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Abstract. Atmospheric humidity plays an important role in climate analyses. Here we describe the produc-
tion and key characteristics of a new quasi-global marine humidity product intended for climate monitoring,
HadISDH.marine. It is an in situ multivariable marine humidity product, gridded monthly at a 5◦× 5◦ spatial
resolution from January 1973 to December 2018 with annual updates planned. Currently, only reanalyses provide
up-to-date estimates of marine surface humidity, but there are concerns over their long-term stability. As a result,
this new product makes a valuable addition to the climate record and will help address some of the uncertainties
around recent changes (e.g. contrasting land and sea trends, relative-humidity drying). Efforts have been made
to quality-control the data, ensure spatial and temporal homogeneity as far as possible, adjust for known biases
in non-aspirated instruments and ship heights, and also estimate uncertainty in the data. Uncertainty estimates
for whole-number reporting and for other measurement errors have not been quantified before for marine hu-
midity. This is a companion product to HadISDH.land, which, when combined, will provide methodologically
consistent land and marine estimates of surface humidity.

The spatial coverage of HadISDH.marine is good over the Northern Hemisphere outside of the high latitudes
but poor over the Southern Hemisphere, especially south of 20◦ S. The trends and variability shown are in line
with overall signals of increasing moisture and warmth over oceans from theoretical expectations and other prod-
ucts. Uncertainty in the global average is larger over periods where digital ship metadata are fewer or unavailable
but not large enough to cast doubt over trends in specific humidity or air temperature. Hence, we conclude that
HadISDH.marine is a useful contribution to our understanding of climate change. However, we note that our
ability to monitor surface humidity with any degree of confidence depends on the continued availability of ship
data and provision of digitized metadata.

HadISDH.marine data, derived diagnostics, and plots are available at http://www.metoffice.gov.uk/hadobs/
hadisdh (last access: June 2019) and https://doi.org/10.5285/463b2fcd6a264a39b1e3249dab16c177 (Willett et
al., 2020).

1 Introduction

Water vapour plays a key role as a greenhouse gas in the
dynamical development of weather systems and impacts so-
ciety through precipitation and heat stress. Over land, all
these aspects are important, and recent changes have been
assessed by Willett et al. (2014). Over the oceans, a major
source of moisture over land, a similar analysis is essen-
tial to enhance our understanding of the observed changes

generally and as a basis for worldwide evaluation of climate
models. In recognition of its importance, the surface atmo-
spheric humidity has been recognized as one of the Global
Climate Observing System (GCOS) Essential Climate Vari-
ables (ECVs; Bojinski et al., 2014; https://gcos.wmo.int/en/
essential-climate-variables, last access: June 2019).

Observational sources of humidity over the ocean are lim-
ited. The NOCSv2.0 (Berry and Kent, 2011) is the only re-
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cently updated (January 1971 to December 2015) marine sur-
face humidity monitoring product based on in situ observa-
tions, but it only includes specific humidity (q). Satellite-
based humidity products exist (e.g. HOAPS, Hamburg Ocean
Atmosphere Parameters and Fluxes from Satellite Data; Fen-
nig et al., 2012), but these rely on the in situ observa-
tions for calibration. Whilst quasi-global, the uncertainties
in the NOCv2.0 product are large outside the northern mid-
latitudes. In this region the NOCSv2.0 product shows a rea-
sonably steadily rising trend over the period of record, sim-
ilar to that seen over land but with slightly different year-to-
year variability. Most notably, 2010, a peak year over land
in specific humidity, does not stand out over ocean. Figure 1
and Willett et al. (2019) show global land and ocean specific-
humidity and relative-humidity (RH) series from available in
situ and reanalysis products. Older, static products for the
ocean (HadCRUH – Met Office Hadley Centre and Climatic
Research Unit Humidity dataset; Willett et al., 2008; Dai:
Dai, 2006) show increasing specific humidity to 2003 with
similar variability to NOCSv2.0 and near-constant relative
humidity. Both HadCRUH and Dai show a positive relative-
humidity bias pre-1982 and slightly higher specific humid-
ity over 1978–1984 compared to NOCSv2.0. There is broad
similarity between the reanalysis products and the in situ
products but with notable differences for specific humidity in
the scale of the 1998 peak and the overall trend magnitude.
Differences are to be expected given that the reanalyses are
spatially complete in coverage, albeit derived only from their
underlying dynamical models over data-sparse regions. The
reanalyses exhibit near-constant to decreasing relative hu-
midity over oceans but with poorer agreement between both
the reanalyses themselves and compared to the in situ prod-
ucts over land. This is to be expected given the larger sources
of bias and error over ocean (Sect. 2) and sparse data cover-
age. Importantly, land and marine specific humidity appear
broadly similar, whereas for relative humidity, the distinct
drying since 2000 over land is not apparent over ocean in re-
analyses, and the previously available in situ products finish
too early to be informative. Note that the HadISDH.marine
described herein is shown here for comparison and is dis-
cussed below.

A positive bias in global marine average relative humid-
ity pre-1982 is apparent in Dai and HadCRUH and has pre-
viously been attributed to high frequencies of whole num-
bers in the dew point temperature observations prior to
January 1982 (Willett et al., 2008). This is less clear in
the global-average-specific-humidity time series. ICOADS
(International Comprehensive Ocean-Atmosphere Data Set)
documentation (http://icoads.noaa.gov/corrections.html, last
access: June 2019) notes issues with the pre-1982 data, es-
pecially mixed-precision observations, where the air temper-
ature has been recorded to decimal precision, but the dew
point temperature is only available as a whole number. Such
reporting was in accordance with the WMO ship code be-
fore 1982. The documentation notes a truncation error in the

dew point depression, which would lead to a positive bias in
relative humidity. Alternatively, Berry (2009) shows that pat-
terns in the North Atlantic Oscillation coincide with this time
period and could have played a role. The NOCSv2.0 prod-
uct is based on reported wet-bulb temperature rather than
dew point temperature, where decimal precision is usually
present. Hence, the NOCSv2.0 product is expected to be un-
affected by these rounding issues. Our analysis shows that
changes to the code in January 1982 did not eliminate whole-
number reporting, and high frequencies of whole numbers
can be found throughout the record in both air temperature
and dew point temperature (Sects. 2.4 and 3.4).

Clearly, there is a need for more and up-to-date in
situ monitoring of humidity over ocean, especially for
RH. The structural uncertainty in estimates can only be
explored if there are multiple available estimates so a
new product that explores different methodological choices
and extends the record is complementary to the existing
NOCSv2.0 product and reanalysis estimates. Here we re-
port the development of a multivariable marine humidity
analysis HadISDH.marine.1.0.0.2018f (Willett et al., 2020).
HadISDH.marine is an integrated surface dataset of humid-
ity led by the Met Office Hadley Centre, forming a com-
panion product to the HadISDH.land monitoring product and
enabling the production of a blended global land and ocean
product. We use existing methods where possible from the
systems used for building the long-running HadSST dataset
(Kennedy et al., 2011a, b, 2019) and also use some of the
bias adjustment methods employed for NOCSv2.0 (Berry
and Kent, 2011). We have explored the data to design new
humidity-specific processes where appropriate, particularly
in terms of quality control and gridding.

HadISDH.marine is a climate-quality 5◦× 5◦ gridded
monthly mean product from 1973 to present (December 2018
at the time of writing) with annual updates envisaged. Fields
are presented for surface (∼ 10 m) specific humidity, relative
humidity, vapour pressure, dew point temperature, wet-bulb
temperature, and dew point depression. Air temperature is
also made available as a by-product, but less attention has
been given to addressing temperature-specific biases. The
product is intended for investigating long-term changes over
large scales, and so efforts have been made to quality-control
the data, ensure spatial and temporal homogeneity, adjust
for known biases, and also estimate remaining uncertainty in
the data. In particular, we estimate uncertainties from whole-
number reporting and other measurement errors that have not
been quantified before for marine humidity.

Section 2 discusses known issues with marine humidity
data. Section 3 describes the source data and all processing
steps. Section 4 presents the gridded product and explores
the different methodological choices and comparison with
NOCSv2.0 specific humidity and ERA-Interim marine hu-
midity. This section also includes a first look at the blended
land and marine HadISDH product for each variable. Sec-
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Figure 1. Global-average surface humidity annual anomalies (base period: 1979–2003). For in situ datasets, 2 m surface humidity is used
over land and ∼ 10 m over the oceans. For the reanalysis, 2 m humidity is used across the globe. For ERA-Interim and ERA5, ocean-only
points over open sea are selected, and background forecast values are used as opposed to analysis values to avoid incorporating biases from
unadjusted ship data. All data have been given a mean of 0 over the common period 1979–2003 to allow direct comparison, with HOAPS
given a mean of 0 over the 1988–2003 period. (Sources: HadISDH – Willett et al., 2013, 2014; HadCRUH – Willett et al., 2008; Dai – Dai,
2006; HadCRUHext – Simmons et al., 2010; NOCSv2.0 – Berry and Kent, 2009, 2011; HOAPS – Fennig et al., 2012; ERA-Interim – Dee
et al., 2011; ERA5 – C3S, 2017; Hersbach et al., 2020; MERRA-2 – Gelaro et al., 2017; Bosilovich et al., 2015; JRA-55 – Kobayashi et al.,
2015). Adapted from Willett et al. (2019).

tion 5 covers data availability, and Sect. 6 concludes with a
discussion of the strengths and weaknesses of the product.

2 Known issues affecting the marine humidity data

2.1 Daytime solar biases

Marine air temperature measurements on-board ships during
the daytime are known to be affected by the heating of the
ship or platform by the sun. This results in a positive bias
during daylight and early night-time hours. The bias varies
with sunlight strength or cloudiness (and thus also latitude),
relative wind speed, and the size and material of the ship.
This solar-heating bias affects both the wet-bulb and dry-
bulb temperature measurements, but, as noted by Kent and
Taylor (1996), the ships do not act as a source of humidity or
change the humidity content of the air. As a result, biases in
the specific humidity and dew point temperature due to the
solar-heating errors will be negligible. However, care needs
to be taken with relative humidity because estimates of the
saturation vapour pressure from the uncorrected dry-bulb air
temperature will be too high, leading to an underestimate in
relative humidity. Ideally, relative humidity should be esti-
mated using the corrected dry-bulb temperature to calculate
the saturation vapour pressure and uncorrected wet- and dry-
bulb temperature or dew point temperature to calculate the
vapour pressure.

Previously, efforts have been made to bias-adjust the air
temperature observations for solar heating by modelling the
extra heating over the superstructure of the ship, taking ac-
count of the relative wind speed, cloudiness, time of day, time
of year, and latitude (Kent et al., 1993; Berry et al., 2004;
Berry and Kent, 2011). These adjustments are complex, and
so we have decided not to attempt to implement them for
our first version of a marine humidity product given the wide
variety of other issues we have accounted for. We have, how-
ever, produced daytime, night-time, and combined products
to investigate differences that may be caused by the solar-
heating bias. Later versions of HadISDH.marine that apply
bias corrections for solar heating may reduce the number of
daytime data removed.

2.2 Unaspirated-psychrometer bias

Humidity measurements can be made in a variety of ways.
Instruments can be housed in a screen with ventilation slats,
with or without additional artificial aspiration, or handheld
in a sling or whirling psychrometer. There is information on
instrument ventilation provided up to 2014. Approximately
30 % of ship observations have information in 1973, peak-
ing at ∼ 75 % by the mid-1990s, as summarized in Fig. 2.
Initially, slings were more common for the hygrometer and
thermometer, but by 1982 a screen was more common. There
is a tendency for the screened instruments, in the absence of
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artificial aspiration, to give a wet-bulb reading that is higher
relative to the slings or whirling instruments where airflow is
ensured by the whirling motion. Bias adjustments have been
applied to unaspirated humidity observations by Berry and
Kent (2011), building on previous bias adjustments of Josey
et al. (1999) and Kent et al. (1993). They have also esti-
mated the uncertainty in the bias adjustments. We implement
a modified version of their method of bias adjustment for the
unaspirated observation types (Sect. 3.3.1) and uncertainty
estimation. Uncertainties from instrument bias adjustments
will have some spatial and temporal correlation structure as
the ships move around (Kennedy et al., 2011a).

