
Large-scale changes in observed daily maximum and minimum

temperatures: Creation and analysis of a new gridded data set

John Caesar and Lisa Alexander
Hadley Centre for Climate Prediction and Research, Met Office, Exeter, UK

Russell Vose
National Climatic Data Center, Asheville, North Carolina, USA

Received 27 May 2005; revised 16 September 2005; accepted 4 November 2005; published 1 March 2006.

[1] A gridded land-only data set representing near-surface observations of daily
maximum and minimum temperatures (HadGHCND) has been created to allow analysis of
recent changes in climate extremes and for the evaluation of climate model simulations.
Using a global data set of quality-controlled station observations compiled by the U.S.
National Climatic Data Center (NCDC), daily anomalies were created relative to the
1961–1990 reference period for each contributing station. An angular distance weighting
technique was used to interpolate these observed anomalies onto a 2.5� latitude by
3.75� longitude grid over the period from January 1946 to December 2000. We have used
the data set to examine regional trends in time-varying percentiles. Data over consecutive
5 year periods were used to calculate percentiles which allow us to see how the
distributions of daily maximum and minimum temperature have changed over time.
Changes during the winter and spring periods are larger than in the other seasons,
particularly with respect to increasing temperatures at the lower end of the maximum and
minimum temperature distributions. Regional differences suggest that it is not possible to
infer distributional changes from changes in the mean alone.
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1. Introduction

[2] Long-term, global-scale, gridded monthly tempera-
ture data sets [e.g., New et al., 2000; Jones and Moberg,
2003] have been available to the research community for
well over a decade. In contrast, no comparable products
exist for the daily timescale. Gridded daily temperature
observations are required for empirical analyses of global
extremes, to validate the performance of climate models
used to make future predictions of extreme events, as well as
for other environmental modeling applications that require
evenly spaced temperature data as input.
[3] A number of regional gridded daily temperature data

sets are in existence including China [Feng et al., 2004] and
the USA [Janowiak et al., 1999]. Piper and Stewart [1996]
created a global gridded data set consisting of daily
maximum and minimum temperatures at a grid resolution
of 0.5�, but it was based upon a limited period beginning in
1977. The data set presented in this paper, HadGHCND,
offers an improvement on previous data sets as it contains
daily maximum and minimum temperature fields for the
entire period from 1946 to 2000 allowing analysis of
changes over five decades. It also enables us to assess these
changes on a near-global scale.

[4] First we discuss the observational data in section 2
and then describe the process of gridding these data in
section 3, along with an evaluation of the data set in terms
of interpolation errors and comparison with an existing
global monthly mean temperature data set. Section 4
presents an assessment of changes in observed maximum
and minimum temperatures between 1946 and 2000 with a
particular focus on the changing distributional character-
istics of the data. We discuss the results and conclusions in
section 5.

2. Observational Data

[5] The primary source of station data is the U.S.
National Climatic Data Center (NCDC) Global Historical
Climatology Network-Daily (GHCND). This data set con-
tains daily maximum and minimum temperatures for nearly
15,000 stations around the globe [Gleason et al., 2002] and
is the most comprehensive data set of daily station obser-
vations available. Despite recent efforts to collate daily
climate data on a regional basis [e.g., Klein Tank et al.,
2002], a number of regions still display relatively sparse
coverage of freely available station data, in particular Africa
and South America. To supplement the coverage provided
by GHCND we incorporate a total of 10 additional stations
over Greenland and North Africa obtained from regional
sources to provide additional, or more complete data in
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regions with poor coverage. At this stage, data for every
29 February were missing from the supplied GHCND data
set. This is not a problem in relation to model comparison
since climate models tend to have months of equal length
(30 days), though future updates to GHCND, and the data
set described in this paper, will rectify this omission.
[6] The GHCND data have undergone quality control

