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Abstract. We assess the effects of different methodological

choices made during the construction of gridded data sets

of climate extremes, focusing primarily on HadEX2. Using

global land-surface time series of the indices and their cov-

erage, as well as uncertainty maps, we show that the choices

which have the greatest effect are those relating to the station

network used or that drastically change the values for indi-

vidual grid boxes. The latter are most affected by the number

of stations required in or around a grid box and the gridding

method used. Most parametric changes have a small impact,

on global and on grid box scales, whereas structural changes

to the methods or input station networks may have large ef-

fects. On grid box scales, trends in temperature indices are

very robust to most choices, especially in areas which have

high station density (e.g. North America, Europe and Asia).

The precipitation indices, being less spatially correlated, can

be more susceptible to methodological choices, but coherent

changes are still clear in regions of high station density. Re-

gional trends from all indices derived from areas with few

stations should be treated with care. On a global scale, the

linear trends over 1951–2010 from almost all choices fall

within the 5–95th percentile range of trends from HadEX2.

This demonstrates the robust nature of HadEX2 and related

data sets to choices in the creation method.

1 Introduction

Understanding the uncertainties present within a data set can

enable better decision making, as well as enhancing further

research applications (Matthews et al., 2013). Uncertainties

arise from a variety of sources, including unknowns in the

underlying data, parameters chosen when processing them,

and differences between the methods used to do the process-

ing. In some cases the uncertainties can be calculated and

combined to give final ranges in the data product. In many

cases the processing is too complex for this to be achievable,

and so ensemble data sets have been produced to sample the

range of possible plausible final outcomes (e.g. HadCRUT4;

Morice et al., 2012). To quantify the effect of processing

methods on the underlying data, benchmark data sets have

been used (e.g. USHCN; Williams et al., 2012), and in some

cases the methods themselves have been assessed in this way

(e.g. COST-HOME; Venema et al., 2012). In other cases,

multiple data products have been produced in a number of in-

stitutions that sample the methodological (structural) uncer-

tainties, e.g. the global surface temperature record from Had-

CRUT4, MLOST (Smith et al., 2008), NASA-GISS (Hansen

et al., 2010) and Berkeley (Rohde et al., 2013). If the results

obtained from different methods and parameter choices re-

main similar, they can be considered robust and conclusions

can be drawn with high confidence.

In recent years a number of gridded data sets of climate

extremes indices have been released. The first global data

set to contain all 27 indices recommended by the World Me-

teorological Organization (WMO)/CLIVAR/JCOMM Expert

Team on Climate Change Detection and Indices (ETCCDI)

was HadEX (Alexander et al., 2006), which was based on

work by Frich et al. (2002). HadEX covered the period 1951–

2003 and was static, i.e. not updated. Over recent years an

international effort aimed to bring the data set up to date.

This work resulted in HadEX2 (Donat et al., 2013a), which
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substantially increases the time span covered to 1901–2010

and also has a greater surface coverage of the globe.

A number of partner data sets to HadEX2 also exist which

follow a similar methodology. GHCNDEX (Donat et al.,

2013b) uses only the Global Historical Climate Network

(GHCN)-Daily data set as input, rather than the mix of large

collections of data and country-based inputs to HadEX2.

As GHCNDEX is continually updated in near-real time,

it can also be used for climate monitoring. The gridded

HadGHCND data set has also been used to calculate these

indices (Donat et al., 2013b) using temperature data only.

On the whole, for the temperature-based indices, the dif-

ferent extremes indices data sets agree, both for global av-

erages and regional trends (Donat et al., 2014). Some sys-

tematic differences were found for the values of the absolute

indices: as expected, those calculated from the daily gridded

data (HadGHCND) were less extreme (lower maxima and

higher minima; Donat et al., 2013b). However for the precip-

itation indices, the agreement between HadEX and GHCN-

DEX is less robust (Donat et al., 2013b), though the agree-

ment improves when the data sets are masked to have the

same coverage. This demonstrates the large effect that the

spatial coverage of the data sets has, especially for the pre-

cipitation indices. The precipitation indices have more com-

plex spatial changes, and hence the global averages are more

sensitive to changes in coverage than the temperature indices

(see also Wan et al., 2013).

With the increasing use of these data sets to assess regional

changes in extremes, we need to assess whether these results

are unduly sensitive to any choices in the methods. An as-

sessment of this nature probes the parametric and structural

uncertainties of the data set. The Intergovernmental Panel on

Climate Change (IPCC) define the parametric uncertainty as

that coming from choices of parameters within the analysis

scheme and the structural uncertainty as from choices of the

scheme itself (Hartmann et al., 2013, Box 2.1), and these

are the definitions we shall use here. For a complex method,

choices of the order of a calculation (e.g. calculating grids of

annual extremes or extremes from daily grids) or values of a

threshold parameter may have unexpected consequences for

the final outcomes.

Both HadEX2 and GHCNDEX calculate the extremes in-

dices for each station, and then average the stations to form

a gridded data set. Extreme (temperature) indices were also

calculated from daily temperature grids provided through the

HadGHCND data set (Caesar et al., 2006). This helped to as-

sess whether scaling issues related to the order of process-

ing when calculating grids of annual extremes (i.e. calculate

grids from annual extremes vs. annual extremes from daily

grids) may affect analyses of global trends. Such compari-

son is relevant, e.g. when using the gridded data sets of ob-

served extremes as reference for climate model evaluation

(for which extremes are generally calculated from daily out-

put fields). Donat et al. (2014) documented that these differ-

ent approaches in the calculation of extremes grids lead to

differences in the actual values, but trend estimates appeared

to be largely robust for temperature indices. No such com-

parison has yet been performed for precipitation extremes,

due to the lack of long-term global daily grids of observed

precipitation.

Recently, Sillmann et al. (2013) compared extremes in-

dices calculated from state-of-the-art global climate models

participating in the CMIP5 to four reanalysis data sets, and

Donat et al. (2014) compared the three in situ data sets de-

scribed above to five reanalysis products. Furthermore, Yin

et al. (2014) compare five data sets of a subset of these in-

dices over China. Assessing whether areas of disagreement

between the models, reanalyses and observational data can

be reduced by more fully understanding the uncertainties as-

sociated with the observational data sets is an important step

in their use. But more generally, having an estimate of the un-

certainties in the observational data sets is vital for their ac-

curate use. With the advent of coordinated efforts to provide

climate services, policy and planning decisions are increas-

ingly being made using insight from observational data sets

combined with model analyses. As a result it can be high-

lighted where results from data sets are robust and, moreover,

where they are not.

Here we will focus specifically on HadEX2, but, as noted

above, the results are applicable to all data sets which follow

a similar calculation method. We first outline the HadEX2

methods relevant to this work in Sect. 2 and the effect of the

completeness requirement used when plotting global average

time series (Sect. 3). The individual methodological choices

are presented in Sect. 4. We discuss our findings in Sect. 5,

and Sect. 6 summarises the study.

2 HadEX2 methods

In this section we will outline, in particular, the methodologi-

cal choices (parametric and structural) which will be assessed

below. For a full description of the methods used to create

HadEX2 see Alexander et al. (2006) and Donat et al. (2013a).

Between 6500 and 7500 stations are available for each

temperature index, and around 11500 stations for the precip-

itation indices. The geographical distribution of the stations

can be seen in Fig. 1 of Donat et al. (2013a). For both tem-

perature and precipitation, the Amazon region, large parts

of Africa and the southern Arabian Peninsula have no sta-

tions. The western Australian desert and the high-latitude re-

gions of Russia are also relatively undersampled. We note

that all these extremes index data sets are restricted to the

land surface, and that their coverage varies between time

steps (monthly or annually). Therefore, although we follow

Donat et al. (2013a) and Alexander et al. (2006) and describe

the time series as “global average”, they are not truly global.

To perform the gridding of the station data, HadEX2

uses a modified form of Shepard’s angular distance weight-

ing (ADW) scheme (Shepard, 1968). It was initially chosen
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Fig. 1. (a) Numbers of grid boxes covered given different completeness requirements, for TX90p (Tmax > 90th percentile). The total
coverage is shown in light green, whereas the coverage used when calculating global averages is in black, with a range of other completeness
percentages shown in between. (b): The time series for global average of TX90p of HadEX2 (black) and the completeness percentages from
panel a. Also shown are the comparison of other completeness criteria to that used in HadEX2 (90 %) using the correlation coefficient, r,
the root mean square error eRMS and the variance, σ2.

Fig. 2. (a) Numbers of grid boxes covered given different completeness requirements, for CDD (Consecutive Dry Days). (b): The time
series for global average of TX90p of HadEX2 and different completeness requirements. For further details see Fig. 1.

Figure 1. (a) Numbers of grid boxes covered given different completeness requirements, for TX90p (Tmax > 90th percentile). The total

coverage is shown in light green, whereas the coverage used when calculating global averages is in black, with a range of other completeness

percentages shown in between. (b) The time series for global average of TX90p of HadEX2 (black) and the completeness percentages from

panel (a). Also shown are the comparisons of other completeness criteria to that used in HadEX2 (90 %) using the correlation coefficient, r ,

the root-mean-square error eRMS and the variance, σ 2.

when creating HadEX because it had been shown to be an ap-

propriate method for gridding irregularly spaced data (New

et al., 2000). For each index, the correlation coefficients be-

tween all station pairs are calculated and are plotted against

the distance between the stations. The correlation coefficients

decay with distance, and averaging over 100 km bins, this de-

cay is fitted with second-order polynomial (see Fig. A1 of

Alexander et al., 2006). We assume that the bin at zero dis-

tance has perfect correlation (with a data point at (0,1)), but

the best-fit line is not forced to pass through this point. Small

instrumental and siting effects (on the scale of metres and so

far below the scale of the bins used) are likely to result in a

non-unity correlation at zero distance. Using this polynomial

fit, the distance at which the correlation has fallen by a factor

of 1/e is obtained. This distance is the decorrelation length

scale (DLS, also known as the correlation decay distance;

see Caesar et al., 2006; Jones et al., 1997). Furthermore, as

part of the ADW scheme, there is a weighting parameter, m,

which determines the steepness of the decay with distance.

In HadEX2 (and the other related data sets), this weighting

function has been chosen to bem= 4 (it is the effect of para-

metric choices like this that are investigated in the course of

this study). A DLS is calculated for each index individually

at the timescale of the index (monthly or annually) and for

five separate latitude bands: four 30◦ bands between 30◦ S

and 90◦ N and one 60◦ band between 30 and 90◦ S, where

there are few stations. The DLS values are then linearly in-

terpolated to avoid discontinuities at the band boundaries.

A 3.75◦× 2.5◦ grid is used for HadEX2. For each grid

box centre, all the stations within a DLS are combined using

ADW to obtain the value for the grid box in HadEX2. There

have to be a minimum of three stations within a radius of one

DLS for a grid box value to be calculated. This means that

there exist grid boxes which themselves do not contain any

stations but are just in sufficient proximity to three stations

to have a value assigned. These annual (and monthly in the

case of some indices) grid box values make up the final data

set.

HadEX2 contains a total of 29 extremes indices, 17

temperature-based and 12 precipitation-based, which are de-

fined in Table 1. Some indices are calculated in a simi-

lar way to others, and thus fall naturally into categories.

For temperature there are percentile-based ones (TX10p,

TX90p, TN10p, TN90p), block maxima/minima (TXx, TXn,

TNx, TNn), duration-based indices (CSDI, WSDI, GSL), ex-

ceedance frequency of fixed threshold values (SU, TR, FD,

ID) and others which do not fit into any of the above cate-

gories (DTR, ETR); for precipitation there are exceedance

frequency of fixed threshold values (R10mm, R20mm),

precipitation totals (PRCPTOT, R95p, R99p), block max-

ima (Rx1day, Rx5day), percentile-based precipitation to-

tals (R95pTOT, R99pTOT, SDII) and duration-based indices

(CDD, CWD). For this study we use the version of HadEX2

as of May 2013.
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Fig. 1. (a) Numbers of grid boxes covered given different completeness requirements, for TX90p (Tmax > 90th percentile). The total
coverage is shown in light green, whereas the coverage used when calculating global averages is in black, with a range of other completeness
percentages shown in between. (b): The time series for global average of TX90p of HadEX2 (black) and the completeness percentages from
panel a. Also shown are the comparison of other completeness criteria to that used in HadEX2 (90 %) using the correlation coefficient, r,
the root mean square error eRMS and the variance, σ2.

Fig. 2. (a) Numbers of grid boxes covered given different completeness requirements, for CDD (Consecutive Dry Days). (b): The time
series for global average of TX90p of HadEX2 and different completeness requirements. For further details see Fig. 1.

Figure 2. (a) Numbers of grid boxes covered given different completeness requirements, for CDD (consecutive dry days). (b) The time

series for global average of TX90p of HadEX2 and different completeness requirements. For further details see Fig. 1.

3 Grid box completeness

In the calculation of the global average, Donat et al. (2013a)

use only those boxes which have at least 90 % of data during

the period, i.e. 99 years over 1901–2010. This is to reduce

the effect of varying coverage on the global average, which

would otherwise change drastically as regions start and stop

contributing to this summary measure. However this require-

ment adds a large restriction onto the areas of the globe which

can contribute to the global land-surface average. We inves-

tigate this effect separately from the rest of the methodolog-

ical changes as it influences them all when calculating the

global time series. However, it is more of a presentational

choice when calculating the global average summary time

series. We note that all of the global time series plots have

been centred over the period 1961–1990 as per Donat et al.

(2013a). This does have the effect of appearing to reduce the

spread during the climatological period used for the centring

process.

As can be seen in Fig. 2 of Donat et al. (2013a), there is

a steady climb in the number of grid boxes with data until

around 1960, where the curve levels off, before beginning

to fall again in the early 2000s. When the number of grid

boxes is restricted to those which have 90 % completeness

over the period of the data set, the number of grid boxes

is much reduced but is more constant over the period. For

TX90p (Tmax > 90th percentile), the number of grid boxes

with 90 % completeness remains steady at around 700 for

most of the period (see Fig. 1a), but depends on the index

used and is generally lower for the precipitation indices, e.g.

CDD (consecutive dry days, Fig. 2).

