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Abstract 24 

 25 

Archives of in situ sea-surface temperature (SST) measurements extend back more than 26 

160 years. Quality of the measurements is variable and the area of the oceans they sample 27 

is limited, especially early in the record and during the two World Wars. Measurements 28 

of SST and the gridded data sets that are based on them are used in many applications so 29 

understanding and estimating the uncertainties are vital. The aim of this review is to give 30 

an overview of the various components that contribute to the overall uncertainty of SST 31 

measurements made in situ and of the data sets that are derived from them. In doing so, it 32 

also aims to identify current gaps in understanding. Uncertainties arise at the level of 33 

individual measurements with both systematic and random effects and, although these 34 

have been extensively studied, refinement of the error models continues. Recent 35 

improvements have been made in the understanding of the pervasive systematic errors 36 

that affect the assessment of long-term trends and variability. However, the adjustments 37 

applied to minimize these systematic errors are uncertain and these uncertainties are 38 

higher before the 1970s and particularly large in the period surrounding the Second 39 

World War owing to a lack of reliable metadata. The uncertainties associated with the 40 

choice of statistical methods used to create globally complete SST data sets have been 41 

explored using different analysis techniques but they do not incorporate the latest 42 

understanding of measurement errors and they want for a fair benchmark against which 43 

their skill can be objectively assessed. These problems can be addressed by the creation 44 

of new end-to-end SST analyses and by the recovery and digitization of data and 45 

metadata from ship log books and other contemporary literature. 46 



 47 

1. Introduction 48 

 49 

Measurements of the temperature of the sea surface have been made for more than 200 50 

years for a wide variety of purposes. The earliest measurements of sea-surface 51 

temperature (SST) in the eighteenth century were taken out of pure scientific interest. 52 

Later, after the connection between SST and ocean currents was made, large numbers of 53 

measurements were made for the construction of navigational charts. In the twentieth 54 

century, the needs of weather forecasting and, to an extent, the need to produce marine 55 

climate summaries determined the quantity and quality of observations. Most historical 56 

SST measurements were not made by dedicated scientific vessels, but by voluntary 57 

observing ships (VOS) on the basis that they would contribute to the safety of life at sea. 58 

This is reflected in the geographical distribution of observations, which are largely 59 

confined to major shipping lanes. 60 

 61 

Nowadays, in situ measurements of SST – those made at the surface as opposed to those 62 

made remotely by satellites or aircraft – are used in diverse applications. They are used 63 

directly in calibration and validation of satellite retrievals and they are assimilated into 64 

ocean analyses [Roberts-Jones et al., 2012]. They are also used to construct data sets of 65 

summaries of SST on regular grids and globally-complete SST fields are created using 66 

statistical techniques to impute SSTs in regions where there are no observations. The SST 67 

data sets and statistical SST ‘reconstructions’ or ‘analyses’ are widely used, for example 68 

as an index of global climate change [Morice et al., 2012], as a boundary condition for 69 



climate simulations [Folland, 2005] and reanalyses [Simmons et al., 2010], as initial 70 

conditions for decadal forecasts [Smith et al., 2007], in studies of hurricane formation 71 

[Saunders and Harris, 1997] and in studies of the impact of climate change on marine 72 

ecosystems [Sheppard and Rayner, 2002]. 73 

 74 

As the demands for SST measurements have changed, so have the instruments used to 75 

make them, and so have the ships and other vessels from which the measurements were 76 

made. The first systematic observations were made using buckets to collect a water 77 

sample. Buckets made of wood, canvas, tin, leather, brass, rubber and plastic – of designs 78 

as various as the materials employed in their construction – have all been used to measure 79 

the temperature of the surface layers of the ocean. There are two problems with this 80 

approach. The first is that during the collection and hauling, the temperature of the water 81 

sample can be modified by the combined actions of latent and sensible heat transfer and 82 

the warmth of the Sun. Even in the best conditions, an accurate measurement requires 83 

diligence on the part of the sailor; that is the second problem. Improvements to minimize 84 

the physical effects were made to bucket designs during the 1950s, but as ships became 85 

larger and faster, the making of the measurements became not just thankless, but 86 

dangerous. 87 

 88 

After the advent of steam ships in the late nineteenth century, it was routine to measure 89 

the temperature of the sea water that was circulated through the steam condenser. 90 

Condenser inlet measurements and later, engine room inlet (ERI) measurements, were 91 

often recorded in ship logbooks, but they were not entered into meteorological logs until 92 



the 1930s. The convenience of using measurements that were made as a matter of routine, 93 

and the attendant reduction in the risk of losing a bucket or sailor overboard, meant that 94 

ERI measurements became the preferred method for measuring SST on board ships 95 

during the latter half of the twentieth century. That is not to say that the method was 96 

without its difficulties. Modification of the temperature of the water between inlet and 97 

thermometer was still a problem and it was now compounded by the varying depth of the 98 

measurements. 99 

 100 

Since the 1970s, a growing number of ships have been fitted with dedicated sensors either 101 

outside or inside the hull. These have been joined by a growing array of moored and 102 

drifting buoys which make automated measurements that are relayed by satellite. At 103 

present, around 90% of all SST observations come from buoys. In calm conditions 104 

drifting buoys measure at a nominal depth of between 10 and 20 cm depending on their 105 

size. However, wave motion means that in some conditions the buoy will be submerged 106 

for part of the time and report temperatures that are representative of something like the 107 

upper 2 m. 108 

 109 

Moored buoys are fixed platforms, akin, in some ways, to meteorological stations on 110 

land. They come in a variety of shapes and sizes. Most are a few meters in height and 111 

width, but the largest in regular use are the 12 m Discus buoys designed to weather the 112 

wilder climates of the northern oceans. There are two loose groupings of moored buoys: 113 

the Global Tropical Moored Buoy Array (GTMBA) and a more diverse group of coastal 114 

moorings mostly around the US. The GTMBA has regular arrays of moorings in the 115 



tropical Pacific, Atlantic and Indian Oceans. The majority of moored buoys measure SST 116 

at a nominal depth of 1 m. Some measure slightly deeper and some moorings make 117 

measurements at a range of depths. 118 

 119 

SST measurements from ships and buoys together with near-surface measurements made 120 

by oceanographic cruises have been gathered in digital archives. The largest and most 121 

comprehensive of these is the International Comprehensive Ocean-Atmosphere Data Set 122 

(ICOADS, Woodruff et al. [2011]). The latest release of ICOADS, release 2.5, contains 123 

individual marine reports from 1662 to 2007, but air and sea temperature measurements 124 

only start to appear in the 19th Century. Metadata giving information about some of the 125 

measurements and the ships that make them is also provided and is now complemented 126 

by information from regular bulletins such as WMO publication 47 127 

(http://www.wmo.int/pages/prog/www/ois/pub47/pub47-home.htm). 128 

 129 

Other digital archives exist. Research vessel (RV 130 

http://coaps.fsu.edu/RVSMDC/index.shtml) data are gathered at the Research Vessel 131 

Surface Meteorology Data Center at Florida State University. Woods Hole 132 

Oceanographic Institute (http://www.whoi.edu/) maintains an archive of research 133 

mooring data and the OceanSites website (http://www.oceansites.org/data/index.html) 134 

provides links to other mooring data. The Pacific Marine Environmental Laboratory 135 

maintains an archive of water temperature measurements from the GTMBA at a range of 136 

depths and time resolutions that are not available in ICOADS 137 

(http://www.pmel.noaa.gov.tao/global/global.html). Near-surface measurements from 138 



other sub-surface sources such as the Argo array of autonomous profiling floats also 139 

exist. 140 

 141 

Despite being comprehensive, ICOADS is incomplete. Large archives of paper records 142 

exist around the world and many of these have yet to be digitized. It is not possible yet to 143 

know exactly how many undigitized records remain because there is no definitive 144 

catalogue of global archives. What is known is that many archives that have been 145 

identified are far from being exhausted. The potential for reducing the uncertainty in SST 146 

analyses as well as in reconstructions of other marine variables is clear, but funding, 147 

particularly sustained funding for the efforts to identify, image and key the data has 148 

proved difficult to find. Nonetheless, there have been some successes such as a project to 149 

crowd source the keying of Royal Navy logbooks from the First World War. Volunteers 150 

on the OldWeather.org project keyed pages from the logbooks online. In the three years 151 

since the project started more than 1.6 million weather observations have been digitized, 152 

by around 16,400 volunteers. 153 

 154 

The observing network was not created with a single purpose in mind. It was certainly 155 

not intended to meet the stringent criteria demanded for monitoring long-term 156 

environmental change. Nonetheless, historical SST measurements have been widely used 157 

in such studies. In a 2010 paper, Jones and Wigley [2010] identified uncertainties 158 

associated with pervasive systematic errors in SST data sets as an important uncertainty 159 

in the estimation of global temperature trends. The obvious gulf between the ideal and the 160 

reality leads naturally to questions about the reliability of the SST record. Often this 161 



question is couched as a yes/no dichotomy: “are SST records reliable?” A more useful 162 

question is "How reliable are they?" Although historical measurements were not made for 163 

climate research, or any single purpose, it does not mean that it is impossible to derive 164 

from them a record that is useful to a particular end. However, it does mean that special 165 

care must be taken in identifying and, as best as possible, quantifying uncertainties. 166 