checks [Gleason, 2002]. This procedure consisted of two
parts: (1) simple datum checks, e.g., exceedance of known
world extreme values, minimum temperature greater than
maximum temperature on a given day, 10 or more consec-
utive days at the same value, and (2) statistical analysis of
sets of observations to locate and identify outliers represent-
ing potentially erroneous data. These checks were also
applied to the non-GHCND data. We were reluctant to
exclude outliers, on the basis that these may represent
genuine extremes, but an initial analysis suggested that many
of the flagged values were indeed erroneous. We ran an
additional test to identify values exceeding four, five and six
biweight standard deviations [Lanzante, 1996] and excluded
data exceeding six times the biweight standard deviation.
[7] Stations containing at least 20 years of data between

1961 and 1990 were selected for gridding. The station
network over the USA is much denser than any other region
so we thinned the network to those stations corresponding
to the daily United States Historical Climatology Network
(USHCN [Williams et al., 2004]). The gridding method we
use is limited to using the closest 10 stations to a grid point,
so a highly dense network would not aide the interpolation
process. USHCN stations are selected on the basis of having
a low potential for heat island bias, a relatively constant
observation time, and reasonably homogeneous spatial
distribution over the United States. The final station net-
work is fairly dense over the Northern Hemisphere, partic-
ularly the United States, Europe, Japan and China. The
Southern Hemisphere and tropics are poorly sampled in
comparison. A total of 2936 stations were subsequently
selected for use in the gridded data set (Figure 1).
[8] Data used for long-term climate research may be

affected by inhomogeneities which can be related to urban-

ization and land use biases, or changing observing practices
and instrumentation [Peterson et al., 1998]. We undertook
an initial assessment of station data homogeneity based
upon the methods described by Wijngaard et al. [2003],
which use four tests of absolute homogeneity, i.e., testing
for breakpoints at individual stations instead of with refer-
ence to neighboring stations. The tests indicated that ap-
proximately 40% of stations indicated potential breakpoints.
We looked more closely at a number of stations for which
we had adequate metadata and this suggested that break-
points may be detected in the absence of any documented
explanation. In some cases these breakpoints were coinci-
dent at neighboring stations suggesting a possible genuine
shift in the climate. Because of the large proportion of
stations with detected breakpoints, many of which were
located in data-sparse regions, we decided to include all
stations to gain the greatest possible gridded coverage. An
increase in the available daily station data would allow us to
be more selective. A related issue is that methods of
detecting and adjusting for inhomogeneities in monthly
series are more advanced relative to those available for
daily data [Wijngaard et al., 2003]. Robeson [2004] com-
pared daily temperature data from Canada that had been
homogenized [Vincent et al., 2002] with United States data
that had not. Visual inspection along the U.S.-Canadian
border showed no obvious difference in patterns of trends.
This does not necessarily apply worldwide, and while the
interpolation technique will help to reduce the impact of
single inhomogeneities at individual stations, more so in
data-rich regions, countrywide changes in observing prac-
tice or instrumentation may have a more significant impact
upon observed trends.

3. Gridding the Observations

3.1. Overview

[9] Since we also wish to use the data set for model
evaluation, we grid the data onto a 2.5� by 3.75� grid
identical to the land mask of HadCM3 [Pope et al., 1999].
The interpolation method uses a modified version of She-

Figure 1. Stations selected for gridding which have daily normals calculated from at least 20 years of
data between 1961 and 1990.
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pard’s angular distance weighting algorithm [Shepard,
1968] as employed by New et al. [2000] who used it in
favor of other methods because of its flexibility when
gridding irregularly spaced station data. It has also been
used by Kiktev et al. [2003] and Piper and Stewart [1996]
who found it to be computationally efficient compared with
other methods, while producing interpolation errors of a
similar magnitude to alternative approaches.
[10] In order to avoid biases in the gridding, particularly

over regions of sharply varying elevation, we grid the daily
anomalies as opposed to the absolute values. First, clima-
tological normals for 1961 to 1990 were calculated for each
station’s minimum and maximum temperature records using
a five-day window centered on each day, assuming that the
station had at least 20 years of data available within the
reference period. Stations were required to have at least 350
daily normal values out of 366 calendar days, otherwise
they were excluded from further consideration. The daily
anomalies are simply calculated as the difference of each
daily temperature from its daily normal value.

