasia. India stands out as having
much stronger increasing trends in the warm spell duration
index (WSDI) than most other regions. Maximum tempera-
tures in India have increased by about 1.1�C since the begi-
nning of the twentieth century with particularly large
positive anomalies in the last couple of decades for both
maximum and minimum temperatures [IMD, 2011. Owing
to the stipulation of the 1961–1990 base period, the region
has experienced an excess of heatwave days since the mid-
1990s by this definition [also see, e.g., Met Office, 2011],
and this has inflated the trend in WSDI (see also section 5).
Globally averaged, WSDI has increased by approximately
8 days since the middle of the twentieth century; however,
most of this increase has occurred since 1980. Conversely,

the duration of cold spells has significantly decreased over
large areas, by about 4 days since 1950 when considering
the global average.
[25] On centennial time scales, since the beginning of the

twentieth century, warming trends show mostly similar
patterns to the trends estimated since the middle of last
century. However, the trends are more pronounced over
the 1951–2010 period when compared to the 1901–2010
period, particularly for the frequency of warm/cold days/
nights (Figure 3). Also on the longer time scale we find
significant warming in the percentile-based indices over
most parts of the world with data coverage, except for
daytime temperatures over the eastern U.S. and southern
South America. Changes in the absolute values are less
spatially coherent; however, regions with significant
changes have the same sign of trend in both periods. Note,
however, that most of the observed warming occurred since
the mid-1970s, and therefore on the centennial time scale

Figure 5. Trends (in annual days per decade) and global average time series for the period 1951–2010
for cold spell duration index (CSDI) and warm spell duration index (WSDI) in HadEX2. Missing data
and significance criteria as in Figure 3. Global average time series are shown as anomalies relative to
the 1961–1990 average (thin blue line); 21 point Gaussian filtered data (thick blue line) are also shown.

DONAT ET AL.: HADEX2—GLOBAL GRIDDED CLIMATE EXTREMES

12



most of the trend is due to the strong warming during the
most recent decades.

4.2. Trends in Seasonal Temperature Indices

[26] The warming trends related to the annual frequencies
of warm/cool days/nights (Figure 3) can in general also be
found throughout all seasons, however with differing magni-
tude and significance. The seasonal results presented here
were calculated as seasonal averages of the monthly gridded
fields. The frequency of warm days (Figure 6), for example,
shows a tendency toward stronger and more extended

warming during winter (i.e., December-January-February
(DJF) on the Northern Hemisphere and June-July-August
(JJA) on the Southern Hemisphere) and the transition
seasons than in summer, particularly at higher latitudes.
For the two regions where local cooling trends were ob-
served (compare Figure 3d), seasonal analysis shows that
this cooling is most significant during the summer months,
i.e., June–August for the “warming hole” in North America
and December–February over South America, respectively.
[27] The frequency of cool nights also decreases consis-

tently throughout all seasons (Figure 7). Particularly over

Figure 6. Trends (in days per decade) for seasonal series of warm days (TX90p) for the period 1951–2010
for (a) December–February, (b) June–August, (c) March–May, and (d) September–November. Trends were
calculated using same criteria as in Figure 3.

Figure 7. Trends (in days per decade) for seasonal series of cool nights (TN10p) for the period 1951–2010
for (a) December–February, (b) June–August, (c) March–May, and (d) September–November. Trends were
calculated using same criteria as in Figure 3.
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Figure 8. Decadal trends and global average time series for annual indices. (a) Number of heavy precip-
itation days (R10) in days, (b) contribution from very wet days (R95pTOT) in %, (c) consecutive dry days
(CDD) in days, and (d) simple daily intensity index (SDII) in millimeters per day. Trend and time series
calculations as described in Figure 3.
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Figure 8. (Continued)
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Figure 9. Trends (in mm/decade) for seasonal series of maximum consecutive 5 day precipitation
(Rx5day) for the period 1951–2010 for (a) December–February, (b) June–August, (c) March–May, and
(d) September–November. Trends were calculated using same criteria as in Figure 3.