 167 

In using SST observations and the analyses that are based on them, it is important to 168 

understand the uncertainties inherent in them and the assumptions and statistical methods 169 

that have gone into their creation. In this review I aim to give an overview of the various 170 

components that contribute to the overall uncertainty of SST measurements made in situ 171 

and of the data sets that are derived from them. In doing so, I also aim to identify current 172 

gaps in understanding. 173 

 174 

Section 2 provides a classification of uncertainties. The classifications are not definitive, 175 

nor are they completely distinct. They do, however, reflect the way in which uncertainties 176 

have been approached in the literature and provide a useful framework for thinking about 177 

the uncertainties in SST data sets. The uncertainties have been tackled in ascending order 178 

of abstraction from the random errors associated with individual observations to the 179 

generic problem of unknown unknowns. In this review quoted uncertainties represent one 180 

standard deviation of the relevant distribution unless otherwise stated. Section 3 applies 181 

this framework to analyze progress and understanding under each of the headings. Some 182 

shortcomings of the presentation of uncertainties are discussed in section 4 along with 183 

possible solutions. Section 5 reviews how some analyses have used knowledge of likely 184 



errors in SST data sets to minimize their exposure to uncertainty. Section 6 briefly 185 

discusses SST retrievals from satellites and how these have been used to understand the 186 

in situ record. The review concludes with a summary of possible future directions. 187 

 188 

2. General Classification of Uncertainties 189 

 190 

Throughout this review the distinction will be made between an error and an uncertainty. 191 

The distinction between the two loosely follows the usage in the Guide to the Expression 192 

of Uncertainty in Measurement (GUM) [BIPM, 2008]. The error in a measurement is the 193 

difference between some idealized “true value” and the measured value and is 194 

unknowable. The GUM defines the uncertainty of a measurement as the “parameter, 195 

associated with the result of a measurement, that characterizes the dispersion of the 196 

values that could reasonably be attributed to the measurand”. This is the sense in which 197 

uncertainty is generally meant in the following discussion. This is not necessarily the 198 

same usage as is found in the cited papers. It is common to see the word error used as a 199 

synonym for uncertainty such as in the commonly used phrases standard error and 200 

analysis error. 201 

 202 

Broadly speaking, errors in individual SST observations have been split into two 203 

groupings: random observational errors and systematic observational errors. Although 204 

this is a convenient way to deal with the uncertainties, errors in SST measurements will 205 

generally share a little of the characteristics of each. 206 

 207 



Random observational errors occur for many reasons: misreading of the thermometer, 208 

rounding errors, the difficulty of reading the thermometer to a precision higher than the 209 

smallest marked gradation, incorrectly recorded values, errors in transcription from 210 

written to digital sources and sensor noise among others. Although they might confound a 211 

single measurement, the independence of the individual errors means they tend to cancel 212 

out when large numbers are averaged together. Therefore, the contribution of random 213 

independent errors to the uncertainty on the global average SST is much smaller than the 214 

contribution of random error to the uncertainty on a single observation even in the most 215 

sparsely observed years. Nonetheless, where observations are few, random observational 216 

errors can be an important component of the total uncertainty. 217 

 218 

Systematic observational errors are much more problematic because their effects become 219 

relatively more pronounced as greater numbers of observations are aggregated. 220 

Systematic errors might occur because a particular thermometer is mis-calibrated, or 221 

poorly sited. No amount of averaging of observations from a thermometer that is mis-222 

calibrated such that it reads 1 K too high will reduce the error in the aggregate below this 223 

level save by chance. However, in many cases the systematic error will depend on the 224 

particular environment of the thermometer and will therefore be independent from ship to 225 

ship. In this case, averaging together observations from many different ships or buoys 226 

will tend to reduce the contribution of systematic observational errors to the uncertainty 227 

of the average. 228 

 229 



In the 19th and early 20th century, the majority of observations were made using buckets 230 

to haul a sample of water up to the deck for measurement. Although buckets were not 231 

always of a standard shape or size, they had a general tendency under typical 232 

environmental conditions to lose heat via evaporation or directly to the air when the air-233 

sea temperature difference was large. Folland and Parker [1995] provide a more 234 

comprehensive survey of the problem which was already well known in the early 20th 235 

Century (see, for example, the introduction to Brooks [1926]). Pervasive systematic 236 

observational errors like the cold bucket bias are particularly pertinent for climate studies 237 

because the errors affect the whole observational system and change over time as 238 

observing technologies and practices change. The change can be gradual as old methods 239 

are slowly phased out, but they can also be abrupt, reflecting significant geopolitical 240 

events such as the Second World War [Thompson et al., 2008]. Rapid changes also arise 241 

because the digital archives of marine meteorological reports (ICOADS Woodruff et al. 242 

[2011]) are themselves discontinuous. 243 

 244 

Generally, systematic errors are dealt with by making adjustments based on knowledge of 245 

the systematic effects. The adjustments are uncertain because the variables that determine 246 

the size of the systematic error are imperfectly known. The atmospheric conditions at the 247 

point where the measurement was made, the method used to make the measurement – 248 

ERI or bucket – the material used in the construction of the bucket if one was used, as 249 

well as the general diligence of the sailors making the observations have not in many 250 

cases been reliably recorded. Part of the uncertainty can be estimated by allowing 251 

uncertain parameters and inputs to the adjustment algorithms to be varied within their 252 



plausible ranges thus generating a range of adjustments (e.g., Kennedy et al. [2011c]). 253 

This parametric uncertainty gives an idea of the uncertainties associated with poorly 254 

determined parameters within a particular approach, but it does not address the more 255 

general uncertainty arising from the underlying assumptions. This uncertainty will be 256 

dealt with later as structural uncertainty. 257 

 258 

First, however, there are a number of other uncertainties associated with the creation of 259 

the gridded data sets and SST analyses that are commonly used as a convenient 260 

alternative to dealing with individual marine observations. The uncertainties are closely 261 

related because they arise in the estimation of area-averages from a finite number of 262 

noisy and often sparsely-distributed observations. 263 

 264 

In Kennedy et al., [2011b] two forms of this uncertainty were considered: grid-box 265 

sampling uncertainty and large-scale sampling uncertainty (which they referred to as 266 

coverage uncertainty). Grid-box sampling uncertainty refers to the uncertainty accruing 267 

from the estimation of an area-average SST anomaly within a grid box from a finite, and 268 

often small, number of observations. Large-scale sampling uncertainty refers to the 269 

uncertainty arising from estimating an area-average for a larger area that encompasses 270 

many grid boxes that do not contain observations. Although these two uncertainties are 271 

closely related, it is often easier to estimate the grid-box sampling uncertainty, where one 272 

is dealing with variability within a grid box, than the large-scale sampling uncertainty, 273 

where one must take into consideration the rich spectrum of variability at a global scale. 274 

 275 



Although some gridded SST data sets contain many grid boxes which are not assigned an 276 

SST value because they contain no measurements, other SST data sets – oftentimes 277 

referred to as SST analyses – use a variety of techniques to fill the gaps. They use 278 

information gleaned from data-rich periods to estimate the parameters of statistical 279 

models that are then used to estimate SSTs in the data voids, often by interpolation or 280 

pattern fitting. There are many ways to tackle this problem and all are necessarily 281 

approximations to the truth. The correctness of the analysis uncertainty estimates derived 282 

from these statistical methods are conditional upon the correctness of the methods, inputs 283 

and assumptions used to derive them. No method is correct therefore analytic 284 

uncertainties based on a particular method will not give a definitive estimate of the true 285 

uncertainty. To gain an appreciation of the full uncertainty it is necessary to factor in the 286 

lack of knowledge about the correct methods to use, which brings the discussion back to 287 

structural uncertainty. 288 

 289 

There are many scientifically defensible ways to produce a data set. For example, one 290 

might choose to fill gaps in the data by projecting a set of Empirical Orthogonal 291 