3.2. Correlation Length Scales

[11] Our interpolation method, angular distance weight-
ing (see section 3.3), requires an understanding of the
spatial correlation structure of the station data. We investi-
gate interstation correlations to determine the distances over
which observed temperature anomalies are related. This
allows us to define a distance weighting function and a
maximum radius of influence for calculating grid point
values. The spatial relationships between stations can vary
with season and also differs between high and low latitudes.
There is a weaker relationship between temperatures in the
meridional direction than the zonal [Jones et al., 1997]. We
therefore split the globe into nonoverlapping zonal bands of
30� latitude and calculate interstation correlations for these
bands independently. For the southernmost band we take the
band from 30 to 90�S because of the sparse station coverage
at these latitudes.
[12] For each pair of stations within the latitudinal bands

and for each month, their correlation, r, was calculated and

then binned according to their separation over intervals of
100 km. Since there are a large number of stations we cut
down the processing time by preselecting pairs of stations
which fall within 2000 km of each other. The mean
correlation was estimated over each 100 km interval and a
two-degree polynomial function was fitted to these values,
since the decay curves were not particularly smooth in the
data-sparse southern bands. Figure 2 shows an example
correlation decay curve for maximum temperature in the
most northerly band (band 1) during July. Stations in
Mexico were excluded at this point since we discovered
that interstation correlations were particularly poor, and the
GHCND documentation also notes potential unresolved
quality issues with these data. We also excluded data from
Hawaii and Puerto Rico which displayed similarly poor
interstation correlations. Other island stations, particularly
those in the Pacific, were not incorporated into the final
gridded data set in many cases because of their distance
from HadCM3 grid points classified as land.
[13] The correlation length scale (CLS) is defined as the

distance at which the mean correlation, represented by the
fitted function, fell below 1/e [Belousov et al., 1971], where
e = EXP(1). We estimated the distance at which this
occurred to determine the CLS representing the radius of
influence. The results are shown in Figure 3, indicating that
CLSs are generally smaller in the summer and at lower
latitudes.
[14] We also compared the interpolation errors associated

with using a variable monthly CLS, against a fixed annual
mean value. Using a variable correlation length scale tended
to give lower root mean square (RMS) interpolation errors
(described in section 3.4) during the summer, and higher
errors during the winter, relative to using a fixed annual
CLS. Annual mean interpolation error was slightly lower
using a fixed CLS, and coupled with the convenience of a
fixed grid mask obtained using the annual mean CLS meant
that we decided not to adopt variable CLSs. The annual
mean correlation length scales for maximum and minimum
temperatures are shown in Table 1. Despite having corre-
lated anomalies rather than absolute temperatures, seasonal
differences are apparent between the zonal bands (Figure 3),
although these are less apparent when viewing annual mean
figures (Table 1).

3.3. Interpolation Method

[15] Angular distance weighting uses two components to
calculate the weighting of each station. The first component
weights the station according to its distance from a grid
point, with the CLS controlling the rate at which the weight
decreases away from the grid point. We selected the
exponential function as a reasonable representation of the
observed correlation decay curves produced.
[16] Based upon the CLS, a correlation function can be

defined [Jones et al., 1997] shown in equation (1), where x
is the distance of the station from the required grid point and
xo is the CLS appropriate to that grid point depending on its
latitude.

r ¼ e�x=xo ð1Þ

Following New et al. [2000], we define a distance weight
for a station, i, in equation (2). Weights decay more steeply

Figure 2. Sample correlation decay plot for maximum
temperatures in band 1 (60�–90�N) during July. Dashed
line indicates mean correlation within 100 km bins, and
solid line represents polynomial fit. The dotted line shows
the level at which we estimated the correlation length scale.