In Fig. 1 we also show the root-mean-square error (eRMS)

and the variance (σ 2) for each of the completeness crite-

ria. The variance is calculated from the global mean time

series using the full record. The root-mean-square error is

calculated on the difference of the time series with that from

HadEX2, again over the full record. These two quantities can

be used in combination with a visual assessment of the global

time series to determine how similar they are.

When using a percentile-based temperature index, e.g.

TX90p, there is only a relatively small effect of the com-

pleteness requirement on the global trends (see Fig. 1b).

The global average time series are highly correlated with

HadEX2 for all completeness values, and only for very low

completeness criteria in time (less than around 50 % of years

present for a grid box to be included) are there somewhat

larger deviations, and even these are only apparent in the

most recent decades of the time series where the grid box

numbers diverge by a large amount. The correlation coeffi-

cients remain above 0.9, indicating close agreement between

the time series, which can be clearly seen in Fig. 1b.

However, when using another index, e.g. CDD (see Fig. 2),

completeness requirements have clear systematic effects on

the results. Although year-to-year variations are very similar,

the global averages before 1960 are smaller for low com-

pleteness criteria. By including extra-short-term grid boxes,

the period post 1960 has been biased upwards, which, com-

bined with the climatology period of 1961–1990, results

in the apparent low values prior to this. Specifically for

CDD, the results when selecting only long-term stations (see

Sect. 4.4) indicate that stations in central and eastern Asia

report mainly in the later period of the data set and HadEX2
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Table 1. The abbreviations, definitions and units of all the indices assessed in this work.

Index Name Definition Unit

Temperature

TXx Max Tmax Warmest daily maximum temperature ◦C

TXn Min Tmax Coldest daily maximum temperature ◦C

TNx Max Tmin Warmest daily minimum temperature ◦C

TNn Min Tmin Coldest daily minimum temperature ◦C

DTR Diurnal temperature range Mean difference between daily maximum and daily minimum

temperature

◦C

ETR Extreme temperature range Difference between monthly maximum and minimum tempera-

ture

◦C

GSL Growing season length Annual number of days between the first occurrence of 6 con-

secutive days with Tmean > 5◦C and the first occurrence of 6

consecutive days with Tmean < 5◦C. For the Northern (South-

ern) Hemisphere this is calculated between 1 January and 31

December (1 July to 30 June).

Days

CSDI Cold spell duration indicator Annual number of days with at least 6 consecutive days when

Tmin < 10th percentile

Days

WSDI Warm spell duration indicator Annual number of days with at least 6 consecutive days when

Tmax > 90th percentile

Days

TX10p Cool days Percentage of days when Tmax < 10th percentile % of days

TX90p Warm days Percentage of days when Tmax > 90th percentile % of days

TN10p Cool nights Percentage of days when Tmin < 10th percentile % of days

TN90p Warm nights Percentage of days when Tmin > 90th percentile % of days

FD Frost days Annual number of days when Tmin < 0◦C Days

ID Ice days Annual number of days when Tmax < 0◦C Days

SU Summer days Annual number of days when Tmax > 25◦C Days

TR Tropical nights Annual number of days when Tmin > 20◦C Days

Precipitation

Rx1day Maximum 1-day precipitation Maximum 1-day precipitation total mm

Rx5day Maximum 5-day precipitation Maximum 5-day precipitation total mm

PRCPTOT Annual contribution from wet days Annual sum of daily precipitation ≥ 1.0 mm mm

SDII Simple daily intensity index Annual total precipitation divided by the number of wet days

(when total precipitation ≥ 1.0 mm)

mm day−1

R95p Annual contribution from very wet days Annual sum of daily precipitation > 95th percentile mm

R95pTOT Fraction from very wet days R95p× 100/PRCPTOT %

R99p Annual contribution from extremely

wet days

Annual sum of daily precipitation > 99th percentile mm

R99pTOT Fraction from extremely wet days R99p× 100/PRCPTOT %

CWD Consecutive wet days Maximum annual number of consecutive wet days (when pre-

cipitation ≥ 1.0 mm)

Days

CDD Consecutive dry days Maximum annual number of consecutive dry days (when pre-

cipitation < 1.0 mm)

Days

R10mm Heavy precipitation days Annual number of days when precipitation > 10 mm Days

R20mm Very heavy precipitation days Annual number of days when precipitation > 20 mm Days

shows high values of CDD in western China (Xinjiang and

the Tibetan Plateau), which supports this reasoning. This

highlights the importance of requiring a high completeness

when constructing the global average time series. Many other

indices (both temperature and precipitation) show large dif-

ferences between the time series of HadEX2 and versions

when the completeness is ≤ 50 %, especially outside of the

climatology period (1960–1990). The indices which show no

large changes tend to be the ones based on percentiles (e.g.

TX90p; R99p: annual sum of daily precipitation > 99th per-

centile).

The correlation coefficients between HadEX2 and the ver-

sions using different completeness requirements for both

CDD and TX90p remain above 0.9 until the completeness

drops below around 60 % of years, and similar results are

seen in the plots for the remaining indices (see Supplement).
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Therefore, if studying the full time span of the HadEX2 data

set (1901–2010), then a completeness criterion of at least

60 % would be required (66 years present out of 110 for the

grid box to be included). However, the higher the complete-

ness threshold is set, the more reliable the results will be,

albeit for a smaller fraction of the globe. This has less of an

effect in the later period when more data are available. The

recommendation for masking the data based on the complete-

ness of the grid boxes over time when assessing time series of

area averages was also highlighted by Donat et al. (2013b).

However, although the effect of selecting only the grid

boxes which have at least 90 % of years with non-missing

data is large, we will compare the remaining methodological

choices with this restriction in place rather than reducing the

requirement to 60 %. Plots showing the number of grid boxes

filled by each methodological choice will be shown without

this restriction in place in order to demonstrate changes in

this quantity more clearly. Any differences to this approach

will be noted in the text and figure captions.

4 Uncertainty investigations

As HadEX2 contains 29 indices, in around 7–8 categories

(Sect. 2), and as we are studying a range of methodological

choices, we only show representative results judged likely to

be of greatest interest. In the majority of cases, the uncertain-

ties will be very similar for indices in the same category. All

plots for each of the indices will be provided in the Supple-

ment.

We will present the small, parametric changes first as these

are likely to have the smallest effect. Then we will focus

on larger changes to the source data or methods: “structural

changes”. In all cases, the time series have been centred rel-

ative to the period 1961–1990. We do not assess the effect of

the quality of the station data during this work. HadEX2 has

been created from a number of different input data sources

(see Donat et al., 2013a, for more details) and therefore has

differing levels of quality control applied between stations

and not all of the raw data are available for independent qual-

ity control assessments to be made. For those indices where

monthly values are available, in this work we only assess the

effects on the annual values.

4.1 Weighting function (parametric)

In the ADW scheme used in HadEX, a parameter, m, de-

termines the steepness of the decay of the weighting func-

tion with distance (Eq. A2 in Alexander et al., 2006). The

weighting parameter has been set to m= 4 in both HadEX

and HadEX2, as this provided a reasonable compromise be-

tween reducing the root-mean-square error (eRMS) between

the gridded and station data and spatial smoothing (Donat

et al., 2013a; Caesar et al., 2006). Donat et al. (2013a) note

Figure 3. The time series for global average R99p (annual sum of

daily precipitation > 99th percentile) showing the different curves

for the different weighting values (colours are indicated below the

plot). The figure also shows the correlation coefficient (r), variance

(σ 2) and root-mean-square error (eRMS) between each series and

HadEX2. All choices have been centred relative to the climatology

period 1961–1990, reducing the spread during this time.

that the results are almost identical when using values be-

tween 1 and 10 for m.

We vary this weighting parameter from one to eight, and

show the results in Fig. 3 for the R99p index (annual sum

of daily precipitation> 99th percentile). Indeed, the changes

are very minor, and are almost imperceptible on the global

time series plot. For a large m, the decay of the weighting

function is steep, which would lead to stronger gradients lo-

cally. A small m results in a slower decay, weaker gradi-

ents and hence smoother variation across grid boxes. Hence

changes in m may lead to small local differences, but as seen

in Fig. 3, global-scale results are almost identical for all val-

ues of m. This is probably also valid for (sub)continental av-

erages.

For all other indices, there are also only very small changes

to the global time series, and the correlation coefficients

rarely differ from r = 1. Any differences that do exist tend

to be at earlier times when the coverage is lower. The cover-

age (grid boxes with non-missing values, not shown) is also

identical to that of HadEX2.

4.2 Stations within a DLS (parametric)

In HadEX2, for a grid box to have a value, there have to be

at least three stations within a radius of one DLS of the grid

box centre. For the percentile-based temperature indices this

Clim. Past, 10, 2171–2199, 2014 www.clim-past.net/10/2171/2014/
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Fig. 4. (a): The number of non-missing grid boxes for TX10p (Tmax< 10th percentile) for the different numbers of stations required within
a DLS of the grid box centre. All grid boxes with sufficient stations are shown in the coverage series. (b): The time series for global
average TX10p for the different numbers of stations required within a DLS of the grid box centre, given the overall 90 per cent completeness
requirement. All choices have been centered relative to the climatology period 1961-1990, reducing the spread during this time.

Fig. 5. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard deviation
of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for TX10p. Grey grid boxes are those where only one
of the 9 possible options for the number of stations within the DLS results in a value. The grid boxes are green when 2-3, blue when 4-6
and red when 7-9 of the possible choices result in a value. In the right panel, boxes which have been outlined are those where there is high
confidence in a non-zero trend in HadEX2.

Figure 4. (a) The number of non-missing grid boxes for TX10p (Tmax < 10th percentile) for the different numbers of stations required

within a DLS of the grid box centre. All grid boxes with sufficient stations are shown in the coverage series. (b) The time series for global

average TX10p for the different numbers of stations required within a DLS of the grid box centre, given the overall 90 % completeness

requirement. All choices have been centred relative to the climatology period 1961–1990, reducing the spread during this time.

DLS can be of the order of 1000 km, but it is much shorter

for the precipitation-based indices. We vary this parametric

choice between one and nine stations within one DLS of the

grid box centre. The resulting global average coverage and

time series for TX10p (Tmax < 10th percentile) are shown in

Fig. 4. Again, the changes between choices are very minor

in this index for the later period, though larger than for the

choices of the weighting parameter. The correlation between

the different time series remains very high, but as the number

of stations required within a grid box rises, so does the root-

mean-square error (eRMS in Fig. 4b). Pre-1950 the global av-

erage with only one station required within a DLS results in

lower estimates for the indices in almost all cases (see Sup-

plement) notably changing the long-term behaviour.

For some of the precipitation indices (e.g. R99p, annual

sum of precipitation > 99th percentile) the correlation with

HadEX2 also decreases as more stations are required per

DLS. The long-term behaviour, which in many indices shows

no strong non-zero trend, is unchanged, but the year-to-year

variability changes. As discussed below, this arises because

of the severe reduction in coverage as the number of sta-

tions required per DLS increases (from ∼ 1100 grid boxes

to ∼ 200 for this index).

When masking all of the nine choices by the coverage of

the version requiring nine stations within one DLS (the most

restrictive choice), all the global time series curves are iden-

tical. This means that the changes in the global time series

curves seen in Fig. 4b are driven by the coverage and not

by changes in the grid box values. It is highly likely that

there are changes in individual grid box values or on regional

scales. However, as the ADW gridding method gives the

highest weight to stations which are nearest to the grid box

centre with a decay to more remote stations, these changes

are expected to be small (especially in dense networks).

Therefore, on a global average, there are no apparent changes

resulting from changing the DLS but keeping the same cov-

erage.

Figure 5 shows how choices that affect regional level

results can cancel out when considering the global (land-

surface) average. The correlation coefficient (r) of the lo-

cal detrended time series with HadEX2 for each of the eight

other possible choices is calculated over the 1951–2010 pe-

riod. The mean of these for each grid box is shown in Fig. 5a.

We use the correlation coefficient of the detrended time se-

ries in order to pick out the short-timescale variability rather

than any long-term trend that may dominate in some indices

for r values of the raw time series. The linear trend used to

detrend the data was determined using a median of pairwise

slopes (Theil–Sen) estimator (Theil, 1950; Sen, 1968; Lan-

zante, 1996) over the period 1951–2010. We require at least

two-thirds (40 out of 60) of years with valid data for a trend

to be calculated.

In some grid boxes only one of the possible versions re-

sults in a value; these have been shaded in grey. They arise

from the choice which only requires one station per DLS as

this is the least restrictive. In the case of TX10p, the cor-

relation coefficients between the different versions are very

high for most of North and South America, Europe, Asia and
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Fig. 4. (a): The number of non-missing grid boxes for TX10p (Tmax< 10th percentile) for the different numbers of stations required within
a DLS of the grid box centre. All grid boxes with sufficient stations are shown in the coverage series. (b): The time series for global
average TX10p for the different numbers of stations required within a DLS of the grid box centre, given the overall 90 per cent completeness
requirement. All choices have been centered relative to the climatology period 1961-1990, reducing the spread during this time.

Fig. 5. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard deviation
of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for TX10p. Grey grid boxes are those where only one
of the 9 possible options for the number of stations within the DLS results in a value. The grid boxes are green when 2-3, blue when 4-6
and red when 7-9 of the possible choices result in a value. In the right panel, boxes which have been outlined are those where there is high
confidence in a non-zero trend in HadEX2.

Figure 5. (a) The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b) the standard

deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for TX10p. Grey grid boxes are those where

only one of the nine possible options for the number of stations within the DLS results in a value, green where two to three, blue where four

to six, and red where seven to nine. In the right panel, boxes which have been outlined are those where there is high confidence in a non-zero

trend in HadEX2.

Australia, and southern Africa, though in some cases not all

of the choices result in a value for a specific grid box. The

only large regions which have low correlation values or few

choices which fill the grid boxes are around central and Sa-

haran Africa, the Amazonian region and Indonesia. This pic-

ture is largely unchanged for the other temperature indices.

In some indices there are fewer choices which result in a

value in the high latitudes, parts of central Asia and central

Australia, as well as the regions mentioned above. For other

indices, almost the entire globe is covered. Precipitation in-

dices have a much smaller area where all choices result in

a value (see R99p in Fig. 6a) as a consequence of the much

smaller DLS value in most cases.