Functions (EOFs) onto the available data. Alternatively, one might opt to fill the data 292 

using simple optimal interpolation. Both are defensible approaches to the problem, but 293 

each will give different results. In the process of creating any data set, many such choices 294 

are made. Structural uncertainty [Thorne et al., 2005] is the term used to understand the 295 

spread that arises from the many choices and foundational assumptions that can be (and 296 

have to be) made during data set creation. The character of structural uncertainty is 297 

somewhat different to the other uncertainties considered so far. The uncertainty 298 



associated with a measurement error, for example, assumes that there is some underlying 299 

distribution that characterizes the dispersion of the measured values. In contrast, there is 300 

generally no underlying “distribution of methods” that can be used to quantify the 301 

structural uncertainty. Furthermore, the diverse approaches taken by different teams 302 

might reflect genuine scientific differences about the nature of the problems to be tackled. 303 

Consequently, structural uncertainty is one of the more difficult uncertainties to quantify 304 

or explore efficiently. It requires multiple, independent attempts to resolve the same 305 

difficulties, it is an ongoing commitment, and it does not guarantee that the true value 306 

will be encompassed by those independent estimates. Nevertheless, the role that the 307 

creation of multiple independent estimates and their comparison has played in 308 

uncovering, resolving, and quantifying some of the more mystifying uncertainties in 309 

climate analyses is unquestionable. The most obvious – one might say, notorious – 310 

examples are those of tropospheric temperature records made using satellites and 311 

radiosondes [Thorne et al., 2011] and sub-surface ocean temperature analyses [Lyman et 312 

al., 2010; Abraham et al., 2013]. 313 

 314 

Which leads finally to unknown unknowns. On February 12th 2002, at a news briefing at 315 

the US Department of Defense, Donald Rumsfeld memorably divided the world of 316 

knowledge into three quarters: 317 

 318 

    “There are known knowns. These are things we know we know. We also know there 319 

are known unknowns. That is to say, we know there are some things we do not know. But 320 

there are also unknown unknowns, the ones we don't know we don't know.”  321 



 322 

In the context of SST uncertainty, unknown unknowns are those things that have been 323 

overlooked. By their nature, unknown unknowns are unquantifiable; they represent the 324 

deeper uncertainties that beset all scientific endeavors. By deep, I do not mean to imply 325 

that they are necessarily large. In this review I hope to show that the scope for revolutions 326 

in our understanding is limited. Nevertheless, refinement through the continual evolution 327 

of our understanding can only come if we accept that our understanding is incomplete. 328 

Unknown unknowns will only come to light with continued, diligent and sometimes 329 

imaginative investigation of the data and metadata. 330 

 331 

3. The Current State of Uncertainty in in situ SST Analyses 332 

 333 

The classification of uncertainties outlined in section 2 will now be used as a framework 334 

to assess uncertainties in the global data sets based on in situ measurements. Preliminary 335 

to this it will be helpful to define what exactly is meant by sea-surface temperature. 336 

 337 

3.1 Defining Sea-surface Temperature 338 

 339 

Traditionally, in situ SST analyses have been considered representative of the upper ten 340 

or so meters of the ocean. However, the near-surface temperature structure of the ocean 341 

can be rather complex. Under conditions of low wind speed and high insolation, a stable 342 

stratified layer of warm water can form near the surface. For a recent review see Kawai 343 

and Wada [2007].  The diurnal temperature range of the sea-surface can, under certain 344 



conditions, exceed 5 K and, somewhat attenuated, penetrate to many tens of meters 345 

[Prytherch et al., 2013]. This can lead to strong temperature gradients in the upper few 346 

meters of the ocean and consequently measurements made at the same time and location 347 

but at different depths can record quite different temperatures. Temperatures measured at 348 

the same depth but at different times of day can also differ markedly. 349 

 350 

Donlon et al. [2007] proposed that the depth of the measurement be recorded along with 351 

the temperature as a first step to reconciling measurements made at different depths and 352 

different times of day. Donlon et al. [2007] also introduced the concept of an SST 353 

foundation (SSTfnd) temperature. The current definition (https://www.ghrsst.org/ghrsst-354 

science/sst-definitions/) of “SSTfnd, is the temperature free of diurnal temperature 355 

variability, i.e., SSTfnd is defined as the temperature at the first time of the day when the 356 

heat gain from the solar radiation absorption exceeds the heat loss at the sea surface.” It is 357 

generally assumed that the upper few meters of the ocean are of approximately constant 358 

temperature at this point. SSTfnd has proved a practical reference point for comparing and 359 

combining satellite observations [Roberts-Jones et al., 2012] and was intended to provide 360 

“a more precise, well-defined quantity than the previous loosely-defined bulk SST” 361 

Donlon et al. [2007]. 362 

 363 

Unfortunately, such niceties of definition are not readily applicable to historical SST 364 

measurements and the effect of the interaction between measurement depth and water 365 

temperature on SST measurements in in situ archives is not clear. For many ships that 366 

measure the temperature of water drawn in below the surface, the depth of the 367 



measurements is not known and is likely to have changed depending on how heavily the 368 

ship was loaded. Nor is it clear to what extent any warm surface layer is mixed with 369 

cooler subsurface water by the passage of the ship or by the interaction of wind, water, 370 

Sun and hull [Amot, 1954; Stevenson, 1964]. Similar interactions have been noted closer 371 

to the surface with moored buoys [Kawai and Kawamura, 2000]. James and Fox [1972] 372 

found that ERI measurements from ships became progressively warmer relative to 373 

simultaneous bucket observations as the depth of the ERI measurement increased, a 374 

similar pattern to that seen by Kent et al. [1993]. Reynolds et al. [2010] found that 375 

measurements made by ships, which were largely ERI measurements in their study 376 

period, were on average warmer than nearby drifting buoy observations made nearer to 377 

the surface. 378 

 379 

Nonetheless, the concept of the foundation SST can be used to get an idea of how 380 

changing measurement depth might have affected SST trends in the absence of other 381 

considerations. Figure 1 shows an upper estimate of the potential size of the effect of 382 

changing measurement depth on global average SST over time (for calculation details see 383 

Appendix A). The assumption is that buckets and buoys measure in the upper 30 cm and 384 

engine room measurements are measuring SSTfnd. The estimated global average bias 385 

(relative to the 1961-1990 average) is less than 0.1 K at all times and from 1945 onwards 386 

is less than 0.05 K. The bias is largest in the early record when all measurements were 387 

made using buckets which sample in the upper meter of the water column. In the more 388 

recent period, the blend of buckets, ERI measurements and buoys leads to a smaller, 389 



time-varying bias. Although the size of the effect is modest at a global level, locally the 390 

average diurnal warming can exceed 0.5K, which would imply a larger effect. 391 

 392 

A related problem is that changing times of observation could potentially interact with the 393 

diurnal cycle of temperature leading to spurious trends in the data. Kent et al. [2010] note 394 

"The implicit assumption is that the sampling of conditions is regular enough that no 395 

regional or time-varying bias is introduced into the datasets by neglecting such effects." 396 

Ships currently make SST observations at regular intervals throughout the day, typically 397 

every four or six hours, which is sufficient to minimize the aliasing of diurnal cycles, 398 

particularly if the measurements are made at depth. During earlier periods when buckets 399 

were widely used, there were systematic changes in the time of observation that might 400 

have a more pronounced effect on average SSTs but this has not been quantified. 401 

 402 

Even when the measurement depth is known, there are potential problems. Metadata in 403 

WMO Publication 47 show that ships measure water temperatures through a wide range 404 

of depths from the near surface down to around 25 m [Kent et al., 2007]. Although the 405 

average depth was typically less than 10 m, the deepest measurements could be sampling 406 

water that is colder than the SSTfnd. How large this effect might be is not yet well 407 

understood. 408 

 409 

Chiodi and Harrison [2006] identified large-scale warm surface features using SST 410 

retrievals from microwave satellite instruments that persisted for several days. The warm 411 

layer was observed at night suggesting that the effect was independent from diurnal 412 



warming and they hypothesized that the multi-day warming might have been confined to 413 

a relatively shallow layer between 1 and 5 m thick. The implication is that the depth of 414 

the SST foundation temperature can vary rapidly and that it can be much shallower than 415 

the deepest in situ SST measurements. During a two week cruise, Matthews and 416 

Matthews [2013] found persistent temperature difference between the surface and 3 m 417 

depth in the tropical Pacific. Similar warm layers can be seen in data from moored buoys. 418 