Table 3. Land-based Grid Boxes Filled by Data Meeting the Data Completeness Criteria (See Text) for Each Index along with the
Percentage of those Grid Boxes That Show Either a Significant Increase or Decrease at the 5% Level during the 1951–2010 Period

Index Number of Land-based Grid Boxes % Significant Increase % Significant Decrease

TXx 1110 32.16 5.95
TNx 1056 63.73 3.22
TXn 1333 52.21 4.05
TNn 1336 70.36 3.14
TN10p 1398 0.36 96.92
TX10p 1400 0.36 84.00
TN90p 1587 98.61 0.00
TX90p 1437 76.55 1.25
DTR 1079 8.90 59.31
GSL 1250 41.36 5.36
ID 1496 3.07 39.44
FD 1278 3.05 67.37
SU 1271 46.66 6.61
TR 1032 48.74 4.36
WSDI 1182 69.63 0.59
CSDI 1003 3.19 68.89
Rx1day 420 21.90 7.14
Rx5day 438 23.97 8.22
SDII 880 46.48 8.64
R10 853 28.96 10.32
R20 568 28.87 9.15
CDD 832 5.77 21.15
CWD 435 18.39 11.03
R95p 561 30.66 5.88
R99p 420 25.00 4.05
PRCPTOT 986 41.28 9.84
ETR 1207 5.30 50.70
R95pTOT 561 23.89 4.99
R99pTOT 420 19.76 4.05

DONAT ET AL.: HADEX2—GLOBAL GRIDDED CLIMATE EXTREMES

16



Asia, this warming seems to be somewhat stronger during
the cold months than during summer. On the contrary, Europe
and South America show stronger warming during their
respective summer months than in winter.

4.3. Trends in Annual Precipitation Indices

[28] Although based on a larger number of stations
(see Table 1), the gridded fields of the precipitation indices
exhibit a less widespread spatial coverage than the tempera-
ture indices. This is a consequence of the lower correlation
of the precipitation measures between neighboring stations
(see section 3 and Figures 1b and 1d).
[29] The patterns of recent changes in precipitation indices

appear spatially more heterogeneous than the consistent
warming pattern seen in the temperature indices. Most of
the precipitation indices show (partly significant) changes
toward more intense precipitation over the eastern half of
North America as well as over large parts of Eastern Europe,
Asia, and South America. Areas with trends toward less
frequent and intense precipitation are observed, e.g., around
the Mediterranean, in Southeast Asia, and the northwestern
part of North America. Such changes in extreme precipita-
tion are found, for example, for the number of heavy precip-
itation days (R10mm, Figure 8a) and the contribution from
very wet days (R95pTOT, Figure 8b). Globally averaged,
both indices display upward trends during the past 60 years.
Similar patterns of change are also found for the average
intensity of daily precipitation (Figure 8d). All precipita-
tion-based indices show larger areas with significant trends
toward wetter conditions than areas with drying trends
(Table 3).
[30] The number of consecutive dry days (CDD, Figure 8c),

a measure for extremely dry conditions, also shows trends
toward shorter duration of dry spells (i.e., fewer CDD) over
larger parts of North America, Europe, and Southern Asia,
whereas nonsignificant trends toward dryer conditions are
found over East Asia, eastern Australia, South Africa, and
portions of South America where sufficient data are available
for trend calculations. Globally, no clear trend can be
identified.
[31] As for the temperature indices, trends in the precipita-

tion indices over the whole 1901–2010 period are largely
similar in pattern to the trends since 1951 (where data are
available); however, they are usually smaller in magnitude.

4.4. Trends in Seasonal Precipitation Indices

[32] Only two of the precipitation indices, Rx1day and
Rx5day, have data available for sub-annual timescales
(see Table 1). We calculated the seasonal values of both
indices as the seasonal maxima of the monthly gridded
fields. Seasonal trends are generally comparable with annual
trends (not shown). The annual maximum consecutive 5 day
precipitation amount, for example, displays significant
tendencies toward stronger extreme precipitation over
eastern North America and large parts of Europe and Asia
comparable with results shown in Figure 8. In these areas,
the increase in extreme precipitation is visible across all
seasons (Figure 9) but tends to be more significant during
winter and autumn (DJF and September-October-November
(SON) in the Northern Hemisphere). Some tropical regions
in South America and Southeast Asia also display a strong
increase in extreme precipitation between 1951 and 2010

across the seasons, particularly during December to May.
However, as spatial coverage is limited for tropical regions,
a detailed investigation of this was not possible.