D05101 CAESAR ET AL.: LARGE-SCALE CHANGES IN TEMPERATURES

3 of 10

D05101



for smaller CLSs, but the term m allows us to adjust the
weighting function further, so that higher values of m also
increase the rate at which the weight decays with distance.

wi ¼ rm ð2Þ

As in the work of New et al., we tested different values of m
(ranging from 1 to 10), and evaluated results based upon
cross validation against withheld station data. We found that
cross-validation RMS errors tended to decrease with
increasing m, but that an m value of 4 offered a reasonable
compromise between reducing the error and helping to

reduce spatial smoothing, while still allowing more distant
stations to influence the grid point value.
[17] Following New et al. [2000], the combined angular

distance weight for the ith station (of a total of k stations
contributing to a grid point value), Wi is defined as:

Wi ¼ wi 1þ

P
k

wk 1� cos qk � qið Þ½ �
P
k

wk

8<
:

9=
;; i 6¼ k ð3Þ

where the position of the ith station is defined in terms of its
distance, xi (equation (1)) and its angle to North, qi, relative

Figure 3. Seasonal variation of Tmax (solid line) and Tmin (dashed line) correlation length scales for
each of the five latitude bands.
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to the specified grid point. The first term in the combined
angular distance weight (equation (3)) weights the gridded
value in favor of stations close to the grid point. The second
term, in large brackets, weights the stations contributing to a
grid point according to their directional (angular) isolation
from each other and acts to increase the weight if the station
is isolated in an angular sense.
[18] One requirement is to define how we will select the

stations that will contribute to each grid point value and
avoid the use of unrepresentative stations. Instead of using
an arbitrary globally constant search radius we instead base
the search radius upon the CLS, which varies with latitude.
For the purposes of gridding, the CLS values for each zonal
band were linearly interpolated to each grid point between
the center of each band so that there were no discontinuities
along the band boundaries. Where the distance from a
station to a grid point is greater than the CLS, the station
is unlikely to provide any useful information for gridding
[New et al., 2000]. Piper and Stewart [1996] and New et al.
[2000] both use a variable search radius to include, respec-
tively, the closest 4 to 10 stations and the closest eight
stations to a grid point, with Dodson and Marks [1997] also
suggesting eight as a good compromise. We use the
weighted sum of the closest 3 to 10 stations to each grid
point, assuming that they fall within the CLS distance, to
estimate our grid point temperature values. We use a
minimum of three stations to allow for greater gridded
coverage over data-sparse regions. If fewer than three
stations with data are present within the search radius, the
grid point value for that day is set to missing. If there are
more than 10 stations within the CLS distance, then only the
10 closest to the grid point are used so as to increase
computational efficiency, and therefore the actual radius of
influence depends on the station density.
[19] Daily data present greater problems than monthly

data as there are more likely to be gaps in the record at the
higher temporal resolution. Hence the group of stations that
contribute to a grid point value on any particular day has to
be reassessed for each grid point on each day. To help cut
down on the processing time we follow Piper and Stewart
[1996] by creating lists of ‘‘nearest neighbor’’ stations for
each grid point which can be used to focus the search for
nonmissing values.
[20] In addition to creating the anomaly grids, certain

applications require the creation of an absolute temperature
grid. We have gridded the daily normals using the same
technique, which can then be added back onto the gridded
anomalies to create absolute temperature grids. This does
not completely address the issue of elevation dependence in
the gridded normals [e.g.,Willmott and Robeson, 1995], and
we have begun investigating simple methods of accounting
for elevation, which do lead to a reduction in interpolation

error for the normals. This is an aspect we will investigate
further for future versions of the data set.