Figure 2 shows time series from several moorings showing multi-day near-surface warm 419 

layers that do not penetrate down to 10 m and in some cases do not reach 5 m. 420 

Climatologies of mixed layer depth (MLD, see for example de Boyer Montégut [2004]) 421 

indicate large areas – in regions of upwelling and in the summer hemisphere – where the 422 

average MLD is shallower than 30 m, implying measurable temperature gradients within 423 

the depth range of ship SST measurements. Grodsky et al. [2008] also found differences 424 

between SST and temperatures in the mixed layer, which were largest in areas of 425 

persistent upwelling – most notably the eastern Pacific – but they did not consider the 426 

possible confounding effects of systematic errors in SST or other measurements. 427 

 428 

To isolate the specific effect of multi-day or persistent temperature stratification of the 429 

near-surface waters would require regular measurements of near-surface waters at a range 430 

of depths. Such an analysis is now possible thanks to the network of Argo floats [Castro 431 

et al., 2013]. In what follows, it should be noted that variations in depth will contribute to 432 

the variance of measurements and will therefore be partly, or wholly, counted in 433 

estimates of random and systematic measurement errors. 434 

 435 



3.2 Individual Observational Errors 436 

 437 

The general quality of raw SST measurements recorded in digital archives is mixed. 438 

Consequently, all SST analyses perform a stage of pre-screening, or quality control (QC) 439 

in order to remove observations of low quality and minimize the number of egregious 440 

errors. The size of the uncertainties of individual measurements will depend to a certain 441 

extent on the QC that is applied but the effects of differences in QC have not been 442 

assessed systematically.  443 

 444 

3.2.1 Random Measurement Errors 445 

 446 

Many estimates of random observational error uncertainty have been made. Although 447 

thermometers issued to ships by many port meteorological officers are calibrated, such 448 

calibration information is not routinely published, nor is there any guarantee that the 449 

temperature of a water sample measured by a well calibrated thermometer is equal to the 450 

actual SST when the sample has spent time in a bucket, or passed through the pipe work 451 

of a ship. Consequently, estimates of measurement uncertainty from the literature are 452 

empirical estimates derived from considerations of the variance of the data: for example, 453 

spatial [Lindau, 2003; Kent and Challenor, 2006; Emery et al., 2001] and temporal 454 

[Stubbs, 1965] semivariograms, by comparing collocated observations [O’Carroll et al., 455 

2008], by resampling [Shen et al., 2007], by using the variation of the variance with the 456 

number of observations [Rayner et al., 2006], or by comparison with a background field 457 

[Kent and Berry, 2008; Xu and Ignatov, 2010; Ingleby, 2010; Kennedy et al., 2011a; 458 



Atkinson et al., 2013]. Some of the analyses did not distinguish between random 459 

observational errors and systematic observational errors, tending to combine them into 460 

one estimate. In addition it is not always easy to separate the effects of spatial sampling 461 

from measurement errors particularly in regions of high SST variability [Castro et al., 462 

2012]. 463 

 464 

A single SST measurement from a ship has a typical combined random and systematic 465 

error uncertainty of around 1 K to 1.5 K. Results from individual analyses are 466 

summarized in Table 1. The studies are mostly based on data from 1970 onwards. 467 

 468 

Measurements are not all of identical quality. Kent and Challenor [2006] showed that in 469 

the period 1970-1997 the uncertainties of measurements from ships varied with location, 470 

time, measurement method and the country that recruited the ship. Uncertainties were 471 

estimated to be larger in the mid-1970s probably due to data being incorrectly transmitted 472 

in real time in the early days of the Global Telecommunication System. Their estimated 473 

uncertainty for engine room measurements was larger than for bucket measurements. 474 

Tabata [1978a] noted that bucket measurements could be accurate to 0.15 K, but that ERI 475 

measurements were nearly an order of magnitude worse (1.16 K). Ingleby [2010] 476 

estimated uncertainties for different subsets of the data and noted that manual VOSclim 477 

(a high-quality subset of the VOS fleet) measurements and automated measurements 478 

were of slightly higher quality than manual ship measurements in general. Beggs et al. 479 

[2012] showed that Australia Integrated Marine Observing System ships had 480 

uncertainties comparable to those from data buoys. Analyses that have looked at statistics 481 



for individual ships and buoys have found that some ships and buoys take much higher 482 

quality measurements than others [Kent and Berry, 2008; Brasnett, 2008; Kennedy et al., 483 

2011a; Atkinson et al., 2013]. The subset of ships (around 40-50% of ship observations) 484 

that passed the more stringent quality control procedures of Atkinson et al. [2013] had 485 

significantly lower measurement uncertainties assessed using the method of Kennedy et 486 

al. [2011a] than did the full fleet of ships. Early results on hull sensors reported by Emery 487 

et al. [1997] indicated the potential for these sensors to make accurate measurements. 488 

Indeed, Kent et al. [1993] found that hull sensors installed on ships in the Voluntary 489 

Observing Ships Special Observing Project for the North Atlantic (VSOP-NA) gave 490 

consistent measurements during the two year observing period. 491 

 492 

Drifting buoy measurements are generally more accurate and consistent than ship 493 

measurements, but there is a greater relative spread between the estimates which are 494 

summarized in Table 2. In part these differences are likely to arise from the level of pre-495 

screening that is applied to the observations. Where quality control is more stringent, 496 

estimated uncertainties are likely to be lower and, where the error variance of the 497 

observations is low already, the effects of quality control and processing choices are 498 

likely to be more pronounced [Xu and Ignatov, 2012]. Castro et al. [2012] considered 499 

differences between drifting buoys and two different satellite products and found that 500 

there was little difference between buoys produced by different manufacturers. There is 501 

some evidence that the quality of drifting buoy observations has improved slightly over 502 

time [Merchant et al., 2012], but this has not been conclusively demonstrated. As a 503 



comparison, temperature measurements from Argo have been reckoned to have an 504 

uncertainty of around 0.002K [Abraham et al., 2013]. 505 

 506 

Moored buoys have received less attention. Estimates of the measurement uncertainties 507 

are summarized in Table 3. The two studies [Kennedy et al., 2011a; Xu and Ignatov, 508 

2010] that examined moorings from the GTMBA separately from other moorings found 509 

that they had lower measurement error uncertainties. Castro et al. [2012] found that the 510 

standard deviations of differences between moorings and satellite data were lower for 511 

tropical moorings than for coastal moorings. They noted that in coastal waters there can 512 

be large local variations in temperature, which satellites cannot resolve. Some moorings 513 

along coastlines are located in estuaries and river mouths and are therefore less likely to 514 

be representative of open ocean areas. This is perhaps one reason why Wilkerson and 515 

Earl [1990], who studied US coastal buoys, found such large standard deviations between 516 

ships and moorings (Table 1). Merchant et al. [2012] found that few coastal moorings 517 

met their required stability criteria. 518 

 519 

As noted in section 2, random observational errors are of relatively minor importance in 520 

large-scale averages (see Figure 8 and section 3.5), particularly in the modern period 521 

when observations are numerous. For an uncertainty of 1.0 K for a single observation due 522 

to random observational error, the resulting uncertainty of a global annual average based 523 

on 10000 observations would be of order 0.01 K. 524 

 525 

3.2.2 Random and Systematic Measurement Errors 526 



 527 

Kent and Berry [2008] and Kennedy et al. [2011a, 2011b] decomposed the observational 528 

errors into random and systematic components. Brasnett [2008] and Xu and Ignatov 529 

[2010] implicitly used the same error model – their analyses output the same statistics 530 

produced by Kent and Berry [2008] – and the results are indeed very similar (Figure 3). 531 

Estimates are summarized in Table 4. The possibility of correlated measurement errors is 532 

also implicitly allowed for by Ishii et al. [2003] and Hirahara et al. [2013] who merge 533 

observations from a single ship into a super observation before calculating uncertainties. 534 

Adding the uncertainties in quadrature gives a combined observational uncertainty of 535 

between 1 and 1.5 K, consistent with earlier estimates (Table 1) that did not differentiate 536 

between the two. 537 

 538 

In the studies listed in Table 4, the systematic component of the error was assumed to be 539 

different for each ship, but this does not on its own capture the effects of pervasive 540 

systematic errors. The data from Kent and Berry [2008], Brasnett [2008] and Xu and 541 