5. Discussion

[33] Our results support previous studies, including A2006,
that have found a shift in the distribution of both maximum
and minimum temperature extremes consistent with warming
and that globally averaged minimum temperature extremes
are warming faster than maximum temperature extremes.
Recent studies have shown how the distributions of both daily
and seasonal temperatures have significantly shifted toward
higher temperature values since the middle of the twentieth
century [Hansen et al., 2012; Donat and Alexander, 2012].
This includes changes in the higher statistical moments of
the distributions, having serious implications for climate
impacts.
[34] The driving mechanisms related to the reported

changes may vary between regions and time scales, but
large-scale natural variability plays a role [e.g., Haylock
et al., 2006; Barrucand et al., 2008; Scaife et al., 2008;
Alexander et al., 2009; Caesar et al., 2011; Renom et al.,
2011], as do changes in anthropogenic greenhouse gases
[e.g., Kiktev et al., 2003; Alexander and Arblaster, 2009;
Min et al., 2011] and land-use and land cover change
[e.g., Avila et al., 2012]. There is also some (generally
seasonally dependent) covariability between temperature
extremes and other atmospheric variables, such as precipita-
tion, cloud cover, or the occurrence of storms [e.g., Robinson
et al., 2002; Portmann et al., 2009]. Results presented here
confirm, for example, that the “warming hole” as reflected
by reduced maximum temperatures over eastern North
America seems to be related to more intense precipitation in
this region.
[35] This study also indicates that on the whole the

globally averaged trends in HadEX2 temperature and precip-
itation indices compare very well with the trends in HadEX
over the period when both datasets overlap and particularly
when both datasets are masked with the same grid boxes
and even though largely different input data have been used
(Figure A1). Some minor differences in the time series of the
global averages (mostly toward the end of the series), for
example TNx or CDD, largely vanish when the HadEX2
fields are masked to grid boxes where HadEX has nonmis-
sing data (dashed lines in Figure A1). This shows that differ-
ences between area-averaged time series from both data sets
can primarily be explained by the different spatial coverage.
Some larger differences during the last years of comparison
after 2000, as seen, e.g., for TNn, TXn, R10mm, or SDII can
be explained by a drop in grid box coverage in HadEX after
2000. The differences would largely vanish if we applied an
even stricter data completeness criterion, requiring, e.g.,
100% of data for grid cells to contribute to the global time
series. The similarity in trends from both datasets, given
the largely different input data, gives additional confidence
to the robustness of the results.
[36] There are two exceptions, however, in that there are

some differences in the warm spell (WSDI) and cold spell
(CSDI) duration indices. For these two indices, there are
some larger discrepancies between the new HadEX2 data
set and HadEX, and this is related to inconsistencies in the
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calculation of these indices in HadEX. Sillmann et al. [2012]
discuss how this is likely caused by the use of an earlier ver-
sion of the RClimDex/FClimDex code to calculate indices
for the U.S., which did not account for insufficient data pre-
cision (in part due to rounding to whole degrees Fahrenheit)
in the data, leading to a bias in the temperature percentile
exceedance rates estimated (this is discussed in Zhang et al.
[2009]). Hence, caution should be applied to analysis of
CSDI and WSDI in HadEX especially over the North
American region, although other regions are fairly compara-
ble. Owing to partly different spell duration calculation be-
tween the two datasets, even masking HadEX2 to grid boxes
where HadEX had valid data (dashed blue line in Figure A1)
does not minimize the differences for these indices. Indeed,
the masked data are largely similar to the unmasked HadEX2
global WSDI and CSDI averages. In the new HadEX2 data-
set, the indices were calculated using the same software for
all input stations, and the gridded fields do not suffer from
such inconsistencies. However, by definition these indices
are statistically “volatile” in that they have a tendency to
contain many zeros and have no warm spells defined
for periods shorter than 6 days; thus, other heat wave
metrics that are more statistically robust are being proposed
to replace them [Perkins et al., 2012]. Consequently, even
in HadEX2 some caution is required in assessing results
for the cold and warm spell duration indices. Larger differ-
ences between HadEX and HadEX2 are also obvious for
growing season length (GSL), reflecting a problem with this
index in the previous version of the data set. In HadEX,
some stations with a continuous (365 day) growing season
were assigned a growing season length of 0 days. This
has been corrected in HadEX2. Another point of note is
the large value of Rx1day that occurs in 1982 in HadEX
but is not present in HadEX2. On inspection, this appears
to be a result of particularly high and likely erroneous
precipitation values in some U.S. stations in HadEX which
do not appear in HadEX2. Since data in both datasets were
obtained from a subset of GHCN-Daily for the U.S., we
assume that values that appeared in an earlier version of
GHCN-Daily have since been corrected.
[37] Several precipitation extremes are also related to