As the representation of long-term trends is also impor-

tant, we show in Fig. 5b the standard deviation of the linear

trends divided by the mean of the trends (σ/µ) calculated

over 1951–2010. Linear trends for all methods were calcu-

lated using the median of pairwise slopes method, and from

the resulting distribution of trends the standard deviation and

mean were obtained. If the value of σ/µ is small, then there

is little variation in the value of the trends compared to the

size of the mean trend, and so the trends are robust to the

different choices. However, if the value of σ/µ is large, then

there are large variations in the trends, and so they are not

robust. This is more likely if the value of the mean trend is

small. On the Indian subcontinent and also in South Amer-

ica, although the mean r values of the detrended time series

were high, there is a higher variation in σ/µ than in North

America, Europe and Asia.

The confidence of the sign of a trend is also determined

from the median of pairwise slopes method by requiring that

both the 5th and 95th percentiles of the slopes have the same

sign. In this way we can be confident that a non-zero trend

exists, and have some indication of its magnitude. Grid boxes

where this is the case in HadEX2 are highlighted with a

solid surround. This is different to the way trend significance

was calculated in Donat et al. (2013a), who used the Mann–

Kendall test.

We note that in many cases a linear trend is not a good de-

scriptor for the long-term behaviour of the indices. Therefore

we also provide figures in the Supplement which use the dif-

ference between the early (1951–1970) and late (1991–2010)

periods of this data set. In these figures, a change is signif-

icant if the ranges of the median-absolute deviations from

the two periods do not overlap. The dominant differences be-

tween these plots and those from the linear trends are the

grid boxes which are assessed to have significant changes,

with fewer occurring when using the differences.

However, linear trends are a simple and well-understood

way of summarising the long-term behaviour of a time se-

ries (Hartmann et al., 2013, Box 2.2). Also, by restricting the

period to post-1951, we exclude the early period for which

trends in the global mean are more dependent on coverage

(see Sect. 3). By using a linear trend we focus on one (eas-

ily understood) measure of the change in the indices since

1951, especially as we are assessing the similarity of the low-

frequency variability between the versions rather than trying

to remove it. More complex analysis methods, for example

change-point detection methods, could be used to identify

dramatic changes in the behaviour of the indices between dif-

ferent versions of the data set. However, as in this work we

are assessing the effect of parametric and structural choices

of the method on the behaviour of the indices rather than the

behaviour of the indices over time, a linear trend provides a

simple and easily understood way of summarising the long-

term changes for this regional analysis.

For some of the fixed threshold indices (FD: frost days;

ID: ice days; SU: summer days; TR: tropical nights) there
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Fig. 6. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard deviation
of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for R99p. For further details see Fig. 5.

scriptor for the long-term behaviour of the indices. Therefore
we also provide figures in the Supplement which use the dif-470

ference between the early (1951-1970) and late (1991-2010)
periods of this dataset. In these figures, a change is signif-
icant if the ranges of the median-absolute deviations from
the two periods do not overlap. The dominant difference be-
tween these plots and those from the linear trends are the475

grid-boxes which are assessed to have significant changes,
with fewer occurring when using the differences.

However, linear trends are a simple and well understood
way of summarizing the long-term behaviour of a time se-
ries (Hartmann et al., 2013, Box 2.2). Also, by restricting the480

period to post-1951, we exclude the early period for which
trends in the global mean are more dependent on coverage
(see Sect. 3). By using a linear trend we focus on one (eas-
ily understood) measure of the change in the indices since
1951, especially as we are assessing the similarity of the low-485

frequency variability between the versions rather than trying
to remove it. More complex analysis methods, for example
change-point detection methods, could be used to identify
dramatic changes in the behaviour of the indices between dif-
ferent versions of the dataset. However, as in this work we490

are assessing the effect of parametric and structural choices
of the method on the behaviour of the indices rather than the
behaviour of the indices over time, a linear trend provides a
simple and easily understood way of summarising the long-
term changes for this regional analysis.495

For some of the fixed threshold indices (FD [Frost Days],
ID [Ice Days], SU [Summer Days], TR [Tropical Nights])
there are some very high correlation values and very low vari-
ances, especially in regions of the globe where these thresh-
olds are always or never exceeded. However, in these regions500

these indices are of limited value. Correlations are not calcu-
lated if no data are present so the coverage can look different
to other indices. Also for some stations, these indices were

not calculated at regional workshops1 when the fixed thresh-
olds were irrelevant for a specific climatic region.505

The other temperature based indices show similar features
in both the time series and the maps, albeit with slightly dif-
ferent coverage resulting from the differences in the DLS for
each index. North America, Europe and Asia have most of
the choices resulting in most boxes having a value, whereas510

South America, southern Africa and Australia have more
variable coverage. In most of these areas, the r of the de-
trended time series are high, but the reduced trend variance
(σ/µ) also shows high values in South America, Africa, In-
dia, central Asia and high latitudes for some of the indices.515

Most temperature indices also show clear non-zero trends in
the global average. The high level of agreement between the
choices for the reduced variances (darker colours) indicates
that these trends are robust to this methodological choice in
most regions.520

The DLSs for most of the precipitation indices are much
smaller than for the temperature indices. Hence the areas
which consistently have most of the choices resulting in a
grid box value are much smaller: only the densely instru-
mented parts of North America and Australia, Europe, South525

Africa, and parts of South America, India and China (com-
pare Fig. 6 with Fig. 5) have seven or more choices resulting
in a grid box value. However, even in some of these areas, the
reduced variances are quite high. This is in some cases due
to the long-term behaviour showing no strong non-zero trend530

in some of these regions and indices. Hence, here is a high
sensitivity to changes arising from the reduction in coverage
as the number of stations required within a DLS is increased.

1When creating HadEX2, some data came from regional work-
shops. During these workshops indices were calculated from the
daily data to overcome some of the concerns about data sharing and
exchange. For further details see Alexander et al. (2006); Donat
et al. (2013a).

Figure 6. (a) The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b) the standard

deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for R99p. For further details see Fig. 5.

are some very high correlation values and very low variances,

especially in regions of the globe where these thresholds are

always or never exceeded. However, in these regions these

indices are of limited value. Correlations are not calculated if

no data are present, so that the coverage can look different to

other indices. Also, for some stations, these indices were not

calculated at regional workshops1 when the fixed thresholds

were irrelevant for a specific climatic region.

The other temperature-based indices show similar features

in both the time series and the maps, albeit with slightly dif-

ferent coverage resulting from the differences in the DLS for

each index. North America, Europe and Asia have most of

the choices resulting in most boxes having a value, whereas

South America, southern Africa and Australia have more

variable coverage. In most of these areas, the r values of the

detrended time series are high, but the reduced trend variance

(σ/µ) also shows high values in South America, Africa, In-

dia, central Asia and high latitudes for some of the indices.

Most temperature indices also show clear non-zero trends in

the global average. The high level of agreement between the

choices for the reduced variances (darker colours) indicates

that these trends are robust to this methodological choice in

most regions.

The DLSs for most of the precipitation indices are much

smaller than for the temperature indices. Hence the areas

which consistently have most of the choices resulting in a

grid box value are much smaller: only the densely instru-

mented parts of North America and Australia, Europe, South

Africa, and parts of South America, India and China (com-

pare Fig. 6 with Fig. 5) have seven or more choices resulting

in a grid box value. However, even in some of these areas, the

1When creating HadEX2, some data came from regional work-

shops. During these workshops, indices were calculated from the

daily data to overcome some of the concerns about data sharing and

exchange. For further details see Alexander et al. (2006) and Donat

et al. (2013a).

reduced variances are quite high. This is in some cases due

to the long-term behaviour showing no strong non-zero trend

in some of these regions and indices. Hence, here is a high

sensitivity to changes arising from the reduction in coverage

as the number of stations required within a DLS is increased.

There is no clear correspondence between the location of

grid boxes where there is high confidence in a non-zero trend

in HadEX2 and those regions where the σ/µ is small for the

precipitation indices. Most of the precipitation indices have

few regions where there is a notable non-zero trend (PRCP-

TOT is an exception). In fact, some areas with high σ/µ have

high confidence in non-zero trends in HadEX2. Hence, even

if there is strong evidence for a non-zero trend, further inves-

tigation would be required to ensure its significance as it may

well be extrapolated from distant stations.

4.3 Stations within a grid box (parametric)

The ADW gridding method of HadEX2 does not require that

a given grid box contain any stations within it but merely

that there be at least three stations within one DLS of the

grid box centre (see Sect. 4.2). Thus there could be a number

of grid boxes without any actual nearby stations that have

values because of the ADW interpolation. We now require

that there be stations within the grid box itself (ranging from

one to five). This will assess the complementary effects of

the robustness of a grid box average against the robustness of

a regional average. The weighting used to calculate the grid

box value is the same as in the ADW scheme, but boxes are

only filled if there are the requisite number of stations inside

them. Requiring even just one station within the grid box has

a drastic effect on the coverage (see Fig. 7a).

For the global time series, the requirement that a grid

box contain stations has little effect on the post-1940 trends

(Fig. 7b). There are, however, large differences prior to this.

In regions with relatively high station density (and hence also

more in the most recent periods), the grid box value will still
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Fig. 7. (a): The number of non-missing grid boxes and (b) the time series for global average CSDI (Cold Spell Duration Index) for the
different numbers of stations within a grid box. Note that the global average only takes grid boxes which have 90 per cent completeness or
more, whereas all grid boxes are shown in the coverage series. All choices have been centered relative to the climatology period 1961-1990,
reducing the spread during this time.

Fig. 8. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard
deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for CSDI and the number of stations per grid
box. Green grid boxes are those where two of the 6 possible choices of stations per grid box results in a value, blue when 3-4 and red when
5-6 of the possible choices result in a value. Note that the HadEX2 method does not require any stations to be present within a grid box for
a value to be calculated. For further details see Fig. 5.

Figure 7. (a) The number of non-missing grid boxes and (b) the time series for global average CSDI (cold spell duration indicator) for

the different numbers of stations within a grid box. Note that the global average only takes grid boxes which have 90 % completeness or

more, whereas all grid boxes are shown in the coverage series. All choices have been centred relative to the climatology period 1961–1990,

reducing the spread during this time.

be dominated by the stations within the box. Therefore find-

ing only few differences in the later period is expected. Al-

though HadEX2 has a greater coverage through ADW in-

terpolation, the number of stations that are included are the

same. The extra coverage in HadEX2 is extrapolated from

data from these stations, and so it would be very surprising if

there were drastic changes in the global average trends.

By using the correlation information between the observed

stations when calculating the DLS, we can be confident that

this correlation is still valid in grid boxes where no station

is found (North et al., 2011). Hence using the ADW grid-

ding scheme which interpolates into regions without stations

is reasonable. However, the result of this is that the globally

averaged time series of the interpolated and un-interpolated

version are very similar as no new information has been

added during the interpolation. For the earlier period, requir-

ing a greater and greater number of stations to be present in

the grid boxes has a larger effect as there are fewer stations

and the coverage becomes very small. If we were to calcu-

late decadal averages of the indices, the DLS of these time

averages would likely be larger than the DLS used for the

construction of HadEX2. Therefore decadal averages of the

indices may be representative of a larger area than just that

covered in HadEX2. One note of caution is that this is likely

only true for decadal averages, but not for decadal versions

of some of the indices, i.e. decadally averaged TXx would

be expected to be representative of a larger spatial area than

the DLS values calculated for the monthly and annual grids;

however, this would not be the case for the maximum TX

over the entire decade.

Although the long-timescale trends for all the choices are

similar for the latter period, what is apparent is that some

individual short-term spikes become more pronounced as the

number of stations required increases. If these features in the

global average arise from small geographical regions with

a high station density, then these can more easily dominate

the global average as the number of stations per grid box

increases and there are fewer and fewer grid boxes which

have valid values.

The uncertainty maps for this set of methodological

choices are shown for CSDI (cold spell duration indicator)

in Fig. 8. There are many regions where only one choice

gives a value, which are shown in grey, and these are from the

HadEX2 data set. The more stations required to be within a

grid box, the higher the mean correlation of the grid box time

series.

Where only two of the choices result in grid box having

a value, there must be one station in the grid box (the other

choice being HadEX2). As this station dominates the value

of the grid box, the time series can be noisy, and hence the

correlation with HadEX2 can be low. If more stations are re-

quired, the time series will become less noisy as each station

contributes less to the grid box average time series. Concur-

rently, stations within a grid box are in close proximity, and

hence are likely to correlate well. Therefore the mean corre-

lation between all the series will improve with an increase in

the required number of stations, which is what is observed

in Fig. 8a (boxes coloured green are very pale, blue less so,

and red ones are the most intense). For grid boxes where not
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Fig. 7. (a): The number of non-missing grid boxes and (b) the time series for global average CSDI (Cold Spell Duration Index) for the
different numbers of stations within a grid box. Note that the global average only takes grid boxes which have 90 per cent completeness or
more, whereas all grid boxes are shown in the coverage series. All choices have been centered relative to the climatology period 1961-1990,
reducing the spread during this time.

Fig. 8. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard
deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for CSDI and the number of stations per grid
box. Green grid boxes are those where two of the 6 possible choices of stations per grid box results in a value, blue when 3-4 and red when
5-6 of the possible choices result in a value. Note that the HadEX2 method does not require any stations to be present within a grid box for
a value to be calculated. For further details see Fig. 5.

Figure 8. (a) The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b) the standard

deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951–2010 for CSDI and the number of stations per grid

box. Green grid boxes are those where two of the six possible choices of stations per grid box result in a value, blue where three to four, and

red where five to six. Note that the HadEX2 method does not require any stations to be present within a grid box for a value to be calculated.

For further details see Fig. 5.

all the choices result in a value, there is a greater range in

differences than in the trends (less intense colours).

For all indices the coverage reduces to North America, Eu-

rope and China (and also India and South Africa for precip-

itation) when five or more stations are required, with only

central Asia being a large area filled in when this restriction

is relaxed down to one station (for temperature indices). This

highlights the limitations in the available data, and the effect

of the DLS in increasing the apparent coverage of HadEX2.

For indices where the DLS is large (e.g. TN90p, Tmin > 90th

percentile), although most of the land surface is covered in

HadEX2, only those areas listed above remain when the re-

striction on the number of stations is imposed. For indices

which have a small DLS (e.g. Rx1day) the effect is less pro-

nounced as the size of the DLS already limits valid grid boxes

to those with stations.