Ignatov [2010] also show that the systematic observational error component for some 542 

ships varies from month to month suggesting that the partitioning of systematic and 543 

random effects is also a function of the time period considered. 544 

 545 

The addition of a systematic component has a pronounced effect on the uncertainty of 546 

large-scale averages comprising many observations. Kennedy et al. [2011b] estimated 547 

that the effect of the correlations between errors was to increase the uncertainty of the 548 

global annual average SST anomaly due to measurement error from 0.01 K (uncorrelated 549 



case) to more than 0.05 K in the 19th Century and to more than 0.01 K even in the well-550 

observed modern period when millions of observations contribute to the annual global 551 

average (see Figure 8). Systematic errors could also have a pronounced effect on 552 

reconstructions when they project onto large-scale modes of variability, or on the 553 

estimation of EOFs. However, because of the assumed independence of the errors 554 

between ships, the correlated component of the uncertainty remains relatively 555 

unimportant for the analysis of long-term trends of large-scale averages. Pervasive 556 

systematic errors, which are correlated across a large proportion of the global fleet, 557 

(section 3.2) are far more important from that point of view. 558 

 559 

One of the difficulties with estimating the uncertainties associated with systematic errors 560 

from individual ships is that not all observations in ICOADS can be associated with an 561 

individual ship. Some of the reports have no more information than a location, time and 562 

SST measurement. Kennedy et al. [2011b] had to make estimates of how the uncertainty 563 

arising from systematic errors behaved as the number of observations increased by 564 

considering the behavior at times when the majority of reports contained a ship name or 565 

call-sign. They assumed that observations without call signs behaved in the same way. 566 

Kent and Berry [2008] suggested that only ship reports with extant metadata be used in 567 

climate analyses of the modern period to minimize such ambiguities. For earlier periods, 568 

the gains in improved quantification of uncertainty would need to be balanced against the 569 

increased uncertainty arising from reduced coverage. 570 

 571 



Many gridded SST data sets and analyses, as well as the studies that depend on them, 572 

assume that the observational errors are normally distributed, but this is not necessarily 573 

the case for individual observations. Kennedy et al. [2011a] investigated the properties of 574 

observations that had been quality controlled using the procedures described in Rayner et 575 

al. [2006]. They found that in comparisons with satellite observations the distributions of 576 

errors were 'fat-tailed' with the distribution of errors having a positive kurtosis. In the 577 

creation of gridded data sets from SST observations, the effects of outliers can be 578 

minimized somewhat by the use of resistant or robust statistics such as Winsorised, or 579 

trimmed means (see e.g., Rayner et al. [2006]). The effect of outliers is further reduced in 580 

large scale averages and the distribution of errors in large scale averages tends towards a 581 

normal distribution as the number of observations increases [Kennedy et al., 2011a]. 582 

 583 

3.2.3 Summary of Individual Observational Errors 584 

 585 

Many estimates of uncertainties of ship and buoy SST measurements have been made. A 586 

typical SST measurement made by a ship has an uncertainty of around 1-1.5K and a 587 

drifting buoy observation a typical uncertainty of around 0.1-0.7K. More recent studies 588 

split these uncertainties into random and systematic components, which better describe 589 

the error characteristics of these platforms. However, a lack of metadata, most 590 

particularly ship call signs, hampers the application of such an error model and it does not 591 

capture behavior seen in SST measurements such as non-Normal distributions or 592 

systematic errors that vary on time scales from months to years. 593 

 594 



3.3 Pervasive Systematic Errors and Biases 595 

 596 

Kent et al. [2010] conducted a review of literature on pervasive systematic errors (often 597 

termed ‘biases’) in in situ SST measurements. Many studies have looked at the 598 

differences in pervasive systematic errors between measurement methods, but fewer have 599 

attempted to adjust SST records to minimize the effects of changes in instrumentation. 600 

 601 

3.3.1 Bias Adjustments 1850 to 1941 602 

 603 

The need for adjustments to minimize the cold bias associated with bucket measurements 604 

in the period from 1850 to 1941 is well established. Folland and Parker [1995] calculated 605 

adjustments using a simplified physical model of the buckets used to make SST 606 

measurements combined with fields of climatological air-temperature, SST, humidity, 607 

wind and solar radiation. Some parameters in their model were taken from literature and 608 

others were estimated from the data. The length of time between the water sample leaving 609 

the sea surface and the measurement was estimated by integrating their model until a 610 

seasonal cycle in the SST was minimized. The fractional contributions of canvas and 611 

wooden buckets were estimated by assuming a linear change over time from a mix of 612 

wooden and canvas buckets to predominantly canvas buckets by 1920. The rate of this 613 

change was estimated by minimizing the air-sea temperature difference in the tropics. 614 

The same method was also used in Rayner et al. [2006] and Kennedy et al. [2011c]. 615 

 616 



Smith and Reynolds [2002] took an alternative approach. They adjusted SSTs based on 617 

statistical relationships between Night Marine Air Temperature (NMAT) and SST. The 618 

resulting adjustments were different to those produced by Folland and Parker [1995] 619 

although the magnitude of the global average adjustment was similar. Both Folland and 620 

Parker [1995] and Smith and Reynolds [2002] found a long term increase in the 621 

magnitude of the adjustments – that is, an increasing cold bias – from the 1850s to 1941. 622 

 623 

The methods employed by Folland and Parker [1995] and Smith and Reynolds [2002] are 624 

not independent as they both rely on NMAT, which have their own particular pervasive 625 

systematic errors [Bottomley et al., 1990; Rayner et al., 2003; Kent et al., 2013]. The use 626 

of NMAT to adjust SST data is, to an extent, unavoidable as the heat loss from a bucket 627 

does depend on the air-sea temperature difference.  628 

 629 

In data sets based on a ICOADS release 2.0 and later, the earlier bucket adjustments were 630 

found to over-adjust SST in the period 1939-1941. Rayner et al. [2006] and Smith et al. 631 

[2008] ramped the adjustments down to zero over this period. Kennedy et al. [2011c] 632 

showed that the ramp-down corresponded to new data in that release of ICOADS that 633 

included a large fraction of ERI measurements. 634 

 635 

3.3.2 Bias Adjustments 1941 to Present 636 

 637 

In the post-1941 period, Folland and Parker [1995], Smith and Reynolds [2003], Smith 638 

and Reynolds [2005] and Rayner et al. [2006] opted not to adjust the data because they 639 



found no clear evidence of the need for adjustments. However, Rayner et al. [2006] did 640 

identify biases in Japanese and Dutch data after the Second World War. Thompson et al. 641 

[2008] identified a discontinuity in global-average SST associated with a change in the 642 

composition of ICOADS release 2.1 in late 1945. Reynolds et al. [2010] quantified a 643 

relative bias between ship and drifting buoy measurements that they thought could lead to 644 

an artificial cooling of the global average SST. Kent et al. [1999] applied adjustments to 645 

ERI measurements, but removed the adjustment from later versions of their data set.  646 

 647 

Kennedy et al. [2011c] and Hirahara et al. [2013] developed bias adjustments for the 648 

period 1941 onwards. Kennedy et al. [2011c] used metadata from ICOADS, WMO 649 

Publication 47, observer instructions, technical reports and scientific papers to estimate 650 

biases for individual measurement types and to assign a measurement method to as many 651 

observations as possible. Hirahara et al. [2013] used a narrower range of metadata. By 652 

comparing subsamples of the data for which the metadata were known, they could 653 

estimate appropriate metadata assignments for the remainder. 654 

 655 

To estimate the bias adjustments for long-term analyses, an understanding is needed of 656 

how biases varied for individual components of the observing system. Several studies 657 

have examined ERI and bucket biases in ship data [Brooks, 1926; Brooks, 1928; Lumby, 658 

1927; Collins et al., 1975; Wahl, 1948; Roll, 1951; Kirk and Gordon, 1952; Amot, 1954; 659 

Perlroth, 1962; Saur, 1963; Walden, 1966; Knudsen, 1966; Tauber, 1969; James and 660 

Fox, 1972; Tabata, 1978a, 1978b; Folland et al., 1993; Kent et al., 1993] but only Kent 661 

and Kaplan [2006] provide information that is time-resolved and traceable back to 662 



ICOADS. There is a single study of pervasive systematic errors in hull sensor 663 

measurements [Kent et al., 1993], which analyzed data from a small number of ships over 664 

a two year period and found that hull sensors were relatively unbiased and showed no 665 

systematic change of bias with depth. 666 

 667 

Few studies have looked at the long-term stability and calibration drifts of drifting buoys. 668 

Reverdin et al. [2010] installed 16 drifters with high quality temperature sensors in 669 

addition to their usual temperature sensors and found that the temperatures measured by 670 

the drifters showed inaccuracies that were larger than the 0.1 °C target accuracy and that 671 

they exhibited significant calibration drifts. This is consistent with the behavior seen by 672 