2.3 Ship height inhomogeneity

Over time there has been a general trend for ship heights
to increase. Kent et al. (2007, 2013) quantified the increase
from an average of ∼ 16 m in 1973 to ∼ 24 m by the end
of 2006. Instrument height information is available for some
ships between the period of 1973 and 2014, providing heights
for the barometer (HOB), thermometer (HOT), anemome-
ter (HOA), and visual-observing platform (HOP). Figure 3
shows the availability of height information and the mean
and standard deviation of heights per year in each category
for the ship observations selected here. Similar to the ventila-
tion metadata, height information availability is low in 1973,
peaking mid-1990s to 2000 and then declining slightly. Prior
to 1994 only the platform height was available from WMO
Publication 47. This was replaced in 1994 by the barome-
ter height and augmented with the thermometer and visual-
observing heights from 2002 onwards (Kent et al., 2007).
Anemometer heights have been available from WMO 47
since 1970. All four types of heights increase over time. We
conclude that the mean height based on HOP, HOB, and HOT
increases from 17 m in 1973 to 23 m by 2014, which differs
slightly to that in Kent et al. (2007). If uncorrected, this likely
leads to a small artificial decreasing trend in air temperature
and specific humidity as, in general, these variables decrease
with height away from the surface. The effect on relative hu-
midity is less clear and depends on the relative effects on air
temperature and specific humidity.

Prior studies (e.g. Berry and Kent, 2011; Berry 2009;
Josey et al., 1999; Rayner et al., 2003; Kent et al., 2013)
have applied height adjustments to the air temperature, spe-
cific humidity, and wind speed measurements to adjust the
measurements to a common reference height and minimize
the impact of the changing observing heights on the cli-
mate record. These have been based on boundary layer the-
ory and the bulk formulae using the parameterizations of
Smith (1980, 1988). In the absence of high-frequency ob-
servations of meteorological parameters for each observation
location, allowing direct estimation of the surface fluxes, pa-
rameterizations have to be made, and an iterative approach
is necessary to estimate a height adjustment (Sect. 3.3.2).
We have followed these previous approaches and estimated

Figure 2. Availability of instrument exposure information (black)
for ships (platform, PT = 0,1,2,3,4,5) for the hygrometer (hy-
grometer exposure, EOH; solid) and thermometer (thermometer ex-
posure, EOT; dashed) for each year. All ICOADS 3.0.0 and 3.0.1
observations passing third-iteration quality control are included.
The percentage of EOHs and EOTs in each exposure category is
also shown. Aspirated (A) screens are shown in red. Handheld in-
struments (ship’s sling, SG; sling, SL; whirling, W) are shown in
orange. Unaspirated and unventilated screens (S) and ship’s screens
(SN) are shown in blue. Additionally, ventilated screens (VS) are
also shown in blue as these are generally not artificially aspirated.
Unscreened (US) observations are shown in violet.

height adjustments for all observations and variables of inter-
est. Where observing heights are unavailable, we have made
new estimates (Sect. 3.3.2). We have also provided an esti-
mate of uncertainty on these height adjustments, which are
larger where we have also estimated the height of the obser-
vation. The uncertainties from height adjustments will have
some spatial and temporal correlation structure.

2.4 Whole-number reporting biases

Recording and reporting formats and practices have changed
many times over the 20th century, affecting the climate
record. Some formats required the wet-bulb temperature to
be reported, others the dew point temperature, and some al-
lowed either or both (https://www.wmo.int/pages/prog/amp/
mmop/documents/publications-history/history/SHIP.html,
last access: June 2019). Some earlier formats restricted space
to reporting temperature to whole numbers only, and this
practice has continued, with some ships continuing to report
the dew point (or wet-bulb) temperature and sometimes even
the dry bulb temperature to whole numbers. A practice of
truncation of the dew point depression has been noted for
the pre-1982 data (http://icoads.noaa.gov/corrections.html,
last access: June 2019), which would result in spuriously
high humidity (both in relative and actual terms). It is clear
from the ICOADS3.0.0 and 3.0.1 data that there has been
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Figure 3. (a) Availability of instrument height information for ships (platform, PT = 0,1,2,3,4,5) for the barometer (HOB), thermometer
(HOT), anemometer (HOA), and visual-observing platform (HOP) with (b) mean heights (solid lines) and standard deviations (dotted lines)
for each year. All ICOADS 3.0.0 and 3.0.1 observations passing third-iteration quality control are included.

a practice of reporting values to whole numbers rather
than decimal places, both for air temperature and dew
point temperature. Rounding dew point temperature and air
temperature could result in a ±0.5 ◦C error individually or
a just less than ±1 ◦C error in dew point depression for a
worst-case-scenario combination.

Whole-number reporting is an issue throughout the record
for both variables; a breakdown of air and dew point tem-
perature by decimal place over time is shown in Fig. S1 in
the Supplement. Air temperature also shows a disproportion-
ate frequency of half degrees (.5s). The percentage of whole
numbers (.0s) declines over time, dramatically in the mid-
to late 1990s for air temperature and from 2008 for both air
and dew point temperature. This decline in the 1990s and
in part also the general decline appear to be linked to an
increase in numbers of moored buoys (see Fig. 5); a sim-
ilar analysis without the moored buoys (not shown) shows
greater consistency over time. The dew point temperature has
two distinct peaks in whole-number frequency in the 1970s
and mid-1990s to early 2010s. The latter peak is more pro-
nounced when moored buoys are not included. The early
peak is somewhat consistent with the restriction in trans-
mission space prior to January 1982. This was previously
thought to have been a possible cause of higher relative hu-
midity over the period 1973–1981 compared to the rest of
the record in the HadCRUH marine relative-humidity prod-
uct (Willett et al., 2008). The pre-1982 moist bias was also
apparent in the global marine relative-humidity product of
Dai (2006), which like HadCRUH used dew point tempera-
tures. The NOCSv2.0 product preferentially utilizes the wet-
bulb temperatures from ICOADS, which are not affected by
whole-number reporting to the same extent.

Rounding of temperature alone should not affect the mean
dew point temperature, specific humidity, or vapour pres-

Figure 4. Availability of instrument type information (black) for
ships (platform, PT = 0,1,2,3,4,5) for the hygrometer (TOH) for
each year. All ICOADS 3.0.0 and 3.0.1 observations passing third-
iteration quality control are included. The percentage of TOHs in
each type category is also shown.

sure. However, as with the solar bias issue, it is sensitive
to the point at which the reported dew point temperature
was derived from the measured wet-bulb temperature or rel-
ative humidity. Most likely, this would be done prior to any
rounding or truncating for reporting, but during later con-
version of various sources into digital archives or correc-
tions the dew point temperature may have been reconstructed
(https://icoads.noaa.gov/e-doc/other/dupelim_1980, last ac-
cess: June 2019). The effect of rounding on a monthly mean
grid box average should be small as these errors are random
and should reduce with averaging. However, there is a risk of
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Figure 5. Flow chart of the build process from raw hourly observations to gridded fields. Note that the grey “no QC” output boxes are
produced during the first iteration by selecting all data rather than those passing quality control.

removing very high humidity observations when a rounded
dew point temperature then exceeds a non-rounded air tem-
perature. Such values are removed by our supersaturation
check (Sect. 3.2). We do not feel able to correct for this is-
sue but instead include an uncertainty estimate for it. Overly
frequent whole numbers are identified both during quality
control track analysis and deck analysis. This is discussed in

more detail in Sect. 3.4. Clearly, there are various issues that
can arise linked to the precision of measured and reported
data in addition to conversion between different units (e.g.
Fahrenheit, Celsius, and kelvin; Fig. S1) and between differ-
ent variables.
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2.5 Measurement errors

All observations are subject to some level of measurement
error, and, outside of precision laboratory experiments, the
errors can be significant. The BIPM (International Bureau
of Weights and Measures – Bureau International des Poids
et Mesures) Guide to the Expression of Uncertainty in Mea-
surement (BIPM, 2008) describes two categories of measure-
ment uncertainty evaluation. A Type A evaluation estimates
the uncertainty from repeated observations. A Type B eval-
uation of the uncertainty is based on prior knowledge of the
instrument and observing conditions. Within this study we
use a Type B evaluation, adjusting for systematic errors and
inhomogeneities due to inadequate ventilation and changing
observing heights (screen and height adjustments) and esti-
mate the residual uncertainty. For the random components,
we make the conservative assumption that all measurements
were taken using a psychrometer (wet-bulb and dry-bulb
thermometers), which allows us to follow the HadISDH.land
methodology of Willett et al. (2013, 2014) as described in
Sect. 3.4. An assessment of the frequency of hygrometer
types (TOHs) within our selected ICOADS3.0.0 and 3.0.1
data shows this to be a fair assumption as the vast majority
of ships (where metadata is available: ∼ 30 %, increasing to
∼ 70 % from 1973 to 1995 then decreasing to 60 % by 2014)
are listed as being from a psychrometer (Fig. 4). Electric sen-
sors are becoming more common and made up ∼ 30 % of
observations by 2014 (the end of the metadata information).
There are no instrument type metadata for ocean platforms or
moored buoys. As it is likely that most buoy observations are
made using RH sensors, we plan to develop an RH-sensor-
specific measurement uncertainty in future versions.

2.6 Other sources of error

There are other issues specific to humidity measurements that
may be further sources of error. Hygrometers that require a
wetted wick (i.e. psychrometers) and thus a source of water
are vulnerable to the wick drying out or contamination, es-
pecially by salt in the marine environment. The wick drying
results in erroneous relative-humidity readings of 100 %rh,
where the wet bulb essentially behaves identically to the dry-
bulb thermometer. There can also be issues when the air tem-
perature is close to freezing, depending on whether the wet
bulb has become an ice bulb or not and whether wet-bulb
or ice-bulb calculations are used in any conversions. Humid-
ity observing in low temperatures can be generally problem-
atic. For radiosondes, there has previously been a practice
of recording a set low value when the humidity observation
falls below a certain value (Wade, 1994; Elliott et al., 1998).
It is debateable how likely such low humidity values are over
oceans, and this practice has not been documented for ship
observations. However, the set-value issue is something to
look out for. Wet bulb thermometers (and other instruments)
can experience some hysteresis at high humidity, where it

takes some time to return to a lower reading. The wet bulb
also requires adequate ventilation, which has been discussed
above.

These can be accounted for to a large extent through qual-
ity control, but some error will inevitably remain. We can
increase our confidence in the data by comparison with other
available products and general expectation from theory.

3 Construction of the gridded dataset and
uncertainty estimates

ICOADS Release 3.0 (Freeman et al., 2017) forms the base
dataset for the HadISDH.marine humidity products. From
January 1973 to December 2014 we use ICOADS.3.0.0 from
http://rda.ucar.edu/datasets/ds540.0/ (last access: Febru-
ary 2019). These data include a unique identifier (UID)
for each observation; a station identifier or ship call sign
(ID); and metadata on instrument type, exposure, and
height in many cases. From January 2015 onwards we use
ICOADS.3.0.1 from the same source. These data include an
ID and UID but no instrument metadata. It is likely that dig-
itized metadata updates will be available periodically, de-
pending on resource availability. Each observation is associ-
ated with a deck number. These are identifiers for ICOADS
national and transnational subsets of data relating to source;
for example deck 926 is the International Maritime Meteoro-
logical (IMM) data (https://icoads.noaa.gov/translation.html,
last access: June 2019). We utilize the reported air temper-
ature (T ) and reported dew point temperature (Td) as the
source for our humidity products. Sea surface temperature
(SST) and wind speed (u) are used for estimating height ad-
justments.