4.4 Long-term stations (parametric)

Most stations in HadEX2 do not report for the full 1901–

2010 period. Stations dropping in and out could cause in-

homogeneities and changes in the coverage which may feed

through into the global average. As shown in Sect. 3, se-

lecting grid boxes which have 90 % completeness results in

much smoother global average time series compared to when

selecting all grid boxes.

We therefore select stations which have reported for a long

period of time and see how only using these effects the cover-

age and time series. Stations can either be selected requiring

that they report for greater than a given number of years or

that they have a start date before a given year (and an end

date after a different year, if desired), with the latter high-

lighting areas which only report during more recent times.

The difference in which stations were selected changes the

value of the DLS. Hence the coverage can be higher than

for HadEX2, especially in the early part of the series. In the

maps, trends and correlations have been calculated over the

1951–2010 period.

Stations were selected which reported for more than 40

to more than 80 years out of the total of 110, in 10-year

increments. As can be seen for TXx (maximum Tmax) in

Fig. 9a, this has a large effect on the number of grid boxes

available, but there are few differences in the global time

series (Fig. 9b). Other indices behave very similarly, and

those where there are larger deviations from HadEX2 occur

mainly in the early part of the data set (which may be partly

because the longest records are concentrated in limited re-

gions). This stability is, in part, likely due to the grid box

completeness criterion when calculating the global time se-

ries (Sect. 3), though selecting only stations with very long

records will not result in the same grid boxes contributing

to global average time series as selecting grid boxes directly

with long records. The choices with shorter record lengths

(40 and 50 years) have higher correlations between the time

series, lower eRMS and more similar variances to HadEX2

than those choices with longer record lengths (70 and 80

years). This is because HadEX2 does not place any restric-

tion on the length of record a station must have for it to be

included. GHCNDEX is restricted to stations which have at

least 40 years of data after 1951 to minimise inhomogeneities

arising from a variable station network, but HadEX2 does in-

clude data with some short time series in parts. The long-term

behaviour of most of the indices is unaffected by the selection

of these long-term stations. For some indices (FD, frost days;

GSL, growing season length; SU, summer days; TR, tropi-

cal nights) there are large differences over the first decade

(1900–1910). However the value of the global average during

this period is also very different from the following decades.
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Fig. 9. (a): The number of non-missing grid boxes and (b) the time series for global average TXx (Maximum Tmax) for the different station
record lengths. Note that the global average only takes grid boxes which have 90 per cent completeness or more, whereas all grid boxes are
shown in the coverage series. All choices have been centered relative to the climatology period 1961-1990, reducing the spread during this
time.

Fig. 10. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard
deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for TXx and station record length. Grey
grid boxes are those where only one of the 6 possible station reporting length choices results in a value, green when 2-3, blue when 4-5 and
red when 6 of the possible choices result in a value. In the right-hand plot, boxes which have been outlined are ones where the trend was
significant in the HadEX2 version. For further details see Fig. 5 and text.

Figure 9. (a) The number of non-missing grid boxes and (b) the time series for global average TXx (maximum Tmax) for the different station

record lengths. Note that the global average only takes grid boxes which have 90 % completeness or more, whereas all grid boxes are shown

in the coverage series. All choices have been centred relative to the climatology period 1961–1990, reducing the spread during this time.
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Fig. 9. (a): The number of non-missing grid boxes and (b) the time series for global average TXx (Maximum Tmax) for the different station
record lengths. Note that the global average only takes grid boxes which have 90 per cent completeness or more, whereas all grid boxes are
shown in the coverage series. All choices have been centered relative to the climatology period 1961-1990, reducing the spread during this
time.

Fig. 10. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard
deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for TXx and station record length. Grey
grid boxes are those where only one of the 6 possible station reporting length choices results in a value, green when 2-3, blue when 4-5 and
red when 6 of the possible choices result in a value. In the right-hand plot, boxes which have been outlined are ones where the trend was
significant in the HadEX2 version. For further details see Fig. 5 and text.

Figure 10. (a) The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b) the standard

deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951–2010 for TXx and station record length. Grey grid

boxes are those where only one of the six possible station reporting length choices results in a value, green where two to three, blue when

four to five, and red where six. In the right-hand plot, boxes which have been outlined are ones where the trend was significant in the HadEX2

version. For further details see Fig. 5 and text.

This inhomogeneity results from there being no data from

Australia and South America for the first 10–11 years of

HadEX2 for these indices (which is allowed by the complete-

ness requirement of 99 years of 110 present).

The uncertainty maps in Fig. 10 show clearly how differ-

ent parts of the globe have different station record lengths

for TXx. The regions where all six choices for the length

of station record result in filled grid boxes are those where

sufficient stations have very long record lengths, e.g. North

America, Europe and parts of Australia for all indices, and

these have high average correlation values. Regions with 4–

5 choices resulting in filled grid boxes, e.g. eastern Russia

and parts of South America for the temperature indices, have

shorter records. China, along with parts of Africa and South

America, stands out as having shorter records in the HadEX2

data set and therefore only has grid box values when select-

ing stations with > 40 years of data. For most precipitation

indices the coverage is much more restricted, with large parts

of the globe having no data or few realisations with coverage.

However, as can be seen in the time series in the Supplement,
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Fig. 11. The binned inter-station correlation coefficients against distance for LEFT CDD (Consecutive Dry Days) and RIGHT TN90p (Tmin>
90th percentile) along with the curves from all four fitting methods. The vertical dashed lines are the derived decorrelation length scales.

Fig. 12. (a): The number of non-missing grid boxes and (b) the time series for global average CDD for the different DLS calculation
methods. Note that the global average only takes grid boxes which have 90 per cent completeness or more, whereas all grid boxes are shown
in the coverage series. All choices have been centered relative to the climatology period 1961-1990, reducing the spread during this time.

Figure 11. The binned inter-station correlation coefficients against distance for left CDD (consecutive dry days) and right TN90p (Tmin >

90th percentile) along with the curves from all four fitting methods. The vertical dashed lines are the derived decorrelation length scales.

the effect of this reduction in coverage on the global average

time series is small as the long-term behaviour is reproduced.

There is some correspondence between those grid boxes

which have confidence in non-zero trends and those with

low σ/µ values. However, this low σ/µ does not necessarily

correspond to the number of choices which fill that partic-

ular grid box, i.e. highlighted boxes and/or dark shading in

Fig. 10b are/is not always red. A very similar pattern is ob-

served in the figures using the differences between the early

and late periods (see Supplement).

When taking stations which report over a specific set of

years we use the following five time periods: 1950–2000,

1940–2000, 1930–2000, 1920–2000 and 1910–2000. Again,

the global time series look very similar (see Supplement) for

all indices, with the long-term behaviour retained for all five

periods. The uncertainty maps also appear reasonably simi-

lar, but with some important differences. Firstly, China, India

and parts of central Africa and South America appear in grey,

indicating that only one of the choices (presumably the least

restrictive one, HadEX2) results in a valid grid box in these

locations. Also, there is an area in eastern Russia where all

six choices result in valid grid box values but in the station

record length was only filled in four or five cases. This indi-

cates that there are some large gaps in the station records in

this region.

4.5 DLS fitting methods (parametric)

The method by which the DLS is found in HadEX2 is de-

scribed in Sect. 2. In some cases the decline in the correla-

tion values is smooth, but in others (and this can be seen in

CDD, Fig. 11, but more clearly for other indices in the Sup-

plement) there are bumps and wiggles in the decay curve at

high separations. As the DLS is just an input to the gridding

scheme, we have classed this as a parametric uncertainty. A

polynomial expansion was used to fit the decay curve and

obtain the DLS. As using a polynomial is an approximation

to an exponential in this case2, a number of different curves

were fitted to the binned correlation values to obtain the DLS.

By taking the logarithm of the correlations (y values) a lin-

ear function was fitted, which was then converted back to

the exponential form (labelled “log_lin” in Fig. 11). This has

the advantage of fitting a straight line, but it places more

weight on the correlation values at larger distances which

are not necessarily of interest. A true exponential was fit-

ted, along with one which allowed for a non-zero offset (i.e.

aebx + c). Although more complex curves could have been

used in addition to these four, using an explicit exponential

function already results in an improvement of the fit over the

polynomial approximation used in HadEX2. More complex

functions would be able to fit the bumps and wiggles seen

at high separations, but in most cases these occur at sepa-

rations larger than the DLS and so are likely to have little

impact. Therefore for simplicity in this analysis we just use

these four3.

All four of these fitting methods are shown in Fig. 11 for

the CDD (consecutive dry days) and TN90p (Tmin > 90th

percentile) indices for the latitude bands running from 60–90

and 30–60◦ N, respectively. The DLS is the location where

the curve has dropped to 1/e of its value at zero separation.

As theoretically it is expected that there is perfect correlation

at zero distance, we place a point at (0,1). But, as in HadEX2,

we do not force the curve to pass through this point, as perfect

correlation is not generally assumed to occur because of, for

example, instrumental and microclimate effects, especially

for the indices measuring actual values. Studies have shown

that even for instruments on the same site or even in the same

2The polynomial is a Taylor expansion of the exponential func-

tion to second order.
3The fitting of all methods bar the polynomial one failed for the

latitude band 30–0◦ S for FD (frost days) and ID (ice days). This is

because no stations measured any ice or frost days in this latitude

band.
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Fig. 11. The binned inter-station correlation coefficients against distance for LEFT CDD (Consecutive Dry Days) and RIGHT TN90p (Tmin>
90th percentile) along with the curves from all four fitting methods. The vertical dashed lines are the derived decorrelation length scales.

Fig. 12. (a): The number of non-missing grid boxes and (b) the time series for global average CDD for the different DLS calculation
methods. Note that the global average only takes grid boxes which have 90 per cent completeness or more, whereas all grid boxes are shown
in the coverage series. All choices have been centered relative to the climatology period 1961-1990, reducing the spread during this time.

Figure 12. (a) The number of non-missing grid boxes and (b) the time series for global average CDD for the different DLS calculation

methods. Note that the global average only takes grid boxes which have 90 % completeness or more, whereas all grid boxes are shown in the

coverage series. All choices have been centred relative to the climatology period 1961–1990, reducing the spread during this time.

screen differences remain in the measured values (e.g. Clark

et al., 2014; Sun et al., 2005), and these differences will fold

through into the indices.

Imperfect correlation at zero distance is a manifestation

of the “nugget effect” (e.g. Cressie, 1993; Journel and Hui-

jbregts, 1978). This nugget is clearly visible in Fig. 11 for

TN90p, where there is a difference in slope in the data

for separations less than and greater than 100 km. Although

other studies which use the DLS do force the fitted curve to

pass through (0,1) (e.g. Jones et al., 1997; Hofstra and New,

2009), other studies clearly show nuggets in, for example,

global temperature data (Rohde et al., 2013), the variance

of air–sea fluxes (Lindau, 2003) and other meteorological

variables reported by voluntary observing ships (Kent et al.,

1999).

The two indices shown in Fig. 11 show some of the range

of possible fits from the different model curves. For the CDD,

the polynomial fit is clearly the worst fitting curve, and in

this case overestimates the DLS compared to the best fitting

curves (exponential). The polynomial fit is very poor at large

distances, but the important part is the section during which

the curve falls by 1/e. The log_lin curve is also a poor fit,

except at the larger distances, and hence results in a larger

DLS value than the other methods. However, for the TN90p,

there is very little difference between the four different meth-

ods. Again the DLS is largest from the polynomial fit, but the

difference between the DLS values is smaller in TN90p than

in CDD. For most indices and latitude bands, the exponential

methods (with or without offset) result in the closest fit to the

data. The “log_lin” method is worst at capturing the curva-

ture at small separations, especially for precipitation indices

where the correlations drop very rapidly over the first few

bins.

There can be quite a range in the DLS obtained from the

different methods, as shown in Fig. 11 for CDD with a range

of 500 to 1000 km. When the values of the DLS are small,

this can make a large difference to which stations contribute

to a grid box value. For indices which have a large DLS (e.g.

TN90p), the change in the DLS value will have a more lim-

ited impact on the grid box value.

Overall, most of the temperature indices show good agree-

ment between all four methods (including the polynomial fit)

and result in small differences in the DLSs obtained. The

precipitation indices show larger differences in the accuracy

of the fits across the four methods, resulting in larger dif-

ferences in the calculated DLSs (see Supplement). The DLS

from the polynomial in these cases tends to be larger than

that from the exponential fits.

In the global time series, there are differences be-

tween HadEX2 and the alternative fitting methods for CDD

(Fig. 12), but no perceptible difference on a global scale for

TN90p (Fig. 13). For CDD, the long-term behaviour is un-

changed, and the small-scale peaks and troughs in the global

time series usually occur at the same times, but the val-

ues of the global averages are different between the DLS

calculation methods. Consequently, the correlations between

HadEX2 and the exponential model versions are still very

high (0.96 and 0.98). As was mentioned in the discussion

about the number of stations within a grid box (Sect. 4.3),

the stations present in HadEX2 remain the same, and as the
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Fig. 13. (a): The number of non-missing grid boxes and (b) the time series for global average TN90p for the different DLS calculation
methods. Note that the global average only takes grid boxes which have 90 per cent completeness or more, whereas all grid boxes are shown
in the coverage series. All choices have been centered relative to the climatology period 1961-1990, reducing the spread during this time.

the difference from HadEX2.