3.4. Data Set Evaluation

[21] We evaluated the data set using cross validation
[Cressie, 1993] to estimate errors associated with our
chosen interpolation technique. This involved removing
each station from the data set, and then using the interpo-
lation technique to estimate the temperature anomaly time
series for that station using data from the surrounding
stations. We compute RMS errors on the basis of the
differences between the actual station time series and the
interpolated station time series. The results (Figure 4) show
that, on average, the RMS errors are around 2�C. The
annual average RMS error for all maximum temperature
stations is 1.9�C, with highest values of 2.3�C in January,
and lowest of 1.6�C during August. Errors are typically
larger for minimum (2.0�C annual average) than for max-
imum temperatures, larger in the winter hemisphere, larger
in coastal areas than inland locations, and larger in regions
where the station density is lowest, hence resulting in
greater spatial smoothing.
[22] Figure 5 shows how the gridded coverage, repre-

sented by percentage of land cover, changes through time.
In 1946 there is less than 40% coverage, rising to over 50%
during the 1960s to the 1990s when coverage drops slightly
before reducing rapidly as 2000 is approached. This reflects

Table 1. Annual Mean Correlation Length Scales for Each

Latitude Band for Tmax and Tmin Anomaliesa

Tmax Tmin

Band 1 (60�–90�N) 1190 1050
Band 2 (30�–60�N) 1190 1140
Band 3 (0�–30�N) 870 970
Band 4 (0�–30�S) 930 850
Band 5 (30�–90�S) 1080 830

aLength scales are in kilometers.

Figure 4. Cross-validated annual average station inter-
polation root mean square errors for the 1961–1990
period for (a) minimum temperatures and (b) maximum
temperatures.
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changes in the availability of stations, and spatial changes in
coverage can be seen in Figure 6. For example, we do not
have observations for China available in GHCND prior to
1950 and after 1998. The decadal averages require that less
than 20% of data be missing for any particular grid point
during the selected averaging period, hence grid points over
China are missing in the first and last periods of Figure 6.
[23] As noted in the introduction, a number of global

gridded data sets on monthly timescales are in existence. We
have compared the variability of our daily data set on
monthly timescales with that of CRUTEM2 [Jones and
Moberg, 2003] for a number of regions around the globe.
This gives us an initial appreciation of how our data set
compares with established data sets, albeit at a lower
temporal resolution. Daily Tmax and Tmin anomalies are
averaged over each month, and a mean monthly temperature
is calculated. Mean monthly temperatures for the two data
sets are in good agreement over all regions (Figure 7). It is
of note that maximum and minimum monthly temperatures
over Australasia (Figures 7d and 7h) do not coincide as
closely to the mean as they do over other regions, though
the mean still correlates well with CRUTEM2. The corre-
lation coefficients between the two series vary from 0.926
for central Asia in July, to 0.996 for Europe during January.

4. Observed Changes in Maximum and
Minimum Daily Temperatures

[24] This data set allows us to study the observed global
patterns of change based upon daily maximum and mini-
mum temperatures. As an indication of global changes,
Figure 6 shows maximum and minimum temperature
anomalies relative to 1961–1990, averaged over each
decade, or 1946–1960 in the case of the early part of the
data set. Both maximum and minimum temperature anoma-
lies have increased relative to the 1961–1990 period,
particularly during the most recent two decades of the
1980s and 1990s. A key question concerns the potential
change in not only the mean but also the variance and the
shape of the daily temperature distributions [Meehl et al.,
2000], and whether it is valid to use changes in mean
temperature to infer changes in the extremes at a regional or
local scale. Our data set enables us to investigate the full
distribution of maximum and minimum temperatures and
therefore investigate this assumption in more depth.
[25] We estimate percentiles on a monthly basis following