We calculate the specific humidity (q), relative humidity
(RH), vapour pressure (e), wet-bulb temperature (Tw; not
the thermodynamic wet bulb but a close approximation to
it), and dew point depression (DPD) for each point obser-
vation. All humidity variables are derived from reported air
and dew point temperature and ERA-Interim climatological
(from the nearest 1◦× 1◦ 5 d mean – pentad – grid box) sur-
face pressure Ps using the set of equations from Willett et
al. (2014), which can be found in Table S1 in the Supple-
ment. This provides consistency with HadISDH.land for later
merging. For consistency we use a fixed psychrometric coef-
ficient that is identical for all observations when estimating
the approximate thermodynamic wet-bulb temperature rather
than the observed value, which depends on the type of psy-
chrometer used. This is also consistent with what is done for
HadISDH.land.

Additionally, we use ERA-Interim (Dee et al., 2011) re-
analysis data to provide initial marine climatologies and cli-
matological standard deviations for all variables to complete
a first-iteration climatological outlier test. We extract 1◦×1◦

gridded 6-hourly 2 m air and dew point temperature and
surface pressure to create 6-hourly humidity variables and
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then pentad climatologies and standard deviations over the
1981–2010 period. Note that three iterations are passed be-
fore finalizing the product. Only the first iteration uses ERA-
Interim climatologies; later iterations use climatologies built
from the previous iteration’s quality-controlled observations
(Sects. 3.2, 3.5, 4.1).

The construction process, including the three iterations
and all outputs, is visualized in Fig. 5. Firstly, humidity vari-
ables are calculated. For the first iteration the hourly temper-
ature and dew point temperature data are quality-controlled
(Sect. 3.1) using an ERA-Interim-based climatology. The
data are then gridded and merged, and a 1◦×1◦ pentad clima-
tology is produced for each variable (Sect. 3.5). These first-
iteration climatologies are then used to quality-control the
original hourly data again; these data are then gridded and
merged, and a second-iteration climatology is produced. The
second-iteration climatology is then used to quality-control
the original hourly data for a third and final time. It is during
this third iteration that bias adjustments are applied and un-
certainties estimated. The bias-adjusted data and uncertain-
ties are then gridded and merged, and climatologies are cre-
ated. For future annual updates the second-iteration clima-
tologies will be used to apply quality control. Having three
iterations enables incremental improvements to the climatol-
ogy used to quality-control the data and therefore the skill of
the quality control tests. It means that we can ensure that no
artefacts remain from using ERA-Interim to quality-control
the data initially. Arguably more iterations could be done, but
each one is computationally expensive, and the difference be-
tween the second and third iteration is already very small.

3.1 Data selection

We screen all ICOADS data to sub-select only those obser-
vations passing the following criteria.

– There must be a non-missing T and Td value.

– The platform type (PT) must be in one of the follow-
ing categories: a ship (a US Navy or unknown vessel, a
merchant ship or foreign military ship, an ocean station
vessel off station or at an unknown location, an ocean
station vessel on station, a lightship, an unspecified ship;
PT= 0, 1, 2, 3, 4, 5) or a stationary buoy (moored or ice
buoy; PT = 6, 8).

– The observation must have a climatology and standard
deviation available for its closest 1◦× 1◦ pentad.

– The observation must pass the gross error checks, cal-
culated RH must be between 0 and 150 %rh (supersatu-
rated values are flagged during quality control), both T
and Td must be between −80 and 65 ◦C, and calculated
q must be greater than 0.0 g kg−1.

– Latitudes must be between −90 and 90◦, and longi-
tudes must be between −180 and 360◦ (later converted
to −180 to 180◦).

– The hour, day, month, and year must be valid quantities.

– Any observation from Deck 732 from a specified year
and region is blacklisted (Rayner et al., 2006; Kennedy
et al., 2011a; Table S2).

Other marine products (e.g. NOCSv2.0; Berry and Kent,
2011) solely use ship observations due to the lack of buoy
metadata available. We include moored buoys to produce cli-
matologies because spatial coverage is of high importance.
Our final version recommended to users is a ship-only (ship)
product, but we have produced a combined (all) product for
comparison. This will be reassessed for future versions. Fig-
ure 6a shows the number of observations included in the ini-
tial selection per year, broken down by platform type. The
breakdown for daytime and night-time observations individ-
ually is near identical (not shown). Ship (PT = 5) observa-
tions make up almost the entire dataset until the 1990s. After
this the number of moored buoys grows significantly to make
up around ∼ 50 % of observations from 2000 onwards. The
ship-only product (removal of moored buoys) significantly
reduces the number of observations in the recent period but
gives a more consistent number of observations throughout
the record. Our use of climate anomalies should mitigate bi-
asing due to uneven sampling to some extent. Note that the
number of grid boxes containing data may be a more relevant
measure and that the vast increase in the number of buoys has
not actually resulted in the same level of increase in spatial
coverage in terms of grid boxes (compare 2018 annual av-
erage maps for ship-only and combined HadISDH.marine in
Fig. S2).

3.2 Quality control processing

We have not used any of the preset flags from ICOADS pro-
cessing to ensure methodological independence of HadISDH
and a process that allows for exploration and analysis of
different methodological choices. The quality control pro-
cessing employed here largely follows the methodology for
HadSST4 (Kennedy et al., 2019), with some changes to the
climatology check and buddy check thresholds to increase
regional sensitivity and additional humidity-specific checks.
A flag for whole-number prevalence has also been added,
but this is used for uncertainty estimation and not to re-
move an observation. All observations have their nearest
1◦× 1◦ pentad mean climatology (source depends on iter-
ation – Sect. 3.5) subtracted to create a climate anomaly.

Each observation is passed through a suite of quality
control tests, which are summarized in Table 1 along with
whether the quality control tests are used to remove or just to
flag the observations and the stage of processing at which
they are applied. The climatology check differs from the
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static HadSST3 threshold of climatology for air temperatures
of ±8 ◦C. We have allowed for a variable threshold depend-
ing on the nearest 1◦×1◦ pentad climatology standard devia-
tion σ . This is set at 5.5σ . It accounts for the lower variability
in the tropics and greater variability in the mid-latitudes. We
have set minimum and maximum σ values of 1 and 4 ◦C, re-
spectively, resulting in a minimum range of ±5.5 ◦C and a
maximum range of ±22 ◦C. Several thresholds were tested,
with the selected threshold balancing avoiding acute cut-offs
in the data distribution while still removing obviously bad
data (Figs. S3 to S6). Given that outliers are assessed by com-
paring a point observation with a 1◦× 1◦ pentad mean, the
thresholds have to be relatively large.

The buddy check compares each observation’s climate
anomaly with the average of the climate anomalies of its
nearest neighbours in space and time, expanding the search
area in space and time as necessary until at least one neigh-
bour observation is found. The permitted difference is set
by the climatological standard deviation of the candidate
1◦× 1◦ pentad grid box multiplied by an amount dependent
on the number of neighbours present. There are five levels of
searches.

1. ±1◦ latitude and longitude and±2 pentads: the climato-
logical standard deviation is multiplied by 5.5, 5.0, 4.5,
and 4.0 for 1–5, 6–15, 16–100, and> 100 neighbouring
observations, respectively.

2. ±2◦ latitude and longitude and ±2 pentads: the clima-
tological standard deviation is multiplied by 5.5 for > 1
neighbouring observation.

3. ±1◦ latitude and longitude and±4 pentads: the climato-
logical standard deviation is multiplied by 5.5, 5.0, 4.5,
and 4.0 for 1–5, 6–15, 16–100, and> 100 neighbouring
observations, respectively.

4. ±2◦ latitude and longitude and ±4 pentads: the clima-
tological standard deviation is multiplied by 5.5 for > 1
neighbouring observation.

5. No neighbour ±2◦ latitude and longitude and ±4 pen-
tads: the threshold is set at 500.

The thresholds used for the buddy check are wider than
those previously used in HadSST3. This is to account for
the greater variability of air and dew point temperature and
sparser observation coverage. It is only applied in the third
iteration of the quality control (Sect. 3.5).

Figure 6 shows the final number of observations pass-
ing through initial selection and then third-iteration quality
control by platform type (PT). The quality control does not
significantly affect one platform over another. The perfor-
mance of these tests is demonstrated for 4 example months
in Figs. S3 to S6. These reveal a slight positive bias in the
removed air temperature observations and negative bias in

removed dew point temperature. Removals in terms of rel-
ative humidity and specific humidity similarly tend to have
a negative bias. It is clear that the majority of grossly erro-
neous observations are removed. The change in climatology
between iterations of the quality control process (Sect. 3.5)
also makes a difference to removals. This is because the
observation-driven climatologies do not provide complete
spatial coverage and because the ERA-Interim climatologies
are cooler and drier than the observations (Sect. 4.1). Re-
movals are dense in the Northern Hemisphere and especially
sparse around the tropics. The addition of the buddy check
in the third iteration considerably increases the removal rate,
noticeably over the Southern Hemisphere and the tropics.

The quality-control flagging rate for the third iteration re-
duces over time from∼ 25 % to∼ 18 %, as shown in Fig. S7.
This is driven by the buddy check and track check. Propor-
tionally more observations are flagged during the daytime
than night-time, but the inter-annual behaviour is very sim-
ilar. The daytime increase is driven by the larger number of
air temperature buddy and climatology check failures. This
could be due to the issue of solar heating of the ship struc-
ture during the daytime. The main source of test fails by a
large margin is the buddy check, followed by the climatology
check and track check. There does not appear to be a strong
difference in the distribution of removals from each test be-
tween the 1973–1981 and 1982–1990 periods that might ex-
plain the pre-1982 moist bias (Fig. S8, Sect. 4.2). There is
an increase in removals from repeated saturation and super-
saturation events over time, particularly the late 2000s. This
may be related to the decrease in psychrometer deployment
over time and increase in electric and capacitance sensors as
shown in Fig. 4. The latter have increased significantly since
the mid-2000s.

The whole-number flags show very different behaviour to
the other checks and to each other over time in Fig. S7. These
depend on the ability to assign each observation to a track
or voyage and the frequency of whole-number observations
on that voyage; hence, these flags are not a true reflection
of the whole-number frequency. Compared to the actual pro-
portion of whole numbers shown in Fig. S1, these tend to
exaggerate the annual patterns, but the shape is broadly sim-
ilar. This method of identifying problematic whole numbers
appears to under-sample the true distribution, especially for
air temperature pre-1982. An additional deck-based check is
applied later for estimating uncertainty from whole numbers
(Sect. 3.4).

Note that the NOCSv2.0 dataset, with which we compare
our specific-humidity data, includes an outlier check that re-
moves data greater than 4.5 standard deviations from the cli-
matological mean. This test has already been applied within
the ICOADS format, and so the NOCSv2.0 excludes any data
with ICOADS trimming flags set (Wolter, 1997). We do not
use the trimming flags to select data. They also apply a track
check based on Kent and Challenor (2006).
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Figure 6. Annual observation count for the initial selection (a) and only those observations passing the final third-iteration quality control (b),
broken down by platform type (PT).

Table 1. Description of quality control tests. n/a – not applicable

Test Description First and second Third iteration and Per cent of observations
iteration bias-adjusted removed or flagged

Day/night Values likely to be affected by the solar heating
of a ship, where the sun was above the horizon
1 h before the observation (based on the month,
day, hour, latitude, and longitude; Kent et al.,
2013), are flagged as “day”.

Flagged Flagged n/a

Climatology T and Td must be within a specified threshold
of the nearest 1◦× 1◦ pentad climatology.

Removed Removed T = 2.39 and Td = 5.14

Supersaturation Td must not be greater than T (only Td
removed).

Removed Removed 0.54

Track The distance and direction travelled by the ship
must be plausible and consistent with the time
between observations, normal ship speeds, and
observation locations before and after.

Removed Removed 0.86

Repeated value A T or Td value must not appear in more than
70 % of a ship track where there are at least 20
observations.

Removed Removed T = 0.04 and Td = 0.06

Repeated saturation Saturation (Td = T ) must not persist for more
than 48 h within a ship track where there are at
least four observations (only Td removed).

Removed Removed 0.54

Buddy T and Td must be within a specified threshold of
the average of nearest neighbours in space and
time.