Geographical differences, as shown in Fig. 14, will de-
pend on whether the DLSs determined using the four differ-
ent methods are similar or very different. We have chosen850

to show an index (CDD) where the DLS changes by a large
amount, especially in the high latitude regions (Fig. 11). Fo-
cusing on the Canadian Arctic in Fig. 14 a gradation can
be seen, from the areas where all four methods result in filled
grid boxes to those where only one method does (Greenland).855

Areas where all four methods result in a value are likely to
have a high station density, and the further from these re-
gions the grid box is, the fewer of the methods result in a
value for that box. Also, although the σ/µ may be small,
the mean correlations are also reduced outside of the areas860

with high station density. CDD does not have particularly
strong trends (either positive or negative) in these mid-high
latitude regions (see Fig. 8 in Donat et al., 2013a). So as the
DLS decreases, local variations become more prominent as
dense station networks in the vicinity are no longer able to865

smooth them out. This results in local differences between
the time series, and a small correlation coefficient in these
high latitude regions (northern Canada and Russia). There
is a large variation from index to index as to which regions
are filled using all four fitting methods to those with only870

one. Temperature indices tend to have North America, Eu-
rope and Asia filled using any of the fitting methods, as the
DLSs are large whatever method is used. Only in the regions
where the station density is lower do changes in the calcu-
lated DLS make a difference: sub-Saharan Africa, parts of875

South America and Australia. For the precipitation indices,
larger areas of the globe are only filled by one of the realisa-
tions. The DLSs are on the whole smaller for these indices,
so even small changes can make a large difference to the spa-
tial coverage. A very similar pattern is observed in the maps880

showing the range in differences between the early and late
periods (see Supplement).

Grid boxes in which there is some confidence that a trend
is non-zero are predominantly found in areas where all four
of the DLS calculations result in a grid box value. However,885

the converse is not true, especially for precipitation indices.
For indices which have large DLS values, there are few areas
where one or more methods exclude the grid box (see for ex-
ample TN10p [Tmin < 10th percentile] in the Supplement).
The changes in coverage are affected more by the correlation890

decay for a given index than by changes in the fitting method
used.

4.6 Gridding Methods (Structural)

The gridding method used in HadEX2 is an adapted version
of the angular distance weighting scheme (Shepard, 1968).895

This accounts for the angular distribution of the stations as
well as their distance from the grid box centre. It also inter-
polates into empty grid boxes which are close to stations.

Three alternative gridding methods are outlined below; the
Climate Anomaly Method (CAM, Jones (1994)), the Refer-900

ence Station Method (RSM, Hansen and Lebedeff (1987))
and the First Difference Method (FDM, Peterson et al.
(1998)).

Figure 13. (a) The number of non-missing grid boxes and (b) the time series for global average TN90p for the different DLS calculation

methods. Note that the global average only takes grid boxes which have 90 % completeness or more, whereas all grid boxes are shown in the

coverage series. All choices have been centred relative to the climatology period 1961–1990, reducing the spread during this time.R. J. H. Dunn et al.: Uncertainty of Gridded Extremes Datasets 17

Fig. 14. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard
deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for CDD and the number of stations per grid
box. Grey grid boxes are those where only one of the four possible DLS calculation choices results in a value, green when 2, blue when 3
and red when all 4 of the possible choices result in a value. For further details see Fig. 5.

4.6.1 Climate Anomaly Method

The CAM has a long history of being used in other gridded905

datasets, for example the HadCRUT series of surface temper-
ature climate anomalies4 (see e.g. Jones, 1994; Morice et al.,
2012). Climate anomalies are calculated from a common ref-
erence period and then these anomalies are combined. Usu-
ally a 30-year reference period is used, with either some re-910

quirements on the number of years present within that period
or using, for example, neighbouring stations to estimate the
effect of the missing data on the full period value.

In this analysis, the climatological reference period has
been chosen to be 1961-1990 to match that used elsewhere915

throughout this paper. At least 25 out of the 30 years had to
have valid data for a climatology to be calculated. A sim-
ple mean across all stations in the grid box resulted in each
annual value.

By the nature of this method, for a grid box to have a value,920

there must be at least one station present within it (with suf-
ficient data in the period 1961-1990). If there is only one
station present, this has been assumed to be representative of
the entire grid box. As this may not be a valid assumption,
should this method be used, it may be prudent to require at925

least two or three stations per grid box, but this will result in
a further decrease in the coverage (see Sect. 4.3).

4.6.2 Reference Station Method

The RSM described by Hansen and Lebedeff (1987) starts by
selecting the station with the longest record within the area of930

influence of the grid box centre. Hansen and Lebedeff (1987)

4Climate anomalies are the differences from a mean or median
without division by the standard deviation.

used a fixed distance of 1200 km, which was derived from
the decay of the correlation between stations. In this study
we use the DLS appropriate for the latitude of the grid box
as in the ADW for HadEX2. Having selected the station with935

the longest record within one DLS of the grid box centre, suc-
cessively shorter stations are processed. The new stations’
temperature records are adjusted so that their mean over the
common period is the same as the composite of all stations
that have been processed so far. Then, distance-weighted av-940

erages are re-calculated to obtain the new composite station.
This process is repeated until all stations within one DLS of
the grid box centre have been included into the composite
station.

The advantages of this method are that a common refer-945

ence period is not required. However, stations are still re-
quired to have at least 20 years of overlap with the compos-
ite station, and so stations with very short records are still
not included. However, stations which report in early times,
but not during a specified reference period can be accommo-950

dated by this method. Peterson et al. (1998) point out that
this method relies on the reference station (the one with the
longest record) providing an accurate representation of cli-
matic changes, uncorrupted by biases arising from station
moves, instrument changes or other changes in observing955

procedures.

If there are non-climatic inhomogeneities in the reference
station, these will feed through into the final grid box value.
In the creation of HadEX2, quality control and homogeneity
checks varied from country to country, but in most cases data960

have been checked by researchers from the country of origin
(e.g. regional workshops) or passed through automated qual-
ity control procedures (e.g. GHCN-Daily Menne et al., 2012,
ECAD Klok and Klein Tank, 2009) (Donat et al., 2013a).

Figure 14. (a) The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b) the standard

deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for CDD and the number of stations per grid

box. Grey grid boxes are those where only one of the four possible DLS calculation choices results in a value, green when two, blue when

three, and red when all four. For further details see Fig. 5.

DLS increases, the extra coverage is extrapolated from the

same data. It would therefore be surprising if there were large

changes in the behaviour of the global average time series.

A similar result is found for all other indices, with smaller

differences between the time series for the temperature in-

dices than for the precipitation ones. Differences tend to be

larger in the earlier part of the record when the coverage is

lower and hence the size of the DLS used has a greater effect.

In many cases across all indices, the correlations between

global averages are above 0.9, but the log_lin model is usu-

ally the lowest. The index measuring tropical nights (TR) has

a large change pre-1950 which has a notable impact on the

long-term behaviour. Given the change in coverage occurring

at the same time, different DLS values combined with this is

the likely cause of the difference from HadEX2.

Geographical differences, as shown in Fig. 14, will de-

pend on whether the DLSs determined using the four dif-

ferent methods are similar or very different. We have chosen

to show an index (CDD) where the DLS changes by a large

amount, especially in the high-latitude regions (Fig. 11). Fo-

cusing on the Canadian Arctic in Fig. 14, a gradation can

be seen from the areas where all four methods result in filled
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grid boxes to those where only one method does (Greenland).

Areas where all four methods result in a value are likely to

have a high station density, and the further from these re-

gions the grid box is, the fewer of the methods result in a

value for that box. Also, although the σ/µ may be small, the

mean correlations are also reduced outside of the areas with

high station density. CDD does not have particularly strong

trends (either positive or negative) in these mid-high-latitude

regions (see Fig. 8 in Donat et al., 2013a). Therefore as the

DLS decreases, local variations become more prominent as

dense station networks in the vicinity are no longer able to

smooth them out. This results in local differences between

the time series, and a small correlation coefficient in these

high-latitude regions (northern Canada and Russia). There is

a large variation from index to index as to which regions are

filled using all four fitting methods to those with only one.

Temperature indices tend to have North America, Europe and

Asia filled using any of the fitting methods, as the DLSs are

large regardless of method used. Only in the regions where

the station density is lower do changes in the calculated DLS

make a difference: sub-Saharan Africa, parts of South Amer-

ica and Australia. For the precipitation indices, larger areas

of the globe are only filled by one of the realisations. The

DLSs are on the whole smaller for these indices, so even

small changes can make a large difference to the spatial cov-

erage. A very similar pattern is observed in the maps showing

the range in differences between the early and late periods

(see Supplement).

Grid boxes in which there is some confidence that a trend

is non-zero are predominantly found in areas where all four

of the DLS calculations result in a grid box value. However,

the converse is not true, especially for precipitation indices.

For indices which have large DLS values, there are few areas

where one or more methods exclude the grid box (see, for

example, TN10p, Tmin < 10th percentile, in the Supplement).

The changes in coverage are affected more by the correlation

decay for a given index than by changes in the fitting method

used.

4.6 Gridding methods (structural)

The gridding method used in HadEX2 is an adapted version

of the angular distance weighting scheme (Shepard, 1968).

This accounts for the angular distribution of the stations as

well as their distance from the grid box centre. It also inter-

polates into empty grid boxes which are close to stations.

Three alternative gridding methods are outlined below: the

climate anomaly method (CAM; Jones, 1994), the reference

station method (RSM; Hansen and Lebedeff, 1987) and the

first-difference method (FDM; Peterson et al., 1998).

4.6.1 Climate anomaly method

The CAM has a long history of being used in other gridded

data sets, for example the HadCRUT series of surface tem-

perature climate anomalies4 (see e.g. Jones, 1994; Morice

et al., 2012). Climate anomalies are calculated from a com-

mon reference period and then these anomalies are com-

bined. Usually a 30-year reference period is used, with either

some requirements on the number of years present within

that period or using, for example, neighbouring stations to es-

timate the effect of the missing data on the full period value.

In this analysis, the climatological reference period has

been chosen to be 1961–1990 to match that used elsewhere

throughout this paper. At least 25 out of the 30 years had to

have valid data for a climatology to be calculated. A sim-

ple mean across all stations in the grid box resulted in each

annual value.

By the nature of this method, for a grid box to have a value,

there must be at least one station present within it (with suf-

ficient data in the period 1961–1990). If there is only one

station present, this has been assumed to be representative of

the entire grid box. As this may not be a valid assumption,

should this method be used, it may be prudent to require at

least two or three stations per grid box, but this will result in

a further decrease in the coverage (see Sect. 4.3).

4.6.2 Reference station method

The RSM described by Hansen and Lebedeff (1987) starts by

selecting the station with the longest record within the area of

influence of the grid box centre. Hansen and Lebedeff (1987)

used a fixed distance of 1200 km, which was derived from the

decay of the correlation between stations. In this study we

use the DLS appropriate for the latitude of the grid box as in

the ADW for HadEX2. Having selected the station with the

longest record within one DLS of the grid box centre, suc-

cessively shorter stations are processed. The new stations’

temperature records are adjusted so that their mean over the

common period is the same as the composite of all stations

that have been processed so far. Then, distance-weighted av-

erages are re-calculated to obtain the new composite station.

This process is repeated until all stations within one DLS of

the grid box centre have been included into the composite

station.

The advantages of this method are that a common refer-

ence period is not required. However, stations are still re-

quired to have at least 20 years of overlap with the compos-

ite station, and so stations with very short records are still

not included. However, stations which report in early times,

but not during a specified reference period, can be accom-

modated by this method. Peterson et al. (1998) point out that

this method relies on the reference station (the one with the

longest record) for providing an accurate representation of

climatic changes, uncorrupted by biases arising from station

moves, instrument changes or other changes in observing

procedures.

4Climate anomalies are the differences from a mean or median

without division by the standard deviation.
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Fig. 15. (a): The number of non-missing grid boxes and (b) the time series for global average PRCPTOT (Total Annual Precipitation) for the
five different gridding methods. Note that the global average only takes grid boxes which have 90 per cent completeness or more, whereas
all grid boxes are shown in the coverage series. All choices have been centered relative to the climatology period 1961-1990, reducing the
spread during this time.

Fig. 16. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard
deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for PRCPTOT and the four gridding methods.
Grey grid boxes are those where only one of the five possible gridding methods results in a value, green when 2, blue when 3 and red when
all 4 of the possible choices result in a value. For further details see Fig. 5.

Figure 15. (a) The number of non-missing grid boxes and (b) the time series for global average PRCPTOT (total annual precipitation) for

the five different gridding methods. Note that the global average only takes grid boxes which have 90 % completeness or more, whereas all

grid boxes are shown in the coverage series. All choices have been centred relative to the climatology period 1961–1990, reducing the spread

during this time.

If there are non-climatic inhomogeneities in the reference

station, these will feed through into the final grid box value.

In the creation of HadEX2, quality control and homogeneity

checks varied from country to country, but in most cases data

have been checked by researchers from the country of ori-

gin (e.g. regional workshops) or passed through automated

quality control procedures (e.g. GHCN-Daily (Menne et al.,

2012), ECAD (Klok and Klein Tank, 2009)) (Donat et al.,

2013a). No extra homogeneity assessment using, for exam-

ple, the techniques of Menne and Williams Jr. (2009), Mestre

et al. (2011), Domonkos (2011) and Toreti et al. (2012) has

been performed on the data. No consistent quality control

has been applied to the raw daily data as this was not pos-

sible given the way the data have been collected (Alexander

et al., 2006; Donat et al., 2013a), and so any inhomogeneities

present could feed through into the final grid box values.

4.6.3 First-difference method (FDM)

The FDM was proposed by Peterson et al. (1998) as an alter-

native to the previous two methods, as it did not require either

a common reference period or a reference station, and there-

fore could use all available data. This method does, however,

suffer if there are frequent gaps in the data, and is sensitive

to outliers if they occur at the beginning or end of the time

series.

In this method, the annual values are converted to a se-

ries of first differences, with the value for the first year of

the series being zero. We average the first differences from

different stations within the grid box to obtain the grid box

value. The final step is to reconstruct the centred time series

by performing a cumulative sum.

Using a simple first difference is probably most suited to

temperature indices, whereas something more complex, e.g.

a ratio, may be more appropriate for precipitation. For sim-

plicity, we used the simple first difference for all indices, and

did not find any blatantly spurious results. Years with missing

data within the time series were filled with the average first

difference for that station, except years before the start and

after the end of the station’s reporting period. In this method

the errors accumulate as the cumulative sum is calculated.

The errors are likely to be smaller in the most recent period,

but larger in the past, when the station networks were sparser.

Working forwards in time carries these larger errors into the

most recent period. Therefore we also run a version of the

first differencing in reverse (FDMr).