Atkinson et al. [2013]. 673 

 674 

3.3.3 Estimating Uncertainty in Bias Adjustments 675 

 676 

Folland and Parker [1995] did not explicitly estimate the uncertainties in their 677 

adjustments. Rayner et al. [2006] explored the parametric uncertainty in the Folland and 678 

Parker [1995] adjustments using a Monte-Carlo method. In Smith and Reynolds [2004] 679 

the uncertainty in the bias adjustments was estimated by taking the mean-squared 680 

difference between the Smith and Reynolds [2002] adjustments and the Folland and 681 

Parker [1995] adjustments, a first-order estimate of the structural uncertainty. 682 

 683 

Kennedy et al. [2011c] used a Monte-Carlo method to explore the parametric uncertainty 684 

within their particular approach to bias adjustment. Hirahara et al. [2013] also provide 685 



uncertainties on their adjustments that are a combination of analysis uncertainties and 686 

regression uncertainty. 687 

 688 

An important component of the uncertainty of adjustments for the effects of persistent 689 

systematic errors arises from a lack of knowledge concerning how the measurements 690 

were made. Metadata are often missing, incomplete or ambiguous and sometimes 691 

different sources give conflicting information. Kent et al. [2007] assessed metadata from 692 

ICOADS and WMO Publication 47. They found disagreement in around 20-40% of cases 693 

where metadata were available from both sources. Kennedy et al. [2011c] allowed for up 694 

to 50% uncertainty in metadata assignments based on the discrepancy between observer 695 

instructions and measurement methods recorded in WMO Publication 47. Hirahara et al. 696 

[2013] used differences between subsets of data to infer the fraction of observations made 697 

using different methods.  698 

 699 

Figure 6 compares estimated biases and metadata assignments from Kennedy et al. 700 

[2011c] and Hirahara et al. [2013]. It shows that from 1945, the estimated biases agree 701 

within their parametric uncertainty ranges (Figure 6a) and that the fractions of 702 

measurement methods estimated by Kennedy et al. [2011c] from literature and other 703 

metadata are consistent with the fractions inferred from the data by Hirahara et al. [2013] 704 

(Figure 6b). However, there are two key differences that highlight the importance of 705 

structural uncertainty for understanding the bias adjustments. The first difference is that 706 

the phasing out of uninsulated buckets in Hirahara et al. [2013] happens earlier and 707 

faster than allowed for in the parametric uncertainty analysis of Kennedy et al. [2011c] 708 



(Figure 6c). In Hirahara et al. [2013] the changeover starts in the 1940s and is especially 709 

rapidly in the early 1960s, being nearly complete by around 1962. The second difference 710 

is that the estimated bias during the Second World War is higher in the analysis of 711 

Hirahara et al. [2013] than in Kennedy et al. [2011c]. Further work is needed to 712 

understand these differences and more complete, more reliable metadata would help 713 

reduce uncertainty in SST records. 714 

 715 

In the post-1941 period, Smith and Reynolds [2003] and Smith and Reynolds [2005] 716 

estimated the uncertainty due to pervasive systematic errors by considering the difference 717 

in estimated bias between measurements made in the engine rooms of the ships and 718 

measurements from all ships between 1994 and 1997. They estimated a minimum 1-719 

sigma standard error in the global average of around 0.015 K. The range is similar to, 720 

albeit slightly narrower than, that estimated by Kennedy et al. [2011c]. The difficulty 721 

with the approach taken by Smith and Reynolds [2003], Smith and Reynolds [2005] and 722 

Smith et al. [2008] is that the quoted uncertainty range is considered to be symmetric 723 

whereas Kennedy et al. [2011c] and Hirahara et al. [2013] suggest that the true global 724 

mean is consistently higher than Smith et al. [2008] in the period 1945-1960 (Figure 9).  725 

It also suggests that the estimate of Smith et al. [2008] in the post World War 2 period 726 

(1945-1950s) was slightly too conservative because it compared ERI measurements with 727 

a mixture of ERI and insulated bucket measurements, whereas large numbers of 728 

observations were made using buckets [Kennedy et al., 2011c; Hirahara et al., 2013]. 729 

 730 

3.3.4 Refinements to Estimates of Pervasive Systematic Errors 731 



There are some factors that have not been explicitly considered in estimates of biases. 732 

Refinements to the models of pervasive systematic errors will address with factors that 733 

are implicitly included in random and systematic measurement uncertainties. If it is 734 

possible to estimate the bias on a ship-by-ship, or observation-by-observation basis, 735 

taking account of the conditions peculiar to that observation, then it might be expected 736 

that uncertainties associated with random and systematic observational error will 737 

decrease. 738 

 739 

Both Kennedy et al. [2011c] and Hirahara et al. [2013] make simplifying assumptions 740 

about the systematic errors associated with modern insulated buckets. Various bucket 741 

designs have been used since the end of the Second World War, which are likely to have 742 

different bias characteristics. Physical models could be developed for each type of bucket 743 

similar to those used by Folland and Parker [1995], or statistical methods could be used 744 

to estimate the biases as was done in Kent and Kaplan [2006]. 745 

 746 

Other simplifying assumptions used in all analyses include such things as assuming that 747 

changes in the observing system happened linearly. Evidence suggests that changes in 748 

measurement method were not always monotonic and sometimes happened abruptly (see 749 

Figure 6). Improved metadata or more sophisticated statistical techniques could help 750 

assess these uncertainties. 751 

 752 

An uncertainty associated with pervasive systematic biases, which is not explicitly 753 

resolved by current analyses, arises when the conditions at the time of the measurement 754 



deviate from the climatological values assumed by the bias correction scheme. If, for 755 

instance, the air sea temperature difference is larger than that assumed by the Folland and 756 

Parker [1995] scheme, then there will be an additional systematic uncertainty that is 757 

correlated strongly across synoptic spatial and temporal scales with a potential long-term 758 

component where differences persist for months or years. Likewise conditions vary 759 

during the day. Such discrepancies could be assessed by evaluating the systematic error 760 

using local conditions. Such information could be taken from reanalyses, or an 761 

appropriate bucket model could be explicitly included when SST observations are 762 

assimilated into ocean-only and coupled reanalyses. 763 

 764 

3.3.5 Assessing the Efficacy of Bias Adjustments 765 

 766 

The efficacy of the bias adjustments and their uncertainties are difficult to assess. Folland 767 

and Parker [1995] presented wind tunnel and ship board tests and also used their 768 

adjustments to estimate the differences between bucket and ERI measurements in broad 769 

latitude bands. These limited comparisons showed that their model could predict 770 

experimental results to better than 0.2 K. Folland and Salinger [1995] presented direct 771 

comparisons between air temperatures measured in New Zealand and SST measurements 772 

made nearby. Smith and Renyolds [2002] used oceanographic observations to assess their 773 

adjustments and those of Folland and Parker [1995]. In regions with sufficient 774 

observations they found that the magnitude of the Smith and Reynolds [2002] adjustments 775 

better explained the differences between SSTs and oceanographic observations, but the 776 

phase of the annual cycle was better captured by Folland and Parker [1995]. Hanawa et 777 



al. [2000] showed that the Folland and Parker [1995] adjustments improved the 778 

agreement between Japanese ship data and independent SST data from Japanese coastal 779 

stations in two periods: before and after the Second World War. However, the collection 780 

of ship data (COADS and Kobe collections) used in Hanawa et al. [2000] might not have 781 

had the same bias characteristics as assumed by Folland and Parker [1995] (based on the 782 

Met Office Marine Data Bank) in developing their adjustments. Other long term coastal 783 

records of water temperature exist. Some of these [Hanna et al., 2006; MacKenzie and 784 

Schiedek, 2007; Cannaby and Hüsrevoğlu, 2009] have been compared to open ocean SST 785 

analyses (though not with the express intention of assessing bias adjustments), others 786 

have not [Maul et al., 2001; Nixon et al., 2004; Breaker et al. 2005].  787 

 788 

More recently, Matthews [2013] and Matthews and Matthews [2013] reported field 789 

measurements of SST made using different buckets and simultaneous thermo-salinograph 790 

measurements. They found negligible biases between different buckets, but their 791 

experimental design involved larger buckets and shorter measurement times than were 792 

used in Folland and Parker [1995]. Nevertheless, this highlights the potential for well-793 

designed field experiments to improve understanding of historical biases. 794 

 795 

An analysis by Gouretski et al. [2012] compared SST observations with near-surface 796 

measurements (0-20 m depth) taken from oceanographic profiles. It shows that the 797 

overall shape of the global average is consistent between the two independent analyses, 798 

but that there are differences of around 0.1 K between 1950 and 1970. These are most 799 

likely attributable to residual biases, although, as noted above, actual physical differences 800 



between the sea surface and the 0-20 m layer cannot be ruled out. Similar differences are 801 

seen when comparing SST with the average over the 0-20 m layer of the analysis of 802 