Robeson [2004]. If percentiles are calculated on a seasonal
or annual basis the lower percentiles are typically drawn
from the colder months, and the higher percentiles from
warmer months, and are therefore not representative of the
entire season. For each month, we pool data from 5 consec-

utive years which gives us a larger sample from which to
calculate the percentiles. The percentiles for each month and
nonoverlapping 5 year period were estimated by selecting
the data value closest to the required percentile. The
percentiles were then area averaged for a number of sub-
regions of the globe and regional trends were estimated
using least squares regression. The results discussed below
are based on percentiles calculated from our absolute
temperature data set, though we obtain similar results using
our gridded anomaly data set.
[26] Robeson [2004] investigated time varying percentiles

for daily air temperature over North America and found that
changes in the late winter and spring were particularly
important. Our results for the United States (Figures 8a
and 8b) indicate a broad agreement in the sign and magni-
tude of trends for all months and percentiles compared to
those found by Robeson. Most of the daily minimum
temperature distribution has experienced warming through-
out the year, with maximum rates occurring during the
winter months and at the mid to lower end of the distribu-
tion. Only the period around October indicates small neg-
ative trends in Tmin across all percentiles. One difference
from the findings of Robeson is the location of the zero
trend demarcation for maximum temperatures during the
summer months, but the location of the maximum trends, in
terms of when they occur and at what percentile, are in very
close agreement. Otherwise Tmax shows a similar pattern to
Tmin, in that warming is concentrated during the winter and
early spring months, centered on March. Again, slight cool-
ing trends are centered on October with small negative trends
throughout the rest of the year. We evaluated trend signifi-
cance for each month and percentile interval using a non-
parametric Mann-Kendall test. Over the USA trends were
only coherently significant at the 5% level during March.
[27] Next we look at Europe (Figures 8c and 8d), another

region where observations are relatively dense. Similar to
the USA, we see winter minimum temperatures significantly
increasing, particularly at the lower end of the distribution.
During November and December there are decreasing trends
at the lower end of the distribution. Changes are small during
the summer. Maximum temperatures suggest a similar pat-
tern with greater trends at the lower percentiles during the
winter. While median Tmax and Tmin during the European
autumn show close to a zero trend, there is a negative trend at
lower percentiles and a slight positive trend at higher
percentiles, suggesting changes in the variance and/or skew-
ness that would not be detected by considering only the
median change.
[28] China (Figures 8e and 8f) also displays warming of

both minimum and maximum temperatures during the
winter, particularly at the lower percentiles, indicating a

Figure 5. Plot of percentage gridded annual land cover from 1946 to 2000.
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Figure 6. Decadal mean grids for (a–e) Tmin and (f–j) Tmax.
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reduction in the range. Maximum temperatures, like the
USA (Figure 8b), have a negative trend during the spring
and summer. Only the warming trends in minimum temper-
atures during winter are significant over China. Minimum
and maximum temperatures increase throughout the year in
Russia (Figures 8g and 8h). Large significant trends of
around 6�C are observed during winter. Median Tmax and
Tmin increase, but particularly during the winter months.
Finally, temperatures increase during all months and at all

percentiles across Australasia (Figures 8i and 8j). Unlike the
other regions, the greatest increase in temperatures is not
during the austral winter, but is split between May and
September. Largest changes are observed during September,
but the warming trends throughout the year are significant at
most percentiles.
[29] In addition to the intradistributional changes in max-

imum and minimum temperatures, it is clear that in most
regions the warming trends in minimum temperatures are

Figure 7. Comparison between gridded daily observations (solid red) and CRUTEM2 (solid black) for
(a–d) January and (e–h) July over selected regions. Monthly Tmax (dashed red) and Tmin (dashed blue)
for gridded observations are also shown.
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greater than for maximum temperatures. This results in a
reduction in the diurnal temperature range (DTR) that has
been highlighted in previous studies [e.g., Easterling et al.,
1997]. Over the USA and China, the reduction in DTR due to
warming minimum temperatures is exacerbated by decreas-
ing trends in maximum temperatures which occur during the
summer months. China during winter shows that trends in
minimum temperatures are larger than for maximum temper-
atures, which contributes to a reduction of the DTR.