4.6.4 Gridding methods results

The results from the five gridding methods for PRCPTOT

(total annual precipitation) can be seen in Fig. 15. The cover-

age of the RSM, which uses the DLS to find stations within

a region to merge together, is similar to that of the ADW

method, and is actually larger in early times. For the CAM

and the FDM/FDMr methods, the coverage is smaller, as

these methods require that stations be present within a grid

box. The CAM is more restrictive on which stations it in-

cludes when calculating grid box average values, and thus

has the lower coverage of the two.
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Fig. 15. (a): The number of non-missing grid boxes and (b) the time series for global average PRCPTOT (Total Annual Precipitation) for the
five different gridding methods. Note that the global average only takes grid boxes which have 90 per cent completeness or more, whereas
all grid boxes are shown in the coverage series. All choices have been centered relative to the climatology period 1961-1990, reducing the
spread during this time.

Fig. 16. (a): The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b): the standard
deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for PRCPTOT and the four gridding methods.
Grey grid boxes are those where only one of the five possible gridding methods results in a value, green when 2, blue when 3 and red when
all 4 of the possible choices result in a value. For further details see Fig. 5.

Figure 16. (a) The mean correlation coefficient of the detrended time series, r with HadEX2 for all the grid boxes and (b) the standard

deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951–2010 for PRCPTOT and the four gridding methods.

Grey grid boxes are those where only one of the five possible gridding methods results in a value, green where two, blue where three, and

red where all four of the possible choices. For further details see Fig. 5.

Reversing the order of the cumulative sum in the FDM

(FDMr) has resulted in no changes in the coverage for any

of the indices. In the global time series there are only small

differences in the year-to-year values between the FDM and

the FDMr versions, with the long-term behaviour being vir-

tually identical. The two versions of the FDM are shown in

the time series plots (Fig. 15) but only the standard version

(FDM) in the maps (Fig. 16).

The correspondence between the different gridding meth-

ods on the time series is relatively good for the post-1950 pe-

riod. Prior to this time, however, there are large differences

in the global average, which lead to different long-term be-

haviours over the entire period of the data. Although the sizes

of the short-timescale variations do not always match, they

occur at the same time and in the same direction (i.e. lo-

cal year-to-year differences have the same sign, if not the

same magnitude). Sometimes the magnitudes of these short-

timescale variations are larger than in HadEX2. The RSM

has the highest correlation coefficients with the HadEX2 time

series, owing to the extrapolation, smoothing and coverage

that this method has in common with the ADW scheme of

HadEX2.

Compared to all the previous uncertainties, the gridding

methods have a much larger effect on both the short- and

long-term global averages. Most of the indices, not just the

precipitation ones, show large differences to HadEX2, espe-

cially, but not only, at early times. Indices in which there

are comparatively small changes resulting from the gridding

methods are CSDI and WSDI (cold and warm spell dura-

tion indicator), CDD (consecutive dry days), GSL (growing

season length), SU (summer days) and TX90p (Tmax > 90th

percentile). Both GSL and SU have a discontinuity pre-1910

(discussed in Sect. 4.4), which is present in the ADW and

RSM interpolating methods, but not in the other two (CAM,

FDM). The absence of the discontinuity results in a large de-

crease in the variance.

Other indices have changes in the short-term variability,

but the long-term behaviour is roughly the same as HadEX2

(DTR, ETR: diurnal and extreme temperature range; FD:

frost days; R10mm, R20mm: days when P > 10 mm

or P > 20 mm; R95pTOT, R99pTOT: R95p/PRCPTOT,

R99p/PRCPTOT; SDII: simple daily intensity index; TNn:

minimum Tmin; TXn: minimum Tmax). For TN90p (Tmin >

90th percentile) and TX10p (Tmax < 10th percentile), the

CAM and FDM change only the short-timescale variations;

the RSM, however, reduces the amplitude of the long-term

behaviour. In the remaining precipitation indices (PRCP-

TOT; R95p, R99p: sum of precipitation > 95th/99th per-

centile; Rx1day, Rx5day: maximum 1- and 5-day precipi-

tation total), the FDM results in stronger (increasing totals)

long-term trends than in HadEX2; in PRCPTOT the CAM

method results in a weakening trend (decreasing totals). For

the remaining temperature indices, TNx stands out as the

short-term variability in the global average is greatly in-

creased when using the RSM. However, the other indices also

have changes in their long-term trends; in TN10p (Tmin <

10th percentile) and TXx (maximum Tmax) the RSM method

reduces the long-term trend in the first half of the period. The

FDM results in a much stronger positive trend than HadEX2

in the tropical nights index (TR).

There is no clear pattern to these results, either by index

type or by gridding method. In some cases long-term trends

or the short-term variability are enhanced and strengthened

by one of the methods, whereas in other cases they are re-

duced. This shows how sensitive some of the HadEX2 in-

dices can be to the gridding method used.

To illustrate the regional influences of the gridding meth-

ods, we show the corresponding uncertainty maps for
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PRCPTOT in Fig. 16. Note that the results from the FDMr

are not included as they are very similar to the FDM results,

and these two methods are not fully independent. Only a few

regions have high r values from the detrended time series, on

the whole corresponding to those regions with dense station

networks. Many grid boxes in high latitudes, South Amer-

ica, Africa, Australia and parts of Asia are only filled by two

of the methods (likely to be RSM and ADW). In these re-

gions, as the grid box values have been interpolated from

surrounding stations, the differences in the two methods have

resulted in differences in the short-timescale variations, and

hence low r values. In regions where the station density is

high, and all four methods fill the boxes, the grid box aver-

age is driven by stations within the box, and so short-term

variations match between the four methods more often, re-

sulting in higher r values. However for some indices, even

regions with a high station density have low r values (most

precipitation indices, TNx, TXx).

The values of σ/µ indicate that there is often a large

spread in the values of the trend compared to the mean

trend. Indices which have strong long-term trends (usually

temperature-based ones) have smaller relative spreads than

those which have weak long-term trends (primarily precip-

itation indices). However, some grid boxes where only two

methods fill the box have a very small spread in the trends

compared to regions where all four methods fill the box.

These areas are likely to be only filled by the RSM and ADW

methods, which both interpolate using neighbouring stations,

and therefore have similar sets of stations combining to form

a grid box value, resulting in similar trends. When all four

methods fill a grid box, there is a greater range in method-

ological choices and thus a likely greater range in the trend

magnitudes and a larger relative spread. A similar pattern is

observed in the maps for the differences between the early

and late period (see Supplement). However, overall, a larger

spread in differences is observed, especially where only two

methods result in a value for the grid box.

4.7 Station network (sub-sampling)

Changes in the station network have been shown to

cause significant changes in global analyses, especially for

precipitation-based indices (Wan et al., 2013; Trenberth

et al., 2014). To assess the effect of the station network on the

global and regional trends, we perform a sub-sampling exper-

iment. We sub-sample the parent population (in this case, the

set of HadEX2 stations) without replacement and re-run the

entire creation process of the data set. To sample the effect of

fewer stations within the network, 100 iterations each were

run using random selections of 25, 50 and 75 % of the total

station number for each index. These iterations recalculated

the DLS and gridding for each run. Of course, with most

stations being found in North America, Europe and eastern

Asia, even random selections will have, on average, similar

distributions and coverage to those using the full network.

As can be seen in Fig. 17a for the ETR (extreme temper-

ature range) index, the grid box coverage is unsurprisingly

lower for the runs with only 25 % of stations, compared to

those with 50 or 75 % or the complete set of HadEX2 sta-

tions. The scatter in the coverage also increases as the num-

ber of stations decreases, as would be expected. As the DLS

is recalculated for each sub-sampling run, there will be a

spread in values obtained across the iterations. This may re-

sult in better coverage than for the full HadEX2 station list,

but in many cases the coverage will be smaller. From the

global average time series (Fig. 17b), it is not clear whether a

single sub-sampling run is biased to high or low values. The

three different sub-sampling run sets form a band around the

HadEX2 series, but at individual short-timescale peaks and

troughs are more extreme, particularly in the 25 % runs, and

especially at early times. The width of the band also increases

towards the start of the data set, which corresponds to the de-

crease in coverage observed before around 1950. The larger

range in values at earlier periods results in greater uncertainty

in the overall long-term behaviour of this index. For indices

which have global, long-term linear trends over the entire pe-

riod clearly different from zero, the sub-sampling runs do

not change this (e.g. TN10p). But for indices with no strong

global trend, or a non-linear behaviour over the full period,

different slopes can arise from run to run.

Some other indices show a similar close relationship with

HadEX2. The temperature percentile indices show very little

variation. However the precipitation indices are more vari-

able: see, for example, Fig. 18 for R20mm (sum of days with

> 20 mm precipitation). The runs with 75 % of stations cap-

ture the year-to-year peaks and troughs, whereas those with

25 % of stations are much noisier. Also, the long-term be-

haviour could be very different, in the extreme ranging from a

notable positive to a notable negative trend (increasing num-

ber of days to decreasing number). Changing the number of

input stations when calculating precipitation-based indices

can have a large impact on their globally averaged behaviour

(see Wan et al. (2013) and Trenberth et al. (2014) for a study

on drought-based indices). Sub-sampling the station network

demonstrates the large effect the underlying station coverage

(in space and time) has on the final global result, especially

for the precipitation indices.

Most of the Northern Hemisphere grid boxes are filled by

over two-thirds of the 25 % runs in ETR as shown in Fig. 19,

and a similar pattern is found for the other temperature in-

dices, and also for the maps using the differences between

the early and late periods (see Supplement). This indicates

that in the regions of high station density grid boxes are al-

most always filled by the HadEX2 creation process even with

a much reduced station density. In the Southern Hemisphere,

however, there are large areas where less than one-third of

the runs fill the grid boxes. Although the grid boxes are filled

by most of the runs, the range in trends is not uniform. In

North America, the ETR shows a consistent small range in
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Fig. 17. (a): The number of non-missing grid boxes and (b): the time series for the global average of ETR (Extreme Temperature Range)
for the sub-sampling runs. Each colour shows the maximum range of the time series for each of the three sets of runs, 25% of stations in
green, 50% in blue and 75% in red respectively. These are transparent, so purple is the overlap of the 50% and 75% ranges. The solid black
line shows the HadEX2 results in both panels. Note that the global average only takes grid boxes which have 90 per cent completeness or
more, whereas all grid boxes are shown in the coverage series. All choices have been centered relative to the climatology period 1961-1990,
reducing the spread during this time.

Fig. 18. As for Fig. 17b but showing the time series for the global
average of R20mm for the sub-sampling runs. All choices have
been centered relative to the climatology period 1961-1990, reduc-
ing the spread during this time.

tween the early and late periods (see Supplement). This indi-
cates that in the regions of high station density grid boxes are1180

almost always filled by the HadEX2 creation process even
with a much reduced station density. In the Southern Hemi-
sphere, however, there are large areas where less than one
third of the runs fill the grid boxes. Although the grid boxes
are filled by most of the runs, the range in trends is not uni-1185

form. In North America, the ETR shows a consistent small
range in the trends, but parts of central Europe and central
Asia exhibit a large variance in the trends.

For all the precipitation indices apart from CDD, PRCP-
TOT and R10mm only the USA and Europe with small re-1190

gions elsewhere are filled by more than two thirds of the 25
per cent runs. In large parts of the globe there less than one
third of the runs results in grid boxes having a value. The
colours are also generally much less intense showing a wider
range in linear trends over the latter part of the dataset across1195

the sub-sampling runs.

5 Discussion

5.1 Taylor Diagrams

In order to make the different methodological choices easier
to interpret we use a presentation method common in cli-1200

mate model evaluation analyses, the Taylor Diagram (Taylor,

(a)

Figure 17. (a) The number of non-missing grid boxes and (b) the time series for the global average of ETR (extreme temperature range)

for the sub-sampling runs. Each colour shows the maximum range of the time series for each of the three sets of runs: 25 % of stations in

green, 50 % in blue and 75 % in red. These are transparent, so purple is the overlap of the 50 and 75 % ranges. The solid black line shows

the HadEX2 results in both panels. Note that the global average only takes grid boxes which have 90 % completeness or more, whereas all

grid boxes are shown in the coverage series. All choices have been centred relative to the climatology period 1961–1990, reducing the spread

during this time.

Figure 18. As for Fig. 17b but showing the time series for the global

average of R20mm for the sub-sampling runs. All choices have been

centred relative to the climatology period 1961–1990, reducing the

spread during this time.

the trends, but parts of central Europe and central Asia ex-

hibit a large variance in the trends.

For all the precipitation indices apart from CDD, PRCP-

TOT and R10mm, only the USA and Europe, with small re-

gions elsewhere, are filled by more than two-thirds of the

25 % runs. In large parts of the globe, less than one-third of

the runs result in grid boxes having a value. The colours are

also generally much less intense, showing a wider range in

linear trends over the latter part of the data set across the

sub-sampling runs.

5 Discussion

5.1 Taylor diagrams

In order to make the different methodological choices easier

to interpret we use a presentation method common in cli-

mate model evaluation analyses – the Taylor diagram (Tay-

lor, 2001). These diagrams are a way of showing graphically

how well two patterns (in this case time series) match. How-

ever, by using just the global (land-surface) average time se-

ries, we lose the regional information, which can to some

extent cancel out. One diagram for each of the categories of

indices outlined in Sect. 2 are shown in Fig. 20.

The x and y axes are the standard deviation of the time se-

ries, with the reference data set (HadEX2 in this case) being

plotted on the x axis. The polar axis represents the corre-

lation between the time series of the two data sets ranging

from zero at 0◦ to one at 90◦ as calculated over the entire pe-

riod. The advantage of this diagram is that it also shows the
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Fig. 19. The standard deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951 to 2010 for (a) ETR and (b)
R20mm using the 25 per cent sub-sampling runs. Green grid boxes are those where 2–34 runs result in a value, blue for 35-67 and red for
68-100. For further details see Fig. 5.

2001). These are a way of showing graphically how well two
patterns (in this case time series) match. However, by using
just the global (land-surface) average time series, we lose the
regional information, which can to some extent cancel out.1205

One diagram for each of the categories of indices outlined in
Sect. 2 are shown in Fig. 20.