snow or heavy precipitation on subdaily time scales. As we
aim to produce an “as-global-as-possible” dataset, we rely
on the ETCCDI climate indices, and these do not consider
snow or subdaily precipitation. Given the limitations in cov-
erage and availability already when using daily data, hourly
precipitation data are even more confined such that at pres-
ent a global observation-based dataset of subdaily extremes
does not seem feasible. A more detailed investigation of
seasonal precipitation extremes based on HadEX2 is also
limited by the fact that the ETCCDI indices at present are
calculated monthly for only two precipitation indices,
Rx1day and Rx5day.
[38] While HadEX2 is a gridded dataset and therefore is

likely to be used in future model evaluation studies, we
add a cautionary note that care must be taken to distinguish
between gridded products when evaluating extremes. In the
method employed here, our output is more closely represen-
tative of regularly spaced point locations. Climate model
output and reanalysis products more typically represent the
area average of a grid. While in the case of most temperature
indices the two measures might be almost indistinguishable,

for other indices such as annual maxima or minima or those
derived from daily precipitation, these gridded metrics might
represent quite different values [e.g., Chen and Knutson,
2008]. There is some debate as to whether it would be more
appropriate to grid the daily data first and then calculate the
indices as this might better reflect the measures that are
returned by climate models or reanalyses. However, calcu-
lating indices in this way would likely have the effect of
over-smoothing the extremes [Hofstra et al., 2010]. In addi-
tion, it adds a level of structural uncertainty into the resulting
data, the effects of which have yet to be tested in detail
[e.g., Donat et al., 2012a]. However, interpolation of
daily data has been shown to reduce the intensity of
extremes [Haylock et al., 2008] and is argued to be more
comparable with climate model data. We therefore recom-
mend that these caveats are taken into account when using
HadEX2 for model evaluation.

6. Conclusions

[39] We present a new global land-based gridded dataset
of climate extremes indices. This dataset, HadEX2, is the
outcome of major data collection efforts, and it substantially
enhances a previous dataset (HadEX, A2006) by providing
improved spatial coverage, updates for the most recent years
up to 2010, and an extension back in time to the beginning
of the twentieth century. The new dataset also solves some
issues with regionally inconsistent calculations of indices
in HadEX. The analysis of recent changes in climate
extremes largely confirms the conclusions based on the
previous dataset, hence generating increased confidence in
the robustness of the presented trends. The main findings
include widespread and significant warming trends related
to temperature extremes indices, mostly stronger for indices
based on daily minimum temperatures than for indices
calculated from daily maximum temperatures. The changes
in precipitation extremes are in general spatially more
complex and mostly locally less significant. However, on a
global scale, we find a tendency toward wetter conditions for
most precipitation indices, i.e., the intensity, frequency, and
duration of extreme precipitation is increasing on average.
[40] It should be noted that there are still large data gaps

over regions such as Africa and northern South America,
although international efforts are ongoing to try and fill in
these gaps [e.g., Skansi et al., 2012] and to provide a data
monitoring capability for the ETCCDI indices [Donat
et al., 2012a]. At present though, the spatial distribution of
stations is still insufficient to provide a truly global picture
of changes in extremes, particularly for those extremes
related to precipitation. It is hoped that efforts will continue
to address the need for continuous data collection and that
ideally all data would be shared with the international
science community through a central data base (such as the
GHCN-Daily dataset). Note that the data presented in this
paper, both station-based (where permissible) and gridded
indices, are available from www.climdex.org.
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Figure A1. Global average time series of annual index values (anomalies relative to 1961–1990 mean
values) for 26 of the Expert Team on Climate Change Detection and Indices (ETCCDI) core indices for
HadEX2 (blue lines) in comparison to HadEX (red lines; A2006) over the 1951–2003 period (for which
HadEX had data). For the calculation of global averages, only grid boxes with at least 90% of \ coverage
are used, i.e., 48 years during 1951–2003. HadEX2 is also masked to grid boxes where HadEX had data (blue
dashed lines) to show that most of the differences can be attributed to different spatial coverage. Units as
indicated in Table 1.
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