Not applied Removed T = 7.16 and Td = 9.47

Whole number A T or Td value must not appear as a whole
number in more than 50 % of a ship track where
there are at least 20 observations.

Flagged Flagged T = 11.73 and Td = 8.20
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3.3 Bias adjustments and associated uncertainties

Given the issues raised in Sect. 2, it is desirable to attempt
to adjust the observations to improve the spatial and tempo-
ral homogeneity and accuracy of the data. As discussed in
Sect. 2.1, we have not attempted to adjust for solar biases in
this first-version product. We have made adjustments for in-
strument and height biases and estimated uncertainties (sum-
marized in Table 1) in these adjustments.

The availability of machine-readable metadata alongside
each observation enables specific adjustment for known bi-
ases and inhomogeneities. This differs to the approach for
the HadISDH.land dataset, where no substantial digitized
metadata currently exist. By necessity, adjustment for bi-
ases (inhomogeneities) is done using the Pairwise Homog-
enization Algorithm (Menne and Williams, 2009). This is
a neighbour-comparison-based statistical algorithm to detect
change points and resolve the most reasonable adjustments.
It is very likely that inhomogeneities that affect the land data
such as instrument changes, instrument housing changes,
and practice changes also affect the marine data. However,
this level of detail is not available in the metadata nor is
it straightforward to adjust for even if it were because of
the mobile nature of ship data. Although a neighbour-based
comparison is possible and useful at the single-observation
level (e.g. buddy check), it is not useful in the manner in
which it is used for land observations from static weather
stations. Arguably, the region-wide biases such as increasing
ship heights and ventilation biases are of greater concern for
long-term trends than the more ship-specific inhomogeneity
owing to instrument or housing changes. We acknowledge
that, similar to the land data, there will be inhomogeneity
or bias remaining within the HadISDH.marine dataset which
we cannot detect or adjust for but argue that we have removed
the large errors from the dataset. Future versions will take ad-
vantage of greater metadata and statistical tools as they be-
come available.

3.3.1 Application of adjustments for biases from
unaspirated instruments

We have shown that the majority of humidity observa-
tions have been made with a psychrometer (Fig. 4) and
that 30 %–70 % of instruments with metadata available have
been housed within a non-aspirated screen (Fig. 2). Berry
and Kent (2011) found that applying a 3.4 % reduction to
specific-humidity observations from non-aspirated screens
was a reasonable adjustment to remove the bias relative to as-
pirated and well-ventilated observations (e.g. slings, whirled
hygrometers, or artificially aspirated instruments). Some un-
certainty remains after adjustment, which they estimated to
be ∼ 0.2 g kg−1. We have used the hygrometer exposure
(EOH) metadata or the thermometer exposure (EOT) meta-
data if EOH does not exist. We assume good ventilation for
any instruments that are aspirated (A), from a sling (SL) or

ship’s sling (SG), or from a whirling instrument (W). We
assume poorer ventilation for instruments that are from a
screen (S), ship’s screen (SN), or are unscreened (US) and
apply a bias adjustment. The reported exposure type of ven-
tilated screens (VSs) does not appear to mean that the screen
is artificially ventilated, and so bias adjustments are also ap-
plied to these. We do not apply adjustments to buoys and
other non-ship data based on the assumption that these gen-
erally measure relative humidity directly. For any ship obser-
vations with no exposure information, we apply 55 % of the
3.4 % adjustment based on the mean percentage of observa-
tions with EOH metadata that require an adjustment over the
1973–2014 (metadata) period. This partial-adjustment factor
follows the method of Berry and Kent (2011) and Josey et
al. (1999) but differs in quantity. They assessed this over a
shorter time period and found then that ∼ 30 % of observa-
tions were from poorly ventilated instruments.

To estimate the uncertainty in the non-aspirated-
instrument adjustment Ui, we use the Berry and Kent (2011)
and Josey et al. (1999) uncertainty estimate of 0.2 g kg−1 and
apply this in all cases where an adjustment or partial adjust-
ment has been applied. This is treated as a standard uncer-
tainty (1σ ). In the case of partial adjustments for the ship
observations with no metadata, there is large uncertainty in
both the adjustment and adjusted value. To account for this
we use the amount of what would have been a full 3.4 % ad-
justment in addition to the 0.2 g kg−1 as the 1σ uncertainty.

To carry these adjustments and uncertainties to all other
humidity variables, we start with q and then propagate the
adjusted quantity and adjusted quantity plus uncertainty us-
ing the equations in Table S1. Using the original T (which
does not need to be adjusted for poor ventilation) and ERA-
Interim climatological surface pressure, e can be calculated
from q. Td and RH can be calculated from e and T . From
these, the Tw and DPD can be calculated. The uncertainty is
then obtained by subtracting the adjusted quantity from the
adjusted quantity plus uncertainty for each variable.

3.3.2 Application of adjustments for biases from ship
heights

After bias adjustment for poor ventilation, all variables are
adjusted to approximately 10 m elevation. This serves to ac-
count for the inhomogeneity from the systematic increase
in ship height over time and for spatial inhomogeneity be-
tween observations made at different heights. In the absence
of height adjustments, increasing ship heights likely lead to a
small decrease in air temperature and specific humidity over
time (Berry and Kent, 2011) because these quantities gener-
ally decrease with height. As Fig. 3 shows, the standard devi-
ations in ships’ instrument heights exceed 5 m in most cases.
Also, we have included buoys in the processing so far, and
these can be very low (∼ 4 m; e.g. Gilhousen, 1987) relative
to ship observing heights.

https://doi.org/10.5194/essd-12-2853-2020 Earth Syst. Sci. Data, 12, 2853–2880, 2020



2864 K. M. Willett et al.: Development of the HadISDH.marine humidity climate monitoring dataset

The height of the hygrometer (HOH) must be estimated
(HOHest) as no metadata are available. In the case of psy-
chrometers, which are the most common instruments listed
in the ship metadata, the wet- and dry-bulb thermometers are
co-located. Figure 3 shows that the visual-observation height
(HOP) is the most commonly available information, followed
by the barometer height (HOB) and then thermometer height
(HOT). It also shows the mean and standard deviation of all
observing heights including the anemometer (HOA). Hence,
HOHest is obtained using the following methods in order of
preference.

1. HOP present and > 2 m: HOHest µ= HOP, σ = 1 m;

2. HOB present and > 2 m: HOHest µ= HOB, σ = 1 m

3. HOT present and > 2 m: HOHest µ= HOT, σ = 1 m;

4. HOA present and> 12 m: HOHest µ=HOA−10, σ =
9 m;

5. No height metadata: HOHest µ= 16 m + the linear
trend in mean HOP–HOB–HOT height to the date of
observation, σ = 4.6 m + the linear trend in standard
deviation HOP–HOB–HOT height to the date of obser-
vation.

The µ and σ of the combined HOP, HOB, and HOT in-
creases from 16 and 4.6 m, respectively, in January 1973
to 23 and 11 m, respectively, in December 2014. Kent et
al. (2007) and Berry and Kent (2011) used 16 to 24 m be-
tween 1971 and 2007, so our estimate is very similar. The
anemometer height is also required for the adjustments. We
either use the provided HOA – as long as it is greater than
2 m – or set it to 10 m above the HOHest. All buoys are as-
sumed to be observing at 4 m, with anemometers at 5 m (http:
//www.ndbc.noaa.gov/bht.shtml, last access: June 2019).

Once HOHest has been obtained for each observation, the
air temperature and specific humidity are adjusted to 10 m
using bulk flux formulae. The methodology, assumptions,
and parameterizations largely follow those of Berry and Kent
(2011), Berry (2009), Smith (1980, 1988), and Stull (1988).
Essentially, the quantity of interest x can be adjusted to a
reference height of 10 m as follows:

x10 = x−
x∗

κ

(
ln
( zx

10

)
− ψx + ψx10

)
, (1)

where x∗ is the scaling parameter specific to that variable
(e.g. friction velocity in the case of u, characteristic tempera-
ture, or specific humidity in the case of T or q, respectively),
κ is the von Karman constant (0.41 used here), zx is the ob-
servation height of the variable of interest, ψx is the stabil-
ity correction for the variable of interest and is a function of
zx/L, ψx10 is the stability correction for the variable of in-
terest at a reference height of 10 m and is a function of 10/L,
and L is the Monin–Obukov length.

An iterative approach (as done for Berry and Kent, 2011)
is required to resolve Eq. (1) because we only have basic
meteorological variables available at a single height for each
observation. We start from T ; q; u; sea surface temperature
(SST); the co-located 1◦× 1◦ grid box pentad climatolog-
ical surface pressure from ERA-Interim (climP); HOHest,
which becomes both zq and zt ; and our estimated anemome-
ter height, which becomes zu. For some observations the SST
or u is missing. If SST is missing it is given the same value
as T , so in effect, no adjustment to T is applied. Either way,
the SST is set to a minimum of −2 ◦C and a maximum of
40 ◦C. If u is < 0.5 m s−1 it is given a light wind speed of
0.5 m s−1. If u is missing or > 100 m s−1 it is assumed to be
erroneous but given a moderate wind speed of 6 m s−1. We
also approximate surface values T0, q0, and u0, where T0 =

SST, q0 = qsat(SST)×0.98 and u0 = 0. Clearly, with so many
necessary approximations there are many different plausible
methodological choices, hence the need for multiple inde-
pendent analyses that explore these different choices in order
to quantify the structural uncertainty.

We begin the iteration by assuming a value for L depend-
ing on assumed stability.

– If (SST – T ) > 0.2 ◦C, then L is set to −50 m; unstable
conditions are assumed.

– If (SST – T ) <−0.2 ◦C, then L is set to 50 m; stable
conditions are assumed.

– If (SST = T ) ±0.2 ◦C, then L is set to 5000 m; neutral
conditions are assumed where L tends to∞.

We also start with an assumption that the 10 m wind speed
in neutral conditions u10n = u. The iteration is continued un-
til L converges to within 0.1 m, which it generally does. If
after 100 iterations there is no convergence, we either ap-
ply no adjustment or, if absolute L is large (> 500 m), we
assume neutral conditions and take L (and all other parame-
ters) as they are. In cases where u∗ is very large (it should be
< 0.5 m s−1; Stull, 1988), we also apply no adjustment. The
iteration involves 21 steps as described in the Supplement.

For most observations we arrive at a plausible L, friction
velocity u∗, ψx , and ψx10. We then calculate the scaling pa-
rameters T∗ and q∗:

T∗ = κ

(
ln
(
zt

zt0

)
− ψt

)−1

(T − T0) (2a)

q∗ = κ

(
ln
(
zq

zq0

)
− ψq

)−1

(q − q0) , (2b)

where the neutral stability heat transfer coefficient zt0 =
0.001 m and the neutral stability moisture transfer coefficient
zq0 = 0.0012 m (Smith, 1988). The adjusted values for T10
and q10 can then be calculated from Eq. (1). From these we
recalculate the other humidity variables using the equations
in Table S1.
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There is uncertainty in the obtained HOHest. Given that
this is a best estimate, we assume that the uncertainty in the
height is normally distributed and use the standard deviation
in the height estimate HOHest to calculate an uncertainty
range in the height-adjusted value x (where x is any of T ,
q, etc.) of xHmin to xHmax. Following the “two out of three
chances” rule in the BIPM Guide to the Expression of Un-
certainty in Measurement (BIPM, 2008), the standard uncer-
tainty (1σ ) for the height-adjusted value (Uh) is then given
by

Uh =
xHmax− xHmin

2
. (3)

The range xHmin to xHmax depends on the source of HOHest
and associated σ , as listed above. There are several scenarios
where estimating the uncertainty in this way is not possible,
or calculation of an adjustment is not possible. Also, Uh for
buoys is highly uncertain given the lack of height informa-
tion available. These alternative scenarios are documented in
Table 2.

3.4 Estimating residual uncertainty at the observation
level

Three other sources of uncertainty affect the marine humid-
ity data at the observation level. These are measurement un-
certaintyUm, climatology uncertaintyUc, and whole-number
uncertainty Uw. These are all assessed as 1σ standard uncer-
tainties.