Palmer et al. [2007] (not shown). 803 

 804 

Since the late 1940s, global and hemispheric average SST anomalies calculated 805 

separately from adjusted bucket measurements and adjusted ERI measurements showed 806 

consistent long-term and short-term changes [Kennedy et al., 2011c]. From the 1990s, 807 

there are also plentiful observations from drifting and moored buoys. 808 

 809 

In contrast to the modern period, the period before 1950 is characterized by a much less 810 

diverse observing fleet. During the Second World War, the majority of measurements 811 

were ERI measurements. Before the war, buckets were the primary means by which SST 812 

observations were made. This makes it very difficult to compare simultaneous 813 

independent subsets of the data. In periods with fewer independent measurement types, it 814 

might be possible to use changes in environmental conditions such as day-night 815 

differences or air-sea temperature differences to diagnose systematic errors in the data.  816 

 817 

Qualitative agreement between the long-term behavior of different global temperature 818 

measures – including NMAT, SST and land temperatures – gives a generally consistent 819 

picture of historical global temperature change (Figure 5), but a direct comparison is less 820 

informative about uncertainty in the magnitude of the trends. Kent et al. [2013] showed 821 

similar temporal evolution of NMAT and SST in broad latitude bands in the northern 822 

hemisphere and tropics. However there are differences of up to 0.4 K in the band from 823 



55°S to 15°S between 1940 and 1960. Studies such as that by Folland [2005] can be used 824 

to make more quantitative comparisons. Folland [2005] compared measured land air 825 

temperatures with land air temperatures from an atmosphere-only climate model that had 826 

observed SSTs (with and without bucket adjustments) as a boundary forcing. He found 827 

much better agreement when the SSTs were adjusted. Atmospheric reanalyses also use 828 

observed SSTs along with other observed meteorological variables to infer a physically 829 

consistent estimate of land surface air temperatures. Simmons et al. [2010] showed that 830 

land air temperatures from a reanalysis driven by observed SSTs were very close to those 831 

of CRUTEM3 [Brohan et al., 2006] over the period 1973 to 2008. Compo et al. [2013] 832 

showed similar results for the whole of the twentieth century although the agreement was 833 

not quite so close. Although their intention was to show that land temperatures were 834 

reliable, their results indicate that there is broad consistency between observed SSTs and 835 

land temperatures. 836 

 837 

3.3.6 Summary of Pervasive Systematic Errors and Biases 838 

 839 

The need to adjust SST data prior to 1941 to account for a cold bias associated with the 840 

use of canvas and wooden buckets is well established. There is also good evidence for the 841 

need to adjust data after 1941. Adjustments for these pervasive systematic errors have 842 

been developed. There are, at all times, two different estimates of the bias adjustments, 843 

which are in general agreement and give a first indication of the structural uncertainty. 844 

Evidence for the efficacy of the adjustments comes from wind tunnel tests, comparisons 845 

with coastal sites and consistency with subsurface ocean temperatures, marine air 846 



temperatures and land air temperatures. Contrary evidence comes from a recent field 847 

experiment in the Pacific. Uncertainty could be better understood by: improvements in 848 

metadata; carefully designed fields tests of buckets and other measurements methods; the 849 

creation of new independent evaluations of the biases; and continued comparison 850 

between SST and related variables. 851 

 852 

3.4 Sampling Uncertainty 853 

 854 

The magnitude of the grid-box sampling uncertainty depends on the correlation and 855 

variability of SSTs within the grid box, on the number of observations contributing to the 856 

grid-box average and where in the grid box they are located. High average correlations 857 

within a grid box, low variability and large numbers of observations lead to lower 858 

uncertainty estimates. Conversely areas of high variability or low average correlation, 859 

such as frontal regions or western boundary currents, tend to have higher grid-box 860 

sampling uncertainties as do grid-box averages based on smaller numbers of 861 

observations. The estimation of uncertainties arising from the sparseness of observations 862 

at scales from grid box level to global has been approached in a number of ways. 863 

 864 

3.4.1 Grid-box Sampling Uncertainty 865 

 866 

Weare and Strub [1981] counted the number of observations needed to minimize 867 

sampling uncertainty in a 5°x5° grid box by ensuring that the observations were evenly 868 

split between all areas of the grid box, month and diurnal cycle. From this, they 869 



concluded that even sampling could not be achieved with fewer than eleven observations, 870 

but that in practice more than eleven, sometimes many more, would be needed. 871 

 872 

Rayner et al. [2006] estimated a combined measurement and grid-box sampling 873 

uncertainty by considering how the variance of the grid-box average changed as a 874 

function of the number of observations. The technique picked up spatial variations in 875 

grid-box sampling uncertainty associated with regions of high variability. Rayner et al. 876 

[2009] showed results from an unpublished analysis by Kaplan, in which spatially 877 

complete satellite data were used to estimate the variability within 1°x1° grid boxes. The 878 

same features were seen as in the Rayner et al. [2006] analysis, allowing for differences 879 

in resolution, although the uncertainties estimated by Kaplan tended to be higher. She et 880 

al. [2007] also used sub-sampling of satellite data to estimate grid-box sampling 881 

uncertainty for the Baltic Sea and North Sea. Kent and Berry [2005] showed that 882 

separately assessing measurement and sampling uncertainties can help to decide whether 883 

more, or better, observations are needed to reduce the average uncertainty in an 884 

individual grid box. 885 

 886 

Morrissey and Greene [2009] developed a theoretical model for estimating grid-box 887 

sampling uncertainty that accounted for non-random sampling within a grid box. This 888 

was an extension of the method used to estimate sampling uncertainties in land 889 

temperature data and global temperatures by Jones et al. [1997]. Land temperatures are 890 

measured by stations at fixed locations that take measurements every day. Marine 891 

temperature measurements are taken at fixed times, but the ships and drifting buoys move 892 



during a particular month. Morrissey and Greene [2009] do not provide a practical 893 

implementation of their approach, only a theoretical framework. Kennedy et al. [2011b] 894 

extended the concept of the average correlation within a grid box developed in Jones et 895 

al. [1997] to incorporate a time dimension. Kent and Berry [2008] used a temporal 896 

autocorrelation model that took account of the days within the period that were sampled, 897 

and the days which were not, to estimate the temporal sampling uncertainty. An 898 

alternative to the Jones et al. [1997] method for land data was provided by Shen et al. 899 

[2007], but it has not yet been applied in SST analyses. 900 

 901 

It is possible that the locations visited by ships and drifting buoys are related and, to an 902 

extent, dictated by meteorological and oceanographic conditions. Ships have long used 903 

the prevailing currents in the Atlantic to speed their progress and it is in the interest of 904 

almost all shipping to steer clear of hurricanes and other foul weather. Bad weather is 905 

also likely to have influenced how and when observations were made. Conversely, the 906 

conditions in which a sail ship might become becalmed could lead to over sampling of 907 

higher SSTs. Drifting buoys drift, and a drifter trapped in an eddy might persistently 908 

measure temperatures that are representative of only a very limited area. Drifters also 909 

tend to drift out of areas of upwelling and congregate in other areas. 910 

 911 

The effect of uneven sampling can be reduced by the creation of ‘super observations’ 912 

during the gridding process [Rayner et al., 2006], or data preparation stage [Ishii et al., 913 

2003], but such processes cannot readily account for the situations where no observations 914 

are made at all. 915 



 916 

As noted by Rayner et al. [2006], the grid-box sampling uncertainties are likely to be 917 

uncorrelated or only weakly correlated between grid boxes so the effect of averaging 918 

together many grid boxes will be to reduce the combined grid-box sampling uncertainty 919 

by a factor proportional to the square root of the number of grid boxes. Consequently the 920 

sampling component of the uncertainty will be of minor importance in the global annual 921 

average (Figure 8). 922 

 923 

3.4.2 Large-scale Sampling Uncertainty 924 

 925 

Because Rayner et al. [2006] and Kennedy et al. [2011b] make no attempt to estimate 926 

temperatures in grid boxes which contain no observations, an additional uncertainty had 927 

to be computed when estimating area-averages. Rayner et al. [2006] used Optimal 928 