[30] Frich et al. [2002] examined a number of extremes
indices relating to temperature. They found that much of the
Northern Hemisphere and Australia have warmed, excep-
tions being the south-central United States, eastern Canada
and Iceland, as well as parts of central and eastern Asia. Most
notably the proportion of warm nights (defined as the
frequency of days where the 90th percentile of minimum
temperatures is exceeded) has increased in most regions
except over parts of Canada, Iceland, China, and around the

Figure 8. Spatially averaged trends (�C/50yr) in time varying percentiles of Tmax and Tmin for 1946–
2000 over (a and b) the United States (125–70�W, 25–50�N), (c and d) Europe (25�W–60�E, 45–
65�N), (e and f) China (75–130�E, 20–45�N), (g and h) Russia (60–120�E, 40–60�N), and (i and j)
Australasia (100–180�E, 0–50�S).
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Black Sea. Our findings support this and give a more detailed
view of how the temperature distributions are changing
across the entire distribution and on a seasonal basis.

5. Summary and Conclusions

[31] A gridded daily temperature data set (HadGHCND)
has been created based upon station observations of max-
imum and minimum temperature which covers the period
from 1946 to 2000. We have compared the data set with an
existing gridded data set at a monthly resolution, which
exhibits a good comparison on monthly timescales when
considered on a regional basis. Despite this, analysis of
extremes requires a high level of quality control and
homogeneity, for example when extracting single annual
maxima values. Future considerations are likely to include
station homogeneity, including neighbor checks and adjust-
ments for break points, biases caused by different observa-
tion times around the globe, as well as sampling errors.
Assessing the impact of the interpolation method on the
underlying data will also be an important consideration. It is
apparent that to gain a truly global picture of changing
extremes we need to fill the remaining data gaps over
regions such as Africa and South America, southern Asia
and the Middle East where the availability of daily climate
observations is currently limited. A recent initiative by
Alexander et al. [2006] has made considerable progress
toward improving the coverage of available climate
extremes indices data.
[32] Investigation of time-varying percentile trends shows

that many regions indicate a coherent warming trend in both
maximum and minimum temperatures during winter. It is
clear that changes are not uniform across the seasons. While
the dominant patterns of change are generally seen during
winter, there are regional variations. The varying patterns of
seasonal and regional percentile trends suggest that to infer
changes in extreme temperatures from mean changes in
temperature would not be appropriate.
[33] The data set was gridded onto a 2.5� by 3.75� grid to

facilitate comparison with the Hadley Centre GCM. Future
work will involve intercomparison with GCM simulations
of the latter half of the twentieth century to evaluate the
quality of GCMs with respect to their ability to simulate
daily temperature distributions and extremes. A newly
implemented automated gridded system will enable us to
more easily produce versions of this data set on different
grid resolutions. Improvements to the GHCND data set will
allow us to extend HadGHCND from 2000 to the present
day. The gridded data set can be obtained from the U.S.
National Climatic Data Center (http://www.ncdc.noaa.gov)
and from the Hadley Centre at the UK Met Office (http://
www.hadobs.org).
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geneity of 20th Century European daily temperature and precipitation
series, Int. J. Climatol., 23, 679–692.

Williams, C. N., R. S. Vose, D. R. Easterling, and M. J. Menne (2004),
United States historical climatology network daily temperature, precipita-
tion, and snow data, ORNL/CDIAC-118, NDP-070, Carbon Dioxide Inf.
Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.

Willmott, C. J., and S. M. Robeson (1995), Climatologically aided
interpolation (CAI) of terrestrial air temperature, Int. J. Climatol., 15,
221–229.

�����������������������
L. Alexander and J. Caesar, Met Office, Hadley Centre for Climate

Prediction and Research, FitzRoy Road, Exeter, Devon, EX1 3PB, UK.
(john.caesar@metoffice.gov.uk)
R. Vose, National Climatic Data Center, Asheville, NC 28801, USA.

D05101 CAESAR ET AL.: LARGE-SCALE CHANGES IN TEMPERATURES

10 of 10

D05101