We have estimated Um for each observation following the
method used for HadISDH.land (Willett et al., 2013, 2014).
This assumes that humidity was measured using a psychrom-
eter, which is a reasonable assumption for the marine ship
data (Fig. 4). The HadISDH.land measurement uncertainty
is based on an estimated standard (1σ ) uncertainty in the
wet-bulb and dry-bulb instruments of 0.15 and 0.2 ◦C, re-
spectively. As shown in Table S3, the equivalent uncertainty
for the other variables depends on the temperature. The un-
certainty is applied as a standard uncertainty in RH depend-
ing on which bin the air temperature falls in. This is then
propagated through the other variables starting with vapour
pressure using the equations in Table S1.

Whole numbers of air and/or dew point temperature that
have been flagged as such during quality control (Sect. 3.2)
or that belong to a source deck or year where whole numbers
make up more than 2 times the frequency of other decimal
places (Table S4) are given an uncertainty Uw. These decks
and years where whole numbers are very common differ for
air and/or dew point temperature. Clearly with so many decks
affected, the removal of entire decks to remove any whole-
number biasing could easily reduce sampling to critically low
levels. We cannot distinguish between observations that have
been rounded versus those that have been truncated, so we as-
sume that all offending whole numbers have been rounded.
This means that the value could be anywhere within±0.5 ◦C,

with a uniform distribution. Hence, where only air or dew
point temperature is an offending whole number, the stan-
dard 1σ uncertainty expressed in air or dew point tempera-
ture (◦C) is

Uw =
0.5
√

3
. (4)

Where both air and dew point temperature are offending
whole numbers, the standard 1σ uncertainty expressed in air
or dew point temperature (◦C) for dew point depression, rel-
ative humidity, and wet-bulb temperature is

Uw =
1
√

3
. (5)

There is uncertainty Uc in the climatological values used
to calculate climate anomalies because of missing data over
time, uneven and sparse sampling in space, and also the in-
evitable mismatch between a point observation and a 1◦×1◦

gridded pentad climatology. This uncertainty reduces with
the number of observations contributing to the climatology
Nobs and with the variability of the region σclim. The clima-
tologies used to create the anomalies have undergone spa-
tial and temporal interpolation to move from 5◦× 5◦ grid-
ded monthly climatologies and climatological standard devi-
ations σclim to maximize coverage, and so it is not straight-
forward to assess the number of observations contributing to
each 1◦×1◦ gridded pentad climatology, and the true σclim is
likely greater. The minimum number of years required to be
present over the 30-year climatology period is 10. Therefore,
we assume a worst-case scenario of Nobs = 10. Hence, for a
standard 1σ uncertainty the following equation applies:

Uc =
σclim
√
Nobs

. (6)

3.5 Gridding of actual and anomaly values and
uncertainty

To create a quasi-global monitoring product, the raw obser-
vations need to be gridded. The spatial density is too low
for high-resolution grids, and the intended purpose is for this
marine product to be blended with the HadISDH.land hu-
midity product, which is on a 5◦×5◦ grid at monthly resolu-
tion. Hence, the point hourly observations must be averaged
to monthly mean gridded values.

The sparsity of the data means that there is a risk of bias
due to poor sampling. A 5◦× 5◦ grid box covers an area
greater than 500 km2

×500km2, which, despite the large cor-
relation decay distances of both temperature and humidity,
can include considerable variability. Furthermore, a monthly
mean can be made up of a strong diurnal cycle and consid-
erable synoptic variability. This is minimized by the use of
climate anomalies, but regardless, care should be taken to en-
sure sufficient sampling density while maximizing coverage
where possible.
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Table 2. Description of the uncertainty elements affecting marine humidity. All uncertainties are assessed as 1σ uncertainty.

Uncertainty source Description Type Formula Correlation

Ui Non-aspirated-
instrument-adjustment
uncertainty, expressed
as q (g kg−1) and then
propagated to other
humidity variables

Adjusted poorly aspirated in-
strument: 0.2 g kg−1 in terms of
q (following Berry and Kent,
2011, standard uncertainty as-
sessment)

Standard 0.2 Space and time, r = 1

Partially adjusted unknown in-
strument: 0.2 g kg−1

+ the full
adjustment amount in terms of
q

0.2+ 100
(

abs
(
q−qadj

)
55

)

Uh Observation height
adjustment uncer-
tainty, expressed as T
(◦C) and q (g kg−1)
and then propagated
to other humidity
variables

Height-adjusted ship and valid
SST: assessed using the range
of adjustments from a 1σ un-
certainty in the height estimate

Normally
distributed

xHmax−xHmin
2 Space and time,

r = 1

Height-adjusted ship and in-
valid SST or height-adjusted
buoy: the larger of the adjust-
ment value or 0.1 ◦C in terms of
T and 0.007 q

Normally
distributed

xadj
Or
0.1 ◦C in terms of T 0.007qadj

Height adjustment or uncer-
tainty range not resolved, valid
SST: half of the difference be-
tween the observation value and
the surface value (SST or qsf)

Standard
T(adj)−SST

2
q(adj)−qsf

2
qsf = 0.98qsatf (SST)

Height adjustment or uncer-
tainty range not resolved, no
valid SST: 0.1 ◦C in terms of T
and 0.007 q

Standard 0.1 ◦C in terms of T 0.007qadj

Um Measurement uncer-
tainty, expressed as
T (◦C), Tw, (◦C) and
RH (%rh) and then
propagated to other
humidity variables

Standard uncertainty in the
thermometer (T ) and psy-
chrometer (Tw) is 0.2 and
0.15 ◦C, respectively. This
equates in an uncertainty in RH
dependent on T .

Standard 0.2 ◦C in terms of T
0.15 ◦C in terms of Tw
x%rh depending on the temper-
ature and RH bins in Table S3

None,
r = 0

Uw Whole-number uncer-
tainty, expressed as
T (◦C) and Td (◦C)
and then propagated
to other humidity
variables

Observation either has the
whole-number flag set or is a
whole number and from a red
listed source deck in Table S4.

Uniformly
distributed

0.5√
3

None,
r = 0

If both T and Td are offending
whole numbers then RH, Tw,
and DPD have a combined un-
certainty.

1√
3

Uc Climatology
uncertainty, assessed
for each variable
independently

The 1◦×1◦ pentad grid box cli-
matological standard deviation
for the variable is divided by the
square root of the number of ob-
servations used to create it.

Standard σclim√
Nobs

Space and time, r = 1

Uog Total observation
uncertainty of the grid
box

All grid box observation uncer-
tainty sources are combined, as-
suming no correlation between
sources.

Standard
√
U2

i +U
2
h +U

2
m+U

2
w+U

2
c Space and time to some

extent, decreasing with
space and time
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Table 2. Continued.

Uncertainty source Description Type Formula Correlation

Usg Temporal and spatial
sampling uncertainty of
the grid box

Sampling uncertainty follows
Jones et al. (1997) depending
on the mean “station” variance,
the mean inter-site correlation,
and the number of “stations”
contributing to the grid box.

Standard
(
s̄2
i r̄(1−r̄)

)
(1+(Ns−1)r̄) Space and time to some

extent, decreasing with
space and time

Ufg Full uncertainty of the
grid box

All grid box uncertainty
sources are combined, assum-
ing no correlation between
sources.

Standard
√
U2

og+U
2
sg Space and time to some

extent, decreasing with
space and time

Several data-density criteria were trialled to balance spa-
tial coverage and poor representativeness (high variance) of
the grid box averages. Climate anomalies are created at the
raw observation level by subtracting the nearest 1◦×1◦ pen-
tad climatology (1981–2010), and so we can grid both the
actual values and the anomalies. Gridding of the anoma-
lies is safer than gridding actual values in terms of bias-
ing through poor sampling density because the correlation
length scales of anomalies are higher than for actual tempera-
tures. Initially, ERA-Interim is used to provide a climatology.
This then requires an iterative approach to produce an initial
observation-based climatology and improve the climatology
through quality control. To reduce biasing further we grid the
data in six stages to create an average at each stage. The en-
tire process including quality control, bias adjustment, grid-
ding, and three iterations is shown diagrammatically in Fig. 5
and each gridding stage described below.

1. Create 1◦×1◦ 3-hourly gridded means of the hourly ob-
servations of actuals and anomalies; there must be at
least one observation.

2. Create separate 1◦× 1◦ daytime and night-time gridded
means of the 1◦×1◦ 3-hourly gridded mean actuals and
anomalies; there must be at least one 1◦× 1◦ 3-hourly
grid.

3. Create 5◦× 5◦ monthly daytime and night-time grid-
ded means of the 1◦× 1◦ daytime and night-time grid-
ded mean actuals and anomalies; there must be at least
0.3× days in the month of 1◦× 1◦ daily grids.

4. Create combined 5◦×5◦ monthly gridded means of the
5◦× 5◦ monthly daytime and night-time gridded mean
actuals and anomalies; there must be at least one 5◦×5◦

monthly daytime or night-time gridded mean.

5. Create 1981–2010 5◦× 5◦ monthly mean climatologies
and standard deviations from the 5◦× 5◦ monthly grid-
ded means of actuals and anomalies; there must be at
least 10 5◦× 5◦ monthly gridded means.

6. Renormalize the gridded anomalies by subtracting the
monthly anomaly 1981–2010 climatology to remove
biases from use of the previous climatology iteration
(Sect. 4.1).

At each iteration the gridded observation-based climatolo-
gies are infilled linearly over small gaps in space and time
and then interpolated down to 1◦×1◦ pentad resolution. The
observations are too sparse to create such high-resolution
grids directly.

The observation uncertainties also need to be gridded and
the total observation uncertainty Uo calculated. Ships move
around, and so their uncertainties also track around the globe.
This means that the uncertainty in any one point or grid box
bears some relationship to nearby points or grid boxes over
time and space and cannot be treated independently. Corre-
lation needs to be accounted for in both gridding and subse-
quently creating regional averages from grid boxes to avoid
underestimation. The five sources of observation uncertainty
are summarized in Table 2. The non-aspirated-instrument-
adjustment uncertainty Ui, height adjustment uncertainty Uh,
and climatology uncertainty Uc persist over time and space
as ships move around. These are accordingly treated as cor-
relating completely within 1 grid box month. The measure-
ment uncertainty Um and whole-number uncertainty Uw are
likely to differ from observation to observation, and so they
are treated as having no correlation within 1 grid box month.
Hence, observation uncertainty sources are first gridded in-
dividually, following the first four steps outlined above and
taking into account correlation where necessary. For those
that do not correlate (Um and Uw), the grid box mean uncer-
tainties Ugb for each source are combined over N points in
time and space as follows:

Ugb =

√
a2+ b2. . .+ n2

N
. (7)

For those sources that do correlate (Uc, Ui, and Uh), as-
suming r = 1, the grid box mean uncertainties Ugb for each
source are combined over N points in time and space as fol-
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lows:

Ugb =
a+ b. . .+ n

N
. (8)

To create the total observational uncertainty for each grid
box, the grid box quantities of the five uncertainty sources
can then be combined in quadrature:

Uo =

√
U2

c +U
2
m+U

2
w+U

2
h +U

2
i . (9)

Given the general sparsity of observations across each grid
box month and the uneven distribution of observations across
each grid box and over time, there is also a grid box sampling
uncertainty component, Us. This is estimated directly at the
5◦× 5◦ monthly grid box level and follows the methodol-
ogy applied for HadISDH.land (Willett et al., 2013, 2014),
denoted SE2, which is based on station-based observations
from Jones et al. (1997):

Us =

(
s̄2

i r̄ (1− r̄)
)

(1+ (Ns− 1) r̄)
, (10)

where s̄2
i is the mean variance of individual stations within

a grid box, r̄ is the mean inter-site correlation, and Ns is the
number of stations contributing to the grid box mean in each
month. The mean variance of individual stations within the
grid box is estimated as

s̄2
i =

(
Ŝ2NSC

)
(1+ (NSC− 1) r̄)

, (11)

where Ŝ2 is the variance of the grid box monthly anomalies
over the 1982–2010 climatology period, andNSC is the mean
number of stations contributing to the grid box over the cli-
matology period. The mean inter-site correlation is estimated
by

r̄ =
x0

X

(
1− exp

(
−
x0

X

))
, (12)

where X is the diagonal distance across the grid box, and
x0 is the correlation decay length between grid box means.
We calculate x0 as the distance (grid box midpoint to mid-
point) at which correlation reduces to 1/e. To account for
the fact that marine observations generally move around at
each time point, we use the concept of pseudo-stations to
modify this methodology. For any one day there could be
25 1◦× 1◦ grid boxes, and so we assume that the maxi-
mum number of pseudo-stations per grid box is 25, which is
broadly consistent with the number of stations per grid box
in HadISDH.land. Over a month then, there could be a max-
imum of 775 1◦× 1◦ daily grid boxes contributing to each
5◦×5◦ monthly grid box. Given ubiquitous missing data and
sparse sampling, the maximum in practice is closer to 600.
Using these values we then scale the actual number of 1◦×1◦

daily grid boxes contributing to each 5◦× 5◦ monthly grid

box to provide a pseudo-station number between 1 and 25
for each month (Ns) and then the average over the climatol-
ogy period (NSC).