The x- and y-axes are the standard deviation of the time se-
ries, with the reference dataset (HadEX2 in this case) being
plotted on the x-axis. The polar axis represents the correla-1210

tion between the time series of the two data sets ranging from
zero at 0◦ to one at 90◦ as calculated over the entire period.
The advantage of this diagram is that it also shows the root-
mean-square (RMS) error, shown by the grey semi-circles
centered on the reference dataset in Fig. 20. In this way all1215

of the time series shown in the previous sections can be com-
pared to the reference series calculated from HadEX2, hence
providing a summary of the changes each choice has on the
global timeseries for each index.

This diagram allows the comparison of both the long-term1220

and short-term variation between the parametric and struc-
tural choices and is used in the discussion below. The stan-
dard deviation of the global average time-series gives some
level of the internal noise and variability of the timeseries. If
the different structural and parametric choices result in large1225

changes to the short-term variability characteristics, then this
will stand out along this axis. The correlation coefficient will
show both how well long-term trends have been captured by
the different versions of HadEX2 and also how well short-
term changes agree in time.1230

In general, the further a point sits from the reference series
(HadEX2), the worse the agreement between the two time-
series, either with differences in the internal variability or the
correlation. We show the effect of the completeness crite-
rion, as discussed in Sect. 3, on the diagrams despite this not1235

being a parametric or structural uncertainty in the dataset,
but rather a criterion when creating the summary timeseries.
In most cases, the largest changes are seen in the mean cor-
relation of the grid box time series rather than the standard
deviation (which can also be noted in the legends of the dif-1240

ferent timeseries). As was noted in Sect. 3, there are large
differences between HadEX2 and those global average time-
series calculated when the completeness restriction drops to
below 60 per cent for many indices. These differences are es-
pecially clear at early times when there is less data coverage.1245

In some indices these differences can change the long-term
trend.

For many of the indices shown in Fig. 20 this has one of
the largest effects on the agreement between the timeseries
and HadEX2. This demonstrates the importance of the com-1250

pleteness requirement when calculating global averages. Re-
gional timeseries may be less affected, but this will be de-
pendent on the index as well as location and size of a specific
region.

5.2 Parametric Uncertainties1255

The smallest effects on global trends and variances were ob-
served when investigating the parametric uncertainties. The
weighting (scale) parameter of the ADW scheme had almost
zero effect, and these timeseries sit very close to HadEX2 in
Fig 20 for all indices. Selecting only long-term stations has1260

an impact via the station coverage, but this is muted because
HadEX2 stipulates & 90 per cent temporal completeness for
each grid box. For the precipitation indices this resulted in a
reduction in the correlation between the time series, but the
level of internal variability remains the same, and for most1265

temperature indices it has a relatively small effect. However,
for the number of Frost Days (FD), this uncertainty results in
a large increase in the internal variability. This increase has

(a) (b)

Figure 19. The standard deviation of the trends divided by the mean trend (σ/µ) calculated for the period 1951–2010 for (a) ETR and (b)

R20mm using the 25 % sub-sampling runs. Green grid boxes are those where 2–34 runs result in a value, blue for 35–67 and red for 68–100.

For further details see Fig. 5.

root-mean-square error (eRMS), shown by the grey semicir-

cles centred on the reference data set in Fig. 20. In this way

all of the time series shown in the previous sections can be

compared to the reference series calculated from HadEX2,

hence providing a summary of the changes each choice has

on the global time series for each index.

This diagram allows for the comparison of both the long-

term and short-term variation between the parametric and

structural choices and is used in the discussion below. The

standard deviation of the global average time series gives

some level of the internal noise and variability of the time se-

ries. If the different structural and parametric choices result

in large changes to the short-term variability characteristics,

then this will stand out along this axis. The correlation coef-

ficient will show both how well long-term trends have been

captured by the different versions of HadEX2 and how well

short-term changes agree in time.

In general, the further a point sits from the reference series

(HadEX2), the worse the agreement between the two time

series, either with differences in the internal variability or the

correlation. We show the effect of the completeness criterion,

as discussed in Sect. 3, on the diagrams despite this not be-

ing a parametric or structural uncertainty in the data set but

rather a criterion when creating the summary time series. In

most cases, the largest changes are seen in the mean correla-

tion of the grid box time series rather than the standard devi-

ation (which can also be noted in the legends of the different

time series). As noted in Sect. 3, there are large differences

between HadEX2 and those global average time series calcu-

lated when the completeness restriction drops to below 60 %

for many indices. These differences are especially clear at

early times when there is less data coverage. In some indices

these differences can change the long-term trend.

For many of the indices shown in Fig. 20 this has one of the

largest effects on the agreement between the time series and

HadEX2. This demonstrates the importance of the complete-

ness requirement when calculating global averages. Regional

time series may be less affected, but this will be dependent

on the index as well as location and size of a specific region.

5.2 Parametric uncertainties

The smallest effects on global trends and variances were ob-

served when investigating the parametric uncertainties. The

weighting (scale) parameter of the ADW scheme had almost

zero effect, and these time series sit very close to HadEX2

in Fig. 20 for all indices. Selecting only long-term stations

has an impact via the station coverage, but this is muted be-

cause HadEX2 stipulates &90 % temporal completeness for

each grid box. For the precipitation indices this resulted in a

reduction in the correlation between the time series, but the

level of internal variability remains the same, and for most

temperature indices it has a relatively small effect. However,

for the number of frost days (FD), this uncertainty results in

a large increase in the internal variability. This increase has

arisen from the inhomogeneity in the time series pre-1910, as

discussed in Sect. 4.4. The restriction on long-term stations

has a large effect on the value of the global average during

this period, increasing the overall variance.

Relaxing the criterion for at least three stations within a

DLS allows values for each index to be calculated for more

land-surface grid boxes, thus apparently increasing the cov-

erage. This is unlikely to change any of the results in ar-

eas with a high station network density, but decreases the

correlation with HadEX2 for the global average as more re-

gions are included. Conversely, increasing the number of sta-

tions required within a DLS reduces the coverage to just

those areas which have a high station density and also re-

duces the correlation with HadEX2 for the global average.

Therefore the regions which have few stations have the great-

est effect on the global average when changing the num-

ber of stations within a DLS. The effect of this choice is
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Figure 20. The Taylor Diagram using the global average timeseries for each choice. Each of the different methodological choices in the

previous sections are shown using a different symbol and colour as indicated in the legend. Diagrams for CDD (Consecutive Dry Days),

DTR (Diurnal Temperature Range), FD (Frost Days) and PRCPTOT (Total Annual Precipitation) are shown.

larger in the precipitation indices than in the temperature

ones (see Fig. 20), with the correlation decreasing but only

small changes in σ . Also, many of the precipitation indices

show only small or no long-term signal, and so the corre-

lation coefficient of the time series with HadEX2 is domi-

nated by the short-timescale variations. As the regions that

can contribute to the global average change, these short-

timescale variations change location, but their magnitude re-

mains roughly the same. Hence, the correlation decreases but

the standard deviation remains approximately constant in the

Taylor diagrams.

When the minimum number of stations per grid box in-

creases, the coverage decreases but the global average trends

do not change by much over the recent period. In the early

part of the data set, there can be large differences between

HadEX2 and the different choices. This manifests itself in

reductions in the correlations as well as increases in the stan-

dard deviation for most indices as the short-timescale vari-

ations change. As the coverage is reduced by restricting the

regions included to those with higher station densities, these

dominate to a greater extent, resulting in the larger short-

timescale variations and lower correlations.

Although the DLS fitting method used in HadEX2 is rel-

atively simple, it proves to be effective in capturing the geo-

graphical coherence of the data for most of the temperature

indices. For the precipitation indices, which have short DLS

values, this functional form does not do well at large separa-

tions. For most indices, the polynomial fit overestimates the

DLS, which has a greater effect for the precipitation indices

with smaller DLS values than for the temperature ones. For

some indices one or more of these differing fitting methods

have a large effect (e.g. CWD: consecutive wet days; TR:
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Figure 20. Continued. Diagrams for R10mm (Number of days with precipitation > 10 mm), R99p (annual sum of daily precipitation > 99th

percentile), Rx5day (maximum 5 day precipitation total) and SDII (Simple Daily Intensity Index) are shown.

tropical nights). But in most cases the changes in the DLS

fitting method do not stand out as drastically changing the

global average when compared to other sources of uncer-

tainty.

5.3 Structural uncertainties

The structural uncertainties often had a larger impact than

most of the parametric changes. By changing the gridding

scheme, the weighting given to different stations changes.

This has one of the largest effects on the global trends, and

more at a regional level. Two classes of scheme were tested –

those which interpolated (RSM and ADW) and those which

did not (FDM and CAM). Hence, grid boxes mainly had

values from only the two interpolation methods (ADW and

RSM) or from all methods. The spread of linear trends is

likely to have been undersampled for grid boxes where only

two methods resulted in values. Hence the trends in these re-

gions have a small spread, but have a larger spread in the

areas where all five methods fill a grid box. Also, the simi-

larity between the two pairs of methods generally resulted in

higher correlations and lower reduced variances when only

two methods filled a grid box than when all five methods did.

Regions which had a high station density were less suscep-

tible to the changes brought about by the different gridding

methods. In these regions, the grid box value depends more

on stations within the grid box than those outside. Therefore

the effect of interpolation and weighting is smaller.

The indices which were identified in Sect. 4.6.4 as having

very little difference between the five methods can also be

identified from the Taylor diagrams (CDD, CSDI, GSL, SU,

TX90p and WSDI). GSL and SU have a large decrease in the

variance, which stems from the non-interpolating methods

not being affected by the discontinuity pre-1910.
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Figure 20. Continued. Diagrams for TXn (Minimum Tmax), TX90p (Tmax < 90th percentile) and WSDI (Warm Spell Duration Indicator)

are shown.

Those indices which predominantly have changes in the

short-term variability (DTR, ETR, FD, R10mm, R20mm,

R95pTOT, R99pTOT, SDII, TNn and TXn) mainly show

changes in the correlation. The effect of the large increase in

amplitude of short-timescale variations when using the RSM

method for DTR is also very clear. TXn shows the previously

mentioned discontinuity pre-1910 for RSM, which results in

large changes in the correlation and the variance. The change

in the long-term behaviour of TN90p and TX10p in by the

RSM method can also be seen by the comparatively large

change in correlation. The remaining indices tend to show

differences in the long-term behaviour (PRCPTOT, R95p,

R99p, Rx1day, Rx5day) leading to changes both in corre-

lation and the internal variability.

For many indices, changing the input station network had

the largest effect on the global time series. When using only

25 % of the HadEX2 stations, the coverage could be larger

than when using the full station list because of changes in

the DLS. However the small set of stations resulted in large

deviations, especially at early times when the stations con-

tributing to the global average are further reduced. On a re-

gional level, however, areas of high station density still have

consistent and robust trends for most of the temperature and

some of the precipitation indices (see Fig. 19). As seen in

the Taylor diagrams, it is mainly the correlation that is af-

fected, which can reduce by a large amount for some of the

25 % runs. There is also a lesser tendency for the standard

deviation to increase, which matches the increase in internal

variability observed for other sources of uncertainty where

the coverage is reduced. This analysis shows how the under-

lying input station network can have a large impact on the

final global behaviour, and of course regionally as well (Wan

et al., 2013; Trenberth et al., 2014).
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Some of the indices show changes in the variability which

appear to follow two regimes (FD, GSL, SU, TR), and these

are all indices where the discontinuity pre-1910 has been ob-

served. As mentioned above, this arises from the lack of Aus-

tralian and South American data during the first few years of

the data set. In the sub-sampling experiment, the few stations

which contribute to these regions will not always be selected,

hence resulting in different behaviour on a global average

compared to when these stations are included.

5.4 Combined uncertainties

The extremes indices assessed in this study are regularly used

for the monitoring of changes in the occurrence of extremes

across the globe. Therefore the overall uncertainties are vital

to ensure that the reliability of the trends can be assessed.

Additionally, providing quantified uncertainties to data sets is

an important and required step in making these fit for purpose

in the current era.

To summarise the results from each of the parametric and

structural uncertainties over all the indices we show the lin-

ear trend from HadEX2 calculated over 1951–2010 using the

median of pairwise slopes estimator in the Table 2. We also

show the statistical range in slopes as the 5th to 95th per-

centile. For each of the methodological choices we show the

range in linear trend calculated for each choice, as well as

how many of the trends fall within the statistical range of

HadEX2. This only gives a global overview and also only for

the latter part of the data set, when the coverage effects are

smaller.

For most of the percentile and block maxima temperature

indices, almost all the choices fall within the statistical range

of trends of HadEX2, and similarly for some of the duration-

based ones (CSDI, WSDI: cold and warm spell duration in-

dicators). This indicates that the statistical uncertainty in the

linear trends is larger than the structural and parametric un-

certainties from the different methodological choices. This

can also be seen in the Taylor diagrams for these indices,

where the points from all the different sources of uncertainty

investigated cluster relatively tightly around HadEX2.

GSL (growing season length) and ID (ice days) have the

worst agreement, but this is only apparent in a few of the

choices. These, along with the other threshold-based temper-

ature indices, have a larger spread in the Taylor diagrams,

showing the decrease in correlation over both short and long

timescales as well as changes in the short-term variability.

The precipitation indices are on the whole only slightly less

robust than the temperature indices, as more of the range of

trends from HadEX2 fall outside of the envelope set by the

different methodological choices. This may be in part due to

their relatively large trend uncertainties for the precipitation

indices in HadEX2 on a global scale. The heavy precipita-

tion totals and duration indices appear to be the least robust,

which matches the difference in spreads observed in the Tay-

lor diagrams. However, in all indices, for most choices more

than half the global trends fall within the statistical range of

HadEX2. As many of the precipitation indices have no strong

long-term linear trend on a global scale, this measure is less

useful than for the temperature indices.

The comparison between the gridding scheme results

(change in the values of individual grid boxes) and the mini-

mum number of stations within a grid box (change in the cov-

erage) demonstrates the two main sources of methodological

uncertainty within HadEX2 and its related data sets. Most of

the stations in HadEX2 and its related data sets are found in

North America, Europe, Asia and Australia. Methodological

choices which affect coverage generally have small effects on

the global averages because these averages are dominated by

those well-observed areas. Also, there are only small effects

on grid box values in those areas, as the correlations are high

and the spread in trends low (Fig. 8). Changing the gridding

method not only changes the coverage but also affects how

the stations are blended together, changing local grid box val-

ues. This results in lower correlations and a greater spread in

linear trends for individual grid boxes (Fig. 16). Other larger

sensitivities are observed when changing the network of in-

put stations, through the sub-sampling experiments, or when

calculating the global average itself using different data com-

pleteness criteria for the individual grid boxes (Wan et al.,

2013).