The grid box Uo and Us uncertainties are then combined
in quadrature, assuming no correlation between the two
sources. This gives the full grid box uncertainty Uf. Calcu-
lation of regional-average uncertainty and spatial coverage
uncertainty is covered in Sect. 4.

4 Analysis and validity of the gridded product

The final gridded marine humidity monitoring product pre-
sented as HadISDH.marine.1.0.0.2018f is the result of the
third-iteration quality control and bias adjustment of ship-
only observations average into 5◦× 5◦ gridded monthly
means (Fig. 5). There are four reasons for only using the ship
observations. Firstly, the increase in spatial coverage in the
combined ship–buoy product is actually fairly small (Fig. S2)
and only during the latter part of the record. Secondly, a
dataset intended for detecting long-term changes in climate
should have reasonably consistent input data and coverage
over time. Thirdly, we believe that the buoy data are less reli-
able given their proximity to the sea surface and exposure to
sea spray contamination in addition to the lower maintenance
frequency compared to ship data. Fourthly, there are no meta-
data available for buoy observations, which makes it difficult
to apply necessary bias adjustments or estimate uncertain-
ties. Actual monthly means, anomalies from the 1981–2010
climatology (not standardized by division with the standard
deviation), the climatological means and standard deviation
of the climatologies, uncertainty components, and number
of observations for both products are all made available as
netCDF from https://www.metoffice.gov.uk/hadobs/hadisdh/
(last access: June 2019).

4.1 Comparison of climatologies between
HadISDH.marine and ERA-Interim

At the end of each iteration (Fig. 5), observation-based cli-
matology fields are created at both the monthly 5◦× 5◦ grid
and, by interpolation, pentad 1◦× 1◦ grid (Sect. 3.5). These
are then used to quality-control and create anomaly values
for the next iteration. Hence, the second-iteration quality-
controlled data are used to build the final third iteration,
and therefore there should be no lasting effect from having
used the ERA-Interim fields initially. The quality-controlled,
buddy-checked, and bias-adjusted third iteration is used to
create the final climatology provided to users.

To compare the use of ERA-Interim versus the
observation-based climatology to calculate anomalies and
quality-control the data, we show difference maps of the sec-
ond iteration minus ERA-Interim pentad 1◦× 1◦ grid clima-
tologies and climatological standard deviations in Figs. S9 to
S14 for a selection of pentads and variables. Note that ERA-
Interim fields are for 2 m above the ocean surface, whereas
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the raw observations range between approximately 10 and
30 m above the surface. In normal conditions we may there-
fore expect ERA-Interim to provide climatologies that are
warmer and moister than the observations. However, over-
all, ERA-Interim appears drier (both in absolute and relative
terms) and cooler than the observation-based climatologies.
For humidity this is consistent with the results of Kent et
al. (2014). For the majority of grid boxes these differences
are within ±2 g kg −1, ±2 %rh, and ±2◦C. However, differ-
ences are especially strong around coastlines, with magni-
tudes exceeding ±10 g kg −1, ±10 %rh, and ±10◦C. This is
to be expected given that ERA-Interim coastal grid boxes
will include effects from land, especially at the relatively
coarse 1◦× 1◦ grid resolution. For relative humidity there
are more regions where ERA-Interim is more saturated, and
there is more seasonality in the differences. Relative humid-
ity is less stable spatially and on synoptic timescales and also
more susceptible to biases and errors than specific humidity
and air temperature, largely because it is affected by errors
in both air temperature and dew point temperature. For tem-
perature, the coastal difference can be positive or negative
depending on the season.

The climatological standard deviations are generally lower
in the second-iteration observations compared to ERA-
Interim. Differences are generally between ±2 g kg −1, %rh,
and ◦C, but for relative humidity there are expansive regions
in the extratropics to mid-latitudes, especially in the Northern
Hemisphere, where climatological standard deviations are up
to 5 %rh lower in the observations. The generally lower vari-
ability in the observation-based climatology is to be expected
given the interpolation from monthly mean resolution and
interpolation over neighbouring grid boxes where data cov-
erage is limited. However, much of the tropics, particularly
in the Southern Hemisphere, tend to show more variability
in the observations. Similarly, many of the peripheral grid
boxes (those at the edge of the spatial coverage and there-
fore more likely to be interpolated from nearby grid boxes
rather than based on actual data) show higher variability for
specific and relative humidity and lower variability for air
temperature. All of these grid boxes are in data-sparse re-
gions, which likely contributes to the higher variability. Ide-
ally, observation-based climatologies would be created di-
rectly at the pentad 1◦× 1◦ grid, but this severely reduces
spatial coverage of the climatology fields and any product
based on them. A balance has to be made between coverage
and quality.

Annual mean 5◦×5◦ climatologies (no interpolation) from
the third-iteration quality-controlled, bias-adjusted ship-only
product are shown in Fig. 7 for specific humidity, relative
humidity, air temperature, and dew point temperature. These
have a minimum data presence threshold of 10 years for each
month over the climatology period and at least 9 climatologi-
cal months present for the annual climatology. Data coverage
is virtually non-existent in the Southern Hemisphere below
40◦ S, and Northern Hemisphere coverage diminishes dras-

tically above 60◦ N. These climatologies are as expected for
these variables and compare well in terms of broad spatial
patterns with ERA-Interim (not shown). There is good spatial
consistency considering that no interpolation has been con-
ducted, meaning that any erroneous grid boxes should stand
out. We conclude that, as a first-version product, these clima-
tologies look reasonable.

4.2 Analyses of global averages for various processing
stages and with other products

Global-average quantities are key measures of climate
change, and so we focus here on the differences arising from
the various processing steps of HadISDH.marine along with
the NOCSv2.0 specific humidity and ERA-Interim reanaly-
sis products. Global averages have been created by weight-
ing each grid box by the cosine of its latitude at the grid box
centre. All time series shown are the renormalized anoma-
lies with a mean of 0 over the 1981–2010 period. Figures 8
to 11 show time series for specific humidity, relative humid-
ity, dew point temperature, and air temperature, respectively.
Decadal linear trends (shown) are computed using ordinary
least-squares regression with ranges representing the 90th-
percentile confidence interval calculated using AR(1) correc-
tion (Santer et al., 2008).

For all variables, there are only small differences in the
global-average time series between the various processing
steps – from the raw data (noQC) to the third-iteration
quality-controlled (noBA: no bias adjustment) and then the
bias-adjusted data (BA). They are smallest for air tempera-
ture and largest for relative humidity, but all steps result in
global-average trends that are significant and in the same di-
rection and have similar inter-annual variability. We consider
these trends to be significant because the 90th-percentile con-
fidence intervals around the trend are not large enough to
bring the direction of the trends into question. The trends
in the global average are positive over the 1973–2018 pe-
riod for specific humidity, dew point temperature, and air
temperature and negative for relative humidity. The linear
trends for the final HadISDH.marine.1.0.0.2018f version are
0.07±0.02 g kg−1 per decade,−0.09±0.08 %rh per decade,
0.09± 0.02 ◦C per decade, and 0.11± 0.03 ◦C per decade
for specific humidity, relative humidity, dew point temper-
ature, and air temperature, respectively. Hence, we conclude
that HadISDH.marine shows moistening and warming since
the 1970s globally in actual terms but that the air above the
oceans appears to have become less saturated and drier in rel-
ative terms. This differs from the theoretical expectation that
changes in relative humidity over ocean are strongly energet-
ically constrained to be small, of the order of 1 % K−1 or less,
and generally positive (Held and Soden, 2006; Schneider et
al., 2010). Model-based expectations also suggest small pos-
itive changes (Byrne and O’Gorman, 2013, 2016, 2018). De-
spite careful quality control and bias-adjustment, the previ-
ously noted moist humidity bias pre-1982 is still apparent in
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Figure 7. Annual mean climatologies relative to 1981–2010 for (a) specific humidity (g kg−1), (b) relative humidity (%rh), (c) air tempera-
ture (◦C), and (d) dew point temperature (◦C) for third-iteration quality-controlled and bias-adjusted ship version. Climatological means are
calculated for grid boxes and months with at least 10 years present over the climatology period. Annual mean climatologies require at least
9 months of the year to be represented climatologically.

the bias-adjusted (BA) data. The linear trend in relative hu-
midity from 1982 to 2018 is−0.03±0.13 %rh per decade and
therefore not significantly decreasing, which is more consis-
tent with expectation.

Since there are considerable known issues affecting the
marine humidity data and because there are large outliers
(Figs. S3 to S6), the effect of quality (noQC compared to
noBA) might be expected to be large. Furthermore, approxi-
mately 25 %, dropping steadily over time to 18 %, of the ini-
tial selection of data has been removed by the quality control
(Fig. 5), so there is a considerable difference in the amount of
data contributing to the quality-controlled version compared
to the raw version. Despite all of this, differences are rela-
tively small. Overall, the quality control makes the positive
trends smaller (specific humidity, dew point temperature, and
air temperature) and negative trends larger (relative humid-
ity). The effect of quality control, including buddy checking,
is largest in the 1970s to early 1980s, when the largest num-
ber of data was removed by quality control. This is especially
noticeable for relative humidity and dew point temperature,
suggesting that the pre-1982 bias, although present to some
extent in the raw (noQC) data, could be exacerbated by the
quality control. This could be due to erroneous removal of
good data, but investigation (Figs. S3 to S8) suggests that

much of the data removal was appropriate; many very low
relative-humidity values were removed. It could also be an
artefact of the reduced number of observations after qual-
ity control, reducing the chance of averaging out random er-
ror. To explore whether the presence of whole numbers in
the record has contributed to the pre-1982 bias, we have pro-
cessed a bias-adjusted version with all whole-number flagged
data (Table 1) removed (BA_no_whole), which is shown
against the noQC and BA versions in Fig. 9d. The resulting
global-average trend is largest in the BA_no_whole version,
even over the 1982–2018 period, and the pre-1982 bias is
still clear. We conclude that the pre-1982 moist bias remains
apparent in HadISDH.marine and is not yet well understood,
and quality control of the pre-1982 data is an area for more
research in future versions.

The bias adjustment (BA, BA_HGT, BA_INST) reduces
the negative trends in relative humidity compared to the
quality-controlled (noBA) data and increases the positive
trends in specific humidity and dew point temperature rel-
ative to the quality-controlled data. The effect of bias ad-
justment is negligible for air temperature, which only has
adjustment for ship height applied. For the humidity vari-
ables the height adjustment has a far larger effect than
the non-aspirated-instrument adjustment. The non-aspirated-
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Figure 8. Global annual average anomaly time series and decadal trends (±90 % confidence interval) for specific humidity. (a) Process-
ing comparison for ships only: raw data (noQC), third-iteration quality-controlled with no bias adjustment (noBA), third-iteration quality-
controlled and bias-adjusted (BA), third-iteration quality-controlled and bias-adjusted for ship height only (BA_HGT), third-iteration quality-
controlled and bias-adjusted for instrument ventilation only (BA_INST). (b) Platform and alternative product comparison: third-iteration
quality-controlled and bias-adjusted for ships only (ship), third-iteration quality-controlled and bias-adjusted for ships and moored buoys
(all), NOCSv2.0 in situ quality-controlled and bias-adjusted product based on ships only (NOCS-q), ERA-Interim reanalysis 2 m fields us-
ing complete ocean coverage at the 1◦× 1◦ scale (ERA-Interim), ERA-Interim reanalysis 2 m fields using complete ocean coverage at the
1◦× 1◦ scale and masked to HadISDH.marine spatio-temporal coverage (ERA-Interim MASKED). Trends cover the common 1979–2015
period. The 1979–2018 trends for ERA-Interim are 0.03± 0.028 and 0.03± 0.027 for the full and masked versions, respectively. (c) Time
of observation comparison for third-iteration quality-controlled and bias-adjusted for ships only: all times (both), daytime hours only (day),
night-time hours only (night). Linear trends were fitted using ordinary least-squares regression with AR(1) correction applied when calculat-
ing confidence intervals (Santer et al., 2008).
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Figure 9. Global annual average anomaly time series and decadal
trends (±90 % confidence interval) for relative humidity. See Fig. 8
caption for details. In addition, panel (d) shows the time series
from the bias-adjusted data with removal of any data with a whole-
number flag set (BA_no_whole). Trends in (b) cover the common
1979–2018 period, and all trends in parentheses cover the 1982–
2018 period.

Figure 10. Global annual average anomaly time series and decadal
trends (±90 % confidence interval) for dew point temperature. See
Fig. 8 caption for details. Trends in (b) cover the common 1979–
2018 period.

instrument adjustment makes the positive trends in specific
humidity and dew point temperature slightly smaller and
the negative trends in relative humidity slightly larger. The
height adjustment has the opposite effect. For relative humid-
ity, the bias adjustments appear to have introduced greater
intra-decadal-scale variability but retained the inter-annual
patterns, again highlighting the sensitivity of relative humid-
ity compared to the other variables. Given that these biases
exist we do have to try and mitigate their impact. However,
this is a focus area for investigation and improvements in fu-
ture versions of HadISDH.marine.

The time series that include data from moored buoys com-
pared to those from ships only (“all” versus “ship”) show
smaller positive trends for specific humidity and air tempera-
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Figure 11. Global annual average anomaly time series and decadal
trends (±90 % confidence interval) for marine air temperature. See
Fig. 8 caption for details. Trends in (b) cover the common 1979–
2018 period.

ture and larger negative trends for relative humidity. Moored
buoys begin to play a role from the late 1980s, increasing in
number dramatically to make up over 50 % of the observa-
tions by 2015. The “all” time series can be seen to diverge
slightly from the “ship” time series in the latter part of the
record. Therefore, it is more consistent to produce the final
HadISDH.marine version without inclusion of moored-buoy
data.

Before quality control there are more daytime ship obser-
vations than night-time ship observations in the early record
(∼ 1 000 000 compared to ∼ 800 000 yr−1), but this evens
out by the end of the record to ∼ 900 000 yr−1. However,
the quality control removes more daytime observations than
night-time observations, especially in the 1970s and 1980s,
such that both contribute ∼ 700 000 observations per year,
dipping in the middle of the record. There has been no bias
adjustment for solar heating of ships applied in this version
of HadISDH.marine, so the daytime data may contain some
artefacts of solar heating. If this is a problem it should af-
fect the air temperature and relative humidity but not the
dew point temperature or specific humidity (Sect. 2.1). While
the full dataset (both) combines both daytime and night-time
data, for various grid boxes and seasons there is only either a
daytime or night-time value present. As such, the “both” time
series and its linear trend may not be a straightforward aver-
age of the “day” and “night” time series and trends. For spe-
cific humidity, dew point temperature, and air temperature,
the “day” and “night” trend differences are essentially neg-
ligible, with linear trends identical or within 0.01 g kg−1 per
decade. Even for relative humidity the differences are small.
The “day” time series gives the largest negative trend, fol-
lowed by “both”, which is 0.01 %rh per decade smaller, and
then “night”, which is 0.02 %rh per decade smaller again.
The negligible differences in air temperature suggest that so-
lar heating is not a significant concern, at least at the global-
average scale. Relative humidity is very sensitive to any dif-
ferences in the data, but even these differences are fairly
small and do not change the overall conclusion of decreas-
ing full-period trends and no significant trend over the 1982–
2018 period. “Night” trends are often thought to provide a
better signal of change because they are generally free from
convective and shortwave radiative processes and more a
measure of outgoing longwave radiation. The main conclu-
sion here is that trends and variability are very similar in the
daytime, night-time, and combined time series, which adds
confidence in their representativeness of real-world trends
and variability.

In terms of linear trend direction, HadISDH.marine com-
pares well with other monitoring estimates from NOCSv2.0
and ERA-Interim and to other reanalyses and older prod-
ucts (Fig. 1). ERA-Interim in Figs. 8 to 11 is from anal-
ysis fields of 2 m air temperature and dew point tempera-
ture and has been masked to ocean coverage using a 1◦× 1◦

land–sea mask and also to HadISDH.marine coverage for
comparison. Note that the ERA-Interim time series shown
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in Fig. 1 are from background forecast values to avoid bi-
ases introduced from ship data and ocean-only points over
open sea. Both NOCSv2.0 and HadISDH.marine are esti-
mates of 10 m quantities, and the NOCSv2.0 coverage is
similar to that of HadISDH.marine, but it only extends to
2015. NOCSv2.0 shows the largest trends in specific hu-
midity over the 1979–2015 common period, 0.04 g kg−1 per
decade greater than HadISDH.marine. The inter-annual pat-
terns are broadly similar but with some differences show-
ing that methodological choices do make a difference given
that the underlying observations are from the same source.
ERA-Interim shows very weak moistening compared to
HadISDH.marine for specific humidity and dew point tem-
perature and slightly weaker warming for air temperature.
Over the longer 1979–2018 period, ERA-Interim trends are
slightly larger for specific humidity but still weaker than in
HadISDH.marine. The decreasing saturation in relative hu-
midity is very strong in ERA-Interim, at more than 2 times
the HadISDH.marine trend over the common period. The
masking to HadISDH.marine coverage surprisingly makes
very little difference in the linear trends; they are slightly
more negative and only small year-to-year differences. Inter-
annual behaviour does differ, especially for relative humid-
ity and especially in the period up to the early 1990s, where
ERA-Interim is warmer and wetter generally, thus moder-
ating the long-term trends in specific humidity, dew point
temperature, and air temperature. Note that the ERA-Interim
background field relative humidity shown in Fig. 1 also
shows a decrease but to a lesser extent than the analysis fields
(Fig. 9) which include ship data. Agreement is closest for air
temperature in both trends and variability.

The decreasing relative-humidity trends over ocean are
similar to the drying seen in HadISDH.land and ERA-
Interim land relative humidity (Fig. 1); land linear trends are
0.03 %rh more negative, at −0.12 (−0.27 to −0.03) %rh per
decade, over the same 1973–2018 period. The time series
pattern is quite different though with marine relative humid-
ity decreasing throughout the period around large variabil-
ity and land relative humidity clearly decreasing from 2000.
The greater sensitivity of relative humidity to observation er-
rors, biases, and sampling issues makes the conclusion of
long-term drying an uncertain one, but agreement with ERA-
Interim adds some weight to this conclusion.

For the final HadISDH.marine.1.0.0.2018f product, the
regional-average uncertainty is also computed and shown
for the global average (70◦ S to 70◦ N) in Fig. 12. This in-
cludes the total observation uncertainty, which covers un-
certainty components for instrument adjustment, height ad-
justment, measurement, climatology, and whole-number un-
certainty (Table 2). In addition, the regional-average un-
certainty includes the grid box sampling uncertainty and
also a spatial-coverage uncertainty following the method
applied for HadISDH.land (Willett et al., 2014). The cov-
erage uncertainty essentially uses the variability between
ERA-Interim full coverage compared to ERA-Interim with

HadISDH.marine coverage to estimate uncertainty. To obtain
uncertainty in the global average from the grid box uncer-
tainties, correlation in time and space should be taken into
account. It is not trivial to assess the true spatial and tempo-
ral correlation of the various uncertainty sources. In reality,
although ships move around over space and time, implying
some correlation, the contributing sources to each∼ 500 km2

grid box monthly mean differ widely. Therefore, for this
first-version product we assume no correlation between grid
boxes in time or space and take the simple approach of the
quadrature combination of uncertainty sources, noting that
this is a lower limit on uncertainties.

The uncertainty in the global averages (Fig. 12) is larger
than the equivalent time series for land (see Fig. 12 in Wil-
lett et al., 2014). The coverage uncertainty (accounting for
observation gaps in space and time) is generally the largest
source of uncertainty with the exception of relative humidity
and dew point depression. For the latter two, the total ob-
servation uncertainty makes up the greatest contribution. In
all cases the total observation uncertainty is larger at the be-
ginning and especially the end of the records, where there
are fewer or no metadata with which to apply bias adjust-
ments. The contribution from sampling uncertainty (grid box
spatial and temporal coverage) is generally very small ex-
cept for relative humidity. This is as expected as the corre-
lation decay distance of humidity should generally be larger
over ocean than over land given the homogeneous surface
altitude and composition. Overall, the magnitudes of the un-
certainties are small relative to the magnitudes of long-term
trends and variability in all variables except for relative hu-
midity and dew point depression. This suggests that there is
good confidence in changes in absolute measures of humid-
ity over ocean (e.g. specific humidity) and also air tempera-
ture but lower confidence in changes in the relative humid-
ity. The warming and moistening are further corroborated by
strong theoretical reasoning based on laws of physics gov-
erning the expectation that specific humidity should have in-
creased over the period of record given the warming of the
oceans and atmosphere that has occurred (Hartmann et al.,
2013). The uncertainty model makes many assumptions over
correlation of uncertainty in space and time. It is likely that
we have overestimated the uncertainty at the grid box scale
by assuming complete correlation for height adjustment un-
certainty, instrument adjustment uncertainty, and climatolog-
ical uncertainty. Conversely, we have likely underestimated
the uncertainty at the regional-average level by assuming no
correlation. This is certainly an area for improvement in fu-
ture versions.

4.3 Decadal trends across the globe presented by
HadISDH.marine

Figure 13 shows the decadal linear trends for specific humid-
ity, relative humidity, dew point temperature, and air temper-
ature for HadISDH.marine.1.0.0.2018f. The completeness
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Figure 12. Global-average time series of annual mean climate
anomalies for all variables. The 2σ uncertainty ranges for total ob-
servation (blue), sampling (red) and coverage (gold) uncertainty
contributions combined are shown. All series have been given a zero
mean over the common 1981–2010 period. Decadal linear trends
and 90th-percentile confidence intervals (in parentheses) were fit-
ted using ordinary least-squares regression with AR(1) correction
applied when calculating the confidence intervals (Santer et al.,
2008), with the range representing the 90 % confidence interval in
the trend.

criterion for trend fitting is 70 %, more strict than for the cli-
matologies (Fig. 7). This results in poorer spatial coverage
especially in the Southern Hemisphere. Clearly, there are no
data points outside 70◦ S to 70◦ N; hence the restriction of
the global-average time series to this region is sensible. The
tropical and Southern Hemisphere Pacific Ocean and South-
ern Hemisphere Atlantic Ocean have virtually no data cover-
age. Overall, the appearance of the trends shows good spatial
consistency, with few grid boxes standing out as obviously

erroneous. There has been no interpolation across grid boxes
that would have smoothed out any outliers, and so the lack
of these outlying grid boxes suggests that the data are of rea-
sonable quality for this long-term analysis at least. Trends are
as expected from the global-average time series – generally
moistening and warming but becoming less saturated. The
same is true over land (Willett et al., 2014).