In this analysis we have assessed a number of methodolog-

ical choices made during the creation of the HadEX2 data

set to assess the sensitivity of global and regional trends to

these parameters. There are now a range of data sets available

which follow the HadEX2 method, as mentioned in Sect. 1,

and all of these are very likely to have similar sensitivities

to the choices assessed here. This family of data sets does,

however, probe the effect of completely independent station

networks, in a way that the sub-sampling experiments run in

this analysis (Sect. 4.7) cannot do (see Donat et al., 2013b).

As expected, many of the parametric uncertainties have the

smallest effect on the results, whereas the structural ones

have the largest effect. Methodological choices which dras-

tically change the grid box value or the coverage are those

which have the greatest effects: the gridding method, station

network (sub-sampling) and stations within a grid box. Com-

paring the global time series of all methodological choices

together, HadEX2 seems reasonable and generally lies to-

wards the centre of the range of variation exhibited between

the different choices. It also optimises the spatial coverage

by interpolating and hence providing information for data-

sparse regions based on the correlation structure of the data.

In the course of this study we have not been able to assess

all sources of uncertainty. The quality of the station data has

not been investigated. Although quality control procedures

have been applied during the creation of parent data sets (e.g.

GHCN-Daily, ECAD), by national meteorological services

and also at regional workshops, these are unlikely to be con-

sistent for all stations over the entire span of the data set.

When taking global averages, we have not investigated the
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Table 2. A summary of all the uncertainties assessed for each index in this work. For HadEX2, the linear trends and their uncertainties (5th to

95th percentile range) have been calculated over 1951–2010 using the median of pairwise slopes estimator (Sen, 1968; Lanzante, 1996) and

are per decade. For the six different choices investigated in this study, the range obtained is shown as well as the number of choices which

fall within the statistical range of the HadEX2 slopes.

Index Range of linear trend of global average time series

HadEX2 Weighting Stations/DLS Stations/grid

box

Long stations DLS methods Gridding

Temperature

TXx 0.11

(0.04→ 0.17)

0.11→ 0.11

(8/8)

0.10→ 0.22

(9/10)

0.03→ 0.11

(5/6)

0.10→ 0.11

(6/6)

0.08→ 0.11

(4/4)

0.07→ 0.12

(5/5)

TXn 0.33

(0.21→ 0.45)

0.33→ 0.33

(8/8)

0.29→ 0.39

(10/10)

0.13→ 0.33

(3/6)

0.29→ 0.38

(6/6)

0.27→ 0.33

(4/4)

0.24→ 0.36

(5/5)

TNx 0.17

(0.11→ 0.23)

0.17→ 0.17

(8/8)

0.17→ 0.27

(9/10)

0.11→ 0.17

(6/6)

0.16→ 0.18

(6/6)

0.12→ 0.18

(4/4)

0.16→ 0.23

(4/5)

TNn 0.43

(0.32→ 0.53)

0.42→ 0.43

(8/8)

0.33→ 0.48

(10/10)

0.37→ 0.43

(6/6)

0.40→ 0.47

(6/6)

0.29→ 0.43

(3/4)

0.38→ 0.51

(5/5)

DTR −0.07

(−0.09→−0.06)

−0.07→−0.07

(8/8)

−0.07→−0.06

(9/10)

−0.09→−0.07

(6/6)

−0.09→−0.05

(5/6)

−0.07→−0.06

(4/4)

−0.13→−0.07

(1/5)

ETR −0.38

(−0.49→−0.28)

−0.38→−0.37

(8/8)

−0.41→−0.06

(9/10)

−0.38→−0.30

(6/6)

−0.38→−0.31

(6/6)

−0.42→−0.31

(4/4)

−0.44→−0.23

(4/5)

GSL 0.83

(0.34→ 1.29)

0.79→ 0.84

(8/8)

0.83→ 1.81

(6/10)

0.83→ 1.31

(5/6)

0.83→ 1.47

(3/6)

0.78→ 1.08

(4/4)

0.83→ 1.88

(1/5)

CSDI −0.66

(−0.84→−0.47)

−0.67→−0.64

(8/8)

−0.70→−0.50

(10/10)

−0.66→−0.52

(6/6)

−0.71→−0.51

(6/6)

−0.69→−0.54

(4/4)

−0.81→−0.66

(5/5)

WSDI 1.32

(0.85→ 1.69)

1.27→ 1.32

(8/8)

1.16→ 1.62

(10/10)

0.89→ 1.32

(6/6)

0.89→ 1.32

(6/6)

1.16→ 1.72

(3/4)

1.02→ 1.32

(5/5)

TX10p −2.49

(−3.09→−1.93)

−2.50→−2.49

(8/8)

−2.52→−2.41

(10/10)

−2.49→−1.66

(4/6)

−2.57→−2.45

(6/6)

−2.53→−2.49

(4/4)

−2.49→−2.41

(5/5)

TX90p 3.25

(2.18→ 4.26)

3.19→ 3.25

(8/8)

2.85→ 3.60

(10/10)

2.14→ 3.25

(5/6)

2.77→ 3.29

(6/6)

3.25→ 3.89

(4/4)

2.88→ 3.25

(5/5)

TN10p −4.19

(−4.84→−3.57)

−4.23→−4.17

(8/8)

−4.22→−3.96

(10/10)

−4.19→−3.55

(5/6)

−4.22→−3.67

(6/6)

−4.19→−4.12

(4/4)

−4.29→−4.18

(5/5)

TN90p 5.84

(4.66→ 7.07)

5.76→ 6.02

(8/8)

5.24→ 5.99

(10/10)

4.24→ 5.84

(4/6)

4.48→ 5.86

(4/6)

5.84→ 5.97

(4/4)

4.68→ 5.84

(5/5)

FD −1.75

(−2.23→−1.30)

−1.77→−1.73

(8/8)

−2.09→−1.14

(9/10)

−1.75→−1.43

(6/6)

−1.75→−1.34

(6/6)

−1.82→−1.07

(3/4)

−2.09→−1.75

(5/5)

ID −0.70

(−1.00→−0.42)

−0.71→−0.68

(8/8)

−1.14→−0.56

(5/10)

−0.95→−0.66

(6/6)

−1.61→−0.70

(4/6)

−0.93→−0.70

(4/4)

−1.35→−0.70

(1/5)

SU 1.07

(0.69→ 1.42)

1.06→ 1.11

(8/8)

0.90→ 1.39

(10/10)

0.36→ 1.07

(3/6)

0.85→ 1.30

(6/6)

0.51→ 1.07

(3/4)

1.02→ 1.38

(5/5)

TR 1.24

(0.95→ 1.52)

1.16→ 1.27

(8/8)

0.96→ 1.94

(9/10)

0.69→ 1.24

(2/6)

0.78→ 1.24

(5/6)

1.12→ 1.74

(2/4)

1.08→ 1.54

(4/5)

Precipitation

Rx1day 0.42

(0.18→ 0.69)

0.40→ 0.46

(8/8)

0.33→ 0.82

(7/10)

0.42→ 0.62

(6/6)

0.42→ 0.63

(6/6)

0.11→ 0.47

(3/4)

0.13→ 0.54

(4/5)

Rx5day 0.49

(−0.03→ 1.03)

0.40→ 0.54

(8/8)

0.39→ 1.27

(7/10)

0.48→ 0.76

(6/6)

0.49→ 0.82

(6/6)

0.23→ 0.49

(4/4)

0.25→ 0.87

(5/5)

PRCPTOT 4.50

(1.66→ 7.19)

4.30→ 4.68

(8/8)

2.10→ 5.29

(10/10)

3.51→ 5.70

(6/6)

4.50→ 9.58

(3/6)

4.50→ 6.22

(4/4)

4.50→ 8.85

(3/5)

SDII 0.05

(0.03→ 0.07)

0.05→ 0.05

(8/8)

0.03→ 0.08

(5/10)

0.05→ 0.07

(5/6)

0.04→ 0.06

(6/6)

0.04→ 0.05

(4/4)

0.04→ 0.07

(3/5)

R95p 3.29

(2.08→ 4.66)

3.08→ 3.37

(8/8)

2.69→ 5.24

(6/10)

3.29→ 5.20

(4/6)

3.18→ 4.31

(6/6)

2.99→ 3.36

(4/4)

2.92→ 5.43

(3/5)

R95pTOT 0.30

(0.18→ 0.42)

0.29→ 0.31

(8/8)

0.26→ 0.45

(6/10)

0.30→ 0.45

(4/6)

0.28→ 0.34

(6/6)

0.23→ 0.31

(4/4)

0.21→ 0.30

(5/5)

R99p 1.60

(0.81→ 2.44)

1.50→ 1.74

(8/8)

1.38→ 2.73

(6/10)

1.60→ 2.39

(6/6)

1.60→ 1.97

(6/6)

1.37→ 1.60

(4/4)

1.54→ 2.79

(4/4)

R99pTOT 0.14

(0.06→ 0.22)

0.13→ 0.15

(8/8)

0.12→ 0.23

(8/10)

0.14→ 0.19

(6/6)

0.12→ 0.14

(6/6)

0.10→ 0.14

(4/4)

0.12→ 0.17

(5/5)

CWD −0.01

(−0.03→ 0.01)

−0.01→−0.01

(8/8)

−0.01→ 0.02

(6/10)

−0.01→ 0.01

(6/6)

−0.01→ 0.02

(3/6)

−0.01→ 0.03

(3/4)

−0.01→ 0.02

(4/5)

CDD 0.24

(−0.10→ 0.59)

0.21→ 0.31

(8/8)

−0.54→ 0.28

(6/10)

−0.12→ 0.24

(4/6)

−0.61→ 0.24

(1/6)

−0.08→ 0.32

(4/4)

−0.42→ 0.24

(2/5)

R10mm 0.14

(0.05→ 0.20)

0.13→ 0.15

(8/8)

0.04→ 0.14

(9/10)

0.12→ 0.19

(6/6)

0.13→ 0.27

(3/6)

0.10→ 0.14

(4/4)

0.13→ 0.23

(2/5)

R20m 0.04

(−0.01→ 0.10)

0.04→ 0.05

(8/8)

0.04→ 0.15

(6/10)

0.04→ 0.10

(5/6)

0.04→ 0.13

(3/6)

0.04→ 0.08

(4/4)

0.04→ 0.11

(3/5)

Clim. Past, 10, 2171–2199, 2014 www.clim-past.net/10/2171/2014/



R. J. H. Dunn et al.: Uncertainties in gridded extremes data sets 2197

effect of the averaging algorithm, nor the latitude weighting,

and we have also only used one method for obtaining linear

trends (median of pairwise slopes), and in some cases a linear

trend is unlikely to be the most applicable. These unassessed

sources of uncertainty will also have an impact on conclu-

sions drawn from the data sets. Further work is required to

pull through the observational uncertainties into gridded data

sets of climate extremes.

The indices which have strong global trends in HadEX2

continue to have strong global trends under all of the model

choices assessed here, though in some cases with reduced

amplitude or increased short-term variability. On the whole,

these are the temperature-based indices. Regionally, the ar-

eas with a high station density are also more robust to the

different methodological choices, with high correlations be-

tween the different choices and small variances in the trends

for each grid box. Those areas which have a lower station

density are more susceptible to local changes in the trends

and short-timescale behaviour arising from the effect of the

methodological choices. Users should therefore be cautious

when using these data sets for small regions and be aware of

the coverage of the data when doing assessments. We note

that in many cases it would be possible to perform a more

in-depth analysis than that presented here, especially at a re-

gional level. To allow this, all of the data files for each index

of the methodological choices presented here will be made

available for this purpose at www.metoffice.gov.uk/hadobs/

hadex2/. However, by focusing on the global scales, we have

aimed to assess the uncertainties related to the main appli-

cations of the data sets: the investigation of long-term trends

and the inter-annual variability of the ETCCDI indices.

The main limitation to the data set and its cousins is the

availability of the data. All the different choices and experi-

ments run in this assessment take larger or smaller fractions

of the available station data and process them in similar (al-

beit slightly different) ways. Therefore the global time series

for indices which have a strong trend are very similar, as all

grid boxes are interpolated from the same parent data. For

indices which have no strong trend or are inherently more

variable, the changes in methods rarely introduce a strong

trend or a drastic change into the variability either.

6 Summary

We have assessed the effects of a number of methodologi-

cal choices, both parametric and structural, which were made

during the creation of the HadEX2 data set of gridded ex-

tremes indices. This allows for the quantification of some of

the uncertainties present within the HadEX2 data set. The

largest effects on global average time series come from those

methodological choices which make large changes to the fi-

nal spatial coverage of the data set or to the grid box values

themselves. The main choices which result in these kinds of

changes are changes in the station network (sub-sampling ex-

periments), the gridding method used and the requirement to

have a certain number of stations within the grid box or DLS.

When comparing the global average time series with those

from HadEX2 using a Taylor diagram, these choices have the

lowest correlations and the largest difference in standard de-

viation. Trends and variances are most robust in North Amer-

ica, Europe and Asia as well as the southern tip of Africa

and eastern Australia. These are also the areas which have

the highest station network density. High-latitude regions and

the majority of South America and Africa often have lower

agreement for all indices, as these have low station densities

and thus are more susceptible to changes in coverage and

local grid box values. Temperature indices are to be more co-

herent and resistant to changes in the methods than precipita-

tion indices. In regions with high station density, and for in-

dices which have a clear non-zero trend over 1950–2010, the

linear trends from almost all choices fall within the statistical

range of trends from HadEX2, indicating that the structural

and parametric uncertainties of the linear trends are smaller

than the statistical uncertainties for these predominantly tem-

perature indices. For these, HadEX2 and its related data sets

is robust to choices in the creation method. The precipita-

tion indices show more variation as a result of the different

parametric and structural choices, but for the later period,

there is also high consistency between them. For indices that

have no strong non-zero trend (predominantly precipitation

indices), the long-term behaviour can be different for each of

the choices, especially for the early period.

The Supplement related to this article is available online

at doi:10.5194/cp-10-2171-2014-supplement.
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