The moistening shown in specific humidity and dew point
temperature (Fig. 13a, b, e, and f) is widespread. The ma-
jority of grid boxes are considered to be statistically signif-
icant in that the 90th-percentile confidence interval around
the trend magnitude is the same sign as the trend and does
not encompass 0. The largest increases in specific humidity
are in the lower latitudes, whereas the largest increases in
dew point temperature are more spread out, with a tendency
towards the extratropics and mid-latitudes. There are a few
regions where there are clusters of grid boxes with drying
trends. These are generally consistent between the specific
humidity and dew point temperature, especially in the few
cases where these negative trends are significant such as the
central Pacific, the east coast of Brazil, the southern coast of
Australia, and around New Zealand.

Marine air temperature shows widespread and significant
warming, in agreement with HadNMAT2 (Kent et al., 2013).
Very few of the grid boxes with a negative trend are signifi-
cant. In some cases they are in similar locations to the drying
trends seen in specific humidity and/or dew point tempera-
ture, e.g. the coast south of Australia around Tasmania, and
the east coast of Brazil. The warming is stronger in the north-
ern mid-latitudes, with the Baltic, Mediterranean, and Red
seas showing particularly strong warming consistent with
strongly increasing dew point temperature and specific hu-
midity.

Whilst relative humidity is more sensitive to methodolog-
ical choices and observational errors, the broad spatially co-
herent structures to the regions of increasing and decreasing
saturation with broad-scale significance are very encourag-
ing in terms of data quality. Furthermore, the drying trends
tend to be around the mid-latitudes, while the increasing sat-
uration trends are more around the tropics, as seen over land.
We still urge caution in the use of marine relative humidity,
but these results collectively suggest that decreasing satura-
tion might be a real feature.

5 Code and data availability

HadISDH.marine is available as 5◦× 5◦ gridded fields
of monthly means and anomalies along with a 1981–
2010 climatology and uncertainty estimates at the grid
box scale. The data begin in January 1973 and continue
to December 2018 (at the time of writing) and will be
updated annually. HadISDH.marine is publicly avail-
able from https://www.metoffice.gov.uk/hadobs/hadisdh/
(last access: June 2019) under an Open Govern-
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Figure 13. Linear decadal trends from 1973 to 2018 for (a, b) specific humidity (g kg−1), (c, d) relative humidity (%rh), (e, f) dew point
temperature (◦C), and (g, h) air temperature (◦C) for the third-iteration quality-controlled and bias-adjusted ships only. Decadal linear trends
were fitted using ordinary least-squares regression when there are at least 70 % percent of months present over the trend period. Grid boxes
with boundaries show significant trends in that the 90 % confidence interval (calculated with AR(1) correction following Santer et al., 2008)
around the trend magnitude is the same sign as the trend and does not encompass 0. The right-hand panels (b, d, f, h) show the distribution
of grid box trends by latitude with the mean shown as a solid black line. The dark grey shading shows the proportion of the globe at that
latitude which is ocean. The light grey shading shows the proportion of the globe that contains observations.
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ment license (http://www.nationalarchives.gov.uk/
doc/open-government-licence/version/3/, last access:
June 2019) as netCDF and text files. Processing
code (Python) can also be made available on request.
HadISDH.marine data, derived diagnostics, and plots can
be found at http://www.metoffice.gov.uk/hadobs/hadisdh
(last access: June 2019) and https://doi.org/10.5285/
463b2fcd6a264a39b1e3249dab16c177 (Willett et al.,
2020). It should be cited using this paper and the fol-
lowing: Willett, K. M., Dunn, R. J. H., Kennedy, J.
J., and Berry, D. I. (2020): HadISDH marine: gridded
global monthly ocean surface humidity data version
1.0.0.2018f. Centre for Environmental Data Analysis, https:
//doi.org/10.5285/463b2fcd6a264a39b1e3249dab16c177,
5 August 2020.

This product forms one of the HadOBS (Met Office
Hadley Centre Climate Monitoring Observations; http://
www.metoffice.gov.uk/hadobs, last access: June 2019) cli-
mate monitoring products and will be blended with the
HadISDH.land product to create a global land and marine hu-
midity monitoring product. Updates and exploratory analy-
ses are documented at http://hadisdh.blogspot.co.uk (last ac-
cess: June 2019) and through the Met Office HadOBS Twitter
account @metofficeHadOBS.

6 Discussion and conclusions

Marine humidity data are susceptible to a considerable num-
ber of biases and sources of error that can be large in mag-
nitude. We have cleaned the data where possible by applying
quality control for outliers, supersaturation, repeated values
and neighbour inconsistency, which has removed up to 25 %
of our initial selection in some years. We have also applied
adjustments to account for biases arising from unaspirated in-
strument types and differing observation heights over space
and time. Care has also been taken to avoid diurnal and sea-
sonal sampling biases as far as possible when building the
gridded fields, and the use of grid box mean climate anoma-
lies reduces remaining random error through averaging.

Spatial coverage of HadISDH.marine differs year to year.
The coverage is generally poorer than seen for variables such
as SST which benefit significantly from drifting-buoy obser-
vations. Any further decline in observation and transmission
of humidity from ships is of concern to our ability to robustly
monitor surface humidity over oceans. Future versions may
be able to make more use of humidity data from buoys, but
their proximity to the sea surface and difficulty of regular
maintenance can lead to poor-quality observations. The pro-
vision of digital metadata significantly improves our ability
to quantify and account for biases in the data. Hence, the con-
tinuity of this metadata beyond 2014 and ideally an increase
in quantity also strongly affect our ability to robustly moni-
tor ocean surface humidity. Given the current availability of
ship data and metadata as well as the necessarily strict se-

lection criteria and quality control, the resulting spatial cov-
erage is good over the Northern Hemisphere outside of the
high latitudes. There is very poor coverage over the South-
ern Hemisphere, especially south of 20◦ S. This means that
our “global” analyses are biased to the Northern Hemisphere.
Care should be taken to account for different spatial cover-
age when comparing products. However, when comparing
HadISDH to masked and unmasked ERA-Interim fields, dif-
ferences were surprisingly small.

We have shown that the observations are warm and moist
relative to ERA-Interim reanalysis for the majority of the ob-
served globe apart from the north-western Pacific. This is
despite ERA-Interim fields representing 2 m above the sur-
face compared to the general observation heights of 10–30 m
above the surface. Differences are largest around coastlines,
particularly in the Red Sea and Persian Gulf. There is insuffi-
cient spatial coverage to produce a high-resolution climatol-
ogy from the data themselves, hence our use of ERA-Interim
initially and then interpolated observation-based fields. How-
ever, the lower-resolution (5◦× 5◦) monthly mean clima-
tologies from the final HadISDH.marine.1.0.0.2018f version
show expected spatial patterns and have good spatial con-
sistency, providing evidence that our data selection methods
have resulted in reasonably high-quality data.

The quality control and bias adjustment procedures have
made small differences to the global-average-anomaly time
series for specific humidity, dew point temperature, and air
temperature. This overall agreement in the global-average
time series between versions and also between the daytime,
night-time, and combined versions increases confidence in
the overall signal of increased moisture and warmth over
oceans. These features show widespread spatial consistency
in the HadISDH.marine.1.0.0.2018f grid box decadal trends,
which also adds confidence. Hence, we can conclude that the
ICOADS data are a useful source of humidity data for cli-
mate monitoring. However, we expect differences to be larger
in smaller-spatial-scale analyses. HadISDH.marine shows
consistency with other products in terms of long-term lin-
ear trends in the global averages. There are some differences
year to year, with ERA-Interim showing warmer and moister
anomalies prior to the early 1990s and hence smaller trends
overall.

For relative humidity, differences between the versions can
be large for any one year, but the overall decreasing satura-
tion trend appears to be robust. We conclude this because the
trend is consistent across all processing steps, is apparent in
ERA-Interim fields, and also has spatial consistency across
the extratropics and mid-latitudes. This is a somewhat sur-
prising result and one that should be treated cautiously. The-
oretical and model-based analysis of changes in relative hu-
midity over ocean under a warming climate suggests negligi-
ble or small positive changes (Held and Soden, 2006; Schnei-
der et al., 2010; Byrne and O’Gorman, 2013, 2016, 2018).
The temporal patterns in global-average relative humidity are
quite different to those over land, whereas specific humidity
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shows similarity with the HadISDH.land time series, largely
driven by the El Niño-related peaks. The pre-1982 data have
previously been noted as having a moist bias, and our pro-
cessing steps do not appear to have removed this feature. The
trend excluding this earlier period (1982–2018) is no longer a
significant decreasing trend and is therefore more consistent
with expectation. Removal of whole-number flagged data ap-
peared to exacerbate the pre-1982 bias and make the negative
trends larger. Further work to assess the physical mechanisms
that might lead to such trends is needed.

There are known issues with ERA-Interim in terms of
its stability. For example, sea surface temperatures cooled
around mid-2001 due to a change in the SST analysis prod-
uct used (Simmons et al., 2014). This is very likely to af-
fect humidity over the ocean surface in ERA-Interim. Sim-
ilarly, changes in satellite streams over time can also affect
the long-term stability of ERA-Interim, even in the surface
fields. Also, the assimilated ship data are not adjusted for bi-
ases in the ERA-Interim assimilation. Clearly, there are vari-
ous issues affecting both in situ monitoring products and re-
analysis products such that neither one can be easily identi-
fied as the more accurate estimate. Analyses should take into
account all available estimates and their strengths and weak-
nesses. Comparison of HadISDH.marine with satellite-based
estimates of humidity over ocean will be an important next
step.

We have attempted to quantify uncertainty in
HadISDH.marine. The uncertainty analysis comprises
observation uncertainty at the point of measurement, which
is then propagated through to grid box averages, taking
correlation in space and time into account where relevant.
Sampling uncertainty at the grid box level due to uneven
sampling across the grid box in space and time is assessed.
We have also provided uncertainty estimates in regional
and global averages including coverage uncertainty. The
propagation of grid box observation and sampling uncer-
tainty to large-scale averages does not explicitly take into
account correlation in these uncertainty quantities in space
and time. As this is a first-version monitoring product, this
simple method is seen as an appropriate first attempt to
assess uncertainty. The ranges presented should be seen as
a lower limit on the uncertainty. Overall, uncertainty in the
global average is dominated by the coverage uncertainty
for all variables except relative humidity and dew point
depression. The total observation uncertainty is larger at the
beginning and especially the end of the record, where digital
metadata are fewer or non-existent (post-2014). Overall, the
uncertainty is small relative to the magnitude of long-term
trends with the exception of relative humidity. We suspect
that this is an overestimate at the grid box level owing to as-
sumptions of complete correlation in the height adjustment,
instrument adjustment, and climatology uncertainty com-
ponents and an underestimate at the regional-average level
given assumptions of no correlation. This is a first attempt to

comprehensively quantify marine humidity uncertainty, and
future methodological improvements are envisaged.

We conclude that this first-version marine humidity mon-
itoring product is a reasonable estimate of large-scale trends
and variability and contributes to our understanding of cli-
mate changes as a new and methodologically independent
analysis. The trends and variability shown are mostly in con-
cert with expectation; widespread moistening and warming
are observed over the oceans (excluding the mostly data-free
Southern Hemisphere) from 1973 to present. These are also
large relative to the magnitude of our uncertainty estimates.
Our key finding is that the marine relative humidity appears
to be decreasing (the air is becoming less saturated). We have
explored various processes for ensuring high-quality data and
shown that these do not make large differences for large-scale
analyses of specific humidity, dew point temperature, and air
temperature but that there is greater sensitivity to method-
ological choices for relative humidity.

The spatial coverage of surface humidity data is very low
outside of the Northern Hemisphere. If only those data with
digitized metadata are included then this coverage deterio-
rates further. Although moored-buoy numbers have increased
dramatically since the 1990s, their measurements are more
prone to error through proximity to the water and hence con-
tamination in addition to less frequent manual checking and
maintenance. Hence, our ability to monitor surface humid-
ity with any degree of confidence depends on the continued
availability of ship data and provision of digitized metadata.
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