Averaging (OA) as described in Folland et al. [2001] which estimates the area average in 929 

a statistically optimal way and provides an estimate of the large-scale sampling 930 

uncertainty. Kennedy et al. [2011b] subsampled globally complete fields taken from three 931 

SST analyses and obtained similar uncertainties from each. The uncertainties of the 932 

global averages computed by Kennedy et al. [2011b] were generally larger than those 933 

estimated by Rayner et al. [2006]. Palmer and Brohan [2011] used an empirical method 934 

based on that employed for grid-box averages in Rayner et al. [2006] to estimate global 935 

and ocean basin averages of subsurface temperatures. 936 

 937 



The Kennedy et al. [2011b] large-scale sampling uncertainty of the global average SST 938 

anomaly is largest (with a 2-sigma uncertainty of around 0.15°C) in the 1860s when 939 

coverage was at its worst (Figure 8). This falls to 0.03 °C by 2006. The fact that the 940 

large-scale sampling uncertainty should be so small – particularly in the nineteenth 941 

century – may be surprising. The relatively small uncertainty might simply be a reflection 942 

of the assumptions made in the analyses used by Kennedy et al. [2011b] to estimate the 943 

large-scale sampling uncertainty. Indeed, Gouretski et al. [2012] found that subsampling 944 

an ocean reanalysis underestimated the uncertainty when the coverage was very sparse. 945 

However, estimates made by Jones [1994] suggest that a hemispheric-average land-946 

surface air temperature series might be constructed using as few as a 109 stations. For 947 

SST, the variability is typically much lower than for land temperatures though the area is 948 

larger. It seems likely that the number of stations needed to make a reliable estimate of 949 

the global average SST anomaly would not be vastly greater. 950 

 951 

Another way of assessing the large-scale sampling uncertainty is to look at the effect of 952 

reducing the coverage of well-sampled periods to that of the less-well-sampled nineteenth 953 

century and recomputing the global average (see for example Parker [1987]). Figure 4 954 

shows the range of global annual average SST anomalies obtained by reducing each year 955 

to the coverage of years in the nineteenth century. So, for example, the range indicated by 956 

the blue area in the upper panel for 2006 shows the range of global annual averages 957 

obtained by reducing the coverage of 2006 successively to that of 1850, 1851, 1852... and 958 

so on to 1899. The red line shows the global average SST anomaly from data that have 959 

not been reduced in coverage. For most years, the difference between the sub-sampled 960 



and more fully sampled data is smaller than 0.15K and the largest deviations are smaller 961 

than 0.2K. For the large-scale sampling uncertainty of the global average to be 962 

significantly larger would require the variability in the nineteenth century data gaps to be 963 

different from that in the better-observed period. 964 

 965 

3.4.3 Summary of Sampling Uncertainty 966 

 967 

Uncertainties arising from under-sampling at a grid-box level are easy to assess if the 968 

observations can be assumed to be randomly distributed within a grid box. However, 969 

sampling is not random. The effect of this is reduced in most analyses by the calculation 970 

of super-observations that combine nearby measurements; however, optimal methods to 971 

minimize uncertainty are not generally applied. Simple estimates of large-scale sampling 972 

uncertainty in the global-average SST from subsampling well-sampled periods suggest a 973 

value of at most 0.2K even in poorly observed years. However, there are potential 974 

limitations of these simple methods and they should be considered together with the 975 

range of statistical reconstructions to get a more complete idea of uncertainty in large-976 

scale averages. 977 

 978 

3.5 Reconstruction Techniques and Other Structural Choices 979 

 980 

Creating global SST analyses is challenging because of the relative sparseness of 981 

observations before the satellite era and the non-stationarity of the changing climate. A 982 

large number of different SST data sets based on in situ data have been produced 983 



employing a variety of statistical methods. The structural uncertainties associated with 984 

estimating SSTs in data voids and at data-sparse times are therefore somewhat better 985 

explored than structural uncertainties in the pervasive systematic errors. Data sets used in 986 

this paper have been summarized in Table 5 and global averages for these data sets are 987 

shown in Figure 5.  988 

 989 

3.5.1 Critique of Reconstruction Techniques 990 

 991 

The current generation of SST analyses are the survivors of an evolutionary process 992 

during which less effective techniques were discarded in favor of better adapted 993 

alternatives. It is worthwhile to ask how, as a group, they address the range of criticisms 994 

that have arisen during that time.  995 

 996 

One concern is that patterns of variability in the modern era which are used to estimate 997 

the parameters of the statistical models might not faithfully represent variability at earlier 998 

times [Hurrell and Trenberth, 1999]. The concern is allayed somewhat by the range of 999 

approaches taken. The method of Kaplan et al. [1998] which uses the modern period to 1000 

define Empirical Orthogonal Functions (EOFs, see Hannachi et al., [2007] for a review 1001 

of the use of EOFs in the atmospheric sciences) tends to underestimate the long-term 1002 

trend. This is particularly obvious in the nineteenth and early twentieth century. Rayner et 1003 

al. [2003] extended the method by defining a low-frequency, large-scale EOF that better 1004 

captured the long-term trend in the data. However, it is possible that a single EOF will 1005 

fail to capture all the low-frequency changes. Smith et al. [2008] allow for a non-1006 



stationary low-frequency component in their analysis which contributes a large 1007 

component of uncertainty in the early record, but their reconstruction reproduces less 1008 

high-frequency variability at data-sparse epochs. Ilin and Kaplan [2009] and Luttinen and 1009 

Ilin [2009, 2012] used algorithms that make use of data throughout the record to estimate 1010 

the covariance structures and other parameters of their statistical models. The three 1011 

algorithms use either large-scale patterns (VBPCA, GPFA) or local correlations (GP). 1012 

Differences between the three methods are generally small at the global level, but they 1013 

diverge during the 1860s when data are few. There is a caveat that despite using all 1014 

available observations, such methods will still tend to give a greater weight to periods 1015 

with more plentiful observations. Ishii et al. [2005] use a simply-parameterized local 1016 

covariance function for interpolation. Their optimal interpolation (OI) method was 1017 

assessed by Hirahara et al. [2013] to have larger analysis uncertainties and larger cross-1018 

validation errors than the EOF-based COBE-2 analysis. However, the use of a simple 1019 

optimal interpolation method has the advantage that it makes fewer assumptions 1020 

regarding the stationarity of large-scale variability. 1021 

 1022 

Another concern is that methods that use EOFs to describe the variability might 1023 

inadvertently impose spurious long-range teleconnections that do not exist in the real 1024 

world [Dommenget, 2007]. Smith et al. [2008] explicitly limit the range across which 1025 

teleconnections can act. Ishii et al. [2005] used a local covariance structure in their 1026 

analysis. Analyses such as Kaplan et al. [1998] and Rayner et al. [2003] make the 1027 

assumption that the EOFs retained in the analysis capture actual variability in the SST 1028 

fields, but do not explicitly differentiate between variability that can be characterized 1029 



purely in terms of local co-variability and large-scale teleconnections. Karspeck et al. 1030 

[2012] note that there is not a clear separation of scales and that joint estimation of local 1031 

and large scale covariances is the logical way to approach the problem.  1032 

 1033 

Most, if not all, statistical methods have a tendency to lose variance either because they 1034 

do not explicitly resolve small scale processes [Kaplan et al., 1998; Smith et al., 2008], 1035 

because the method tends towards the climatological average in the absence of data [Ishii 1036 

et al., 2005; Berry and Kent, 2011], or because they tend to smooth the data. Rayner et al. 1037 

[2003] used the method of Kaplan et al. [1998] but blended high-quality gridded 1038 

averages back into the reconstructed fields to improve small scale variability where 1039 

observations were plentiful. Karspeck et al. [2012] analyzed the residual difference 1040 

between the observations and the analysis of Kaplan et al. [1998] analysis using local 1041 

non-stationary covariances, and then drew a range of samples from the posterior 1042 

distribution in order to provide consistent variance at all times and locations. 1043 

 1044 

One assumption common to most of the above analysis methods is that SST variability 1045 

can be decomposed into a small set of distinct patterns that can be combined linearly to 1046 

describe any SST field. However, it is well known that phenomena such as El Niño and 1047 

La Niña are not symmetric and that the equations that describe the evolution of SST are 1048 

non-linear. Consequently, current analyses might not capture the full range of behavior in 1049 

real SST fields [Karnauskas, 2013]. Current generation SST analyses are based on the 1050 

assumption that individual measurement errors are uncorrelated and that errors are 1051 

normally distributed. Analysis techniques that incorporate information about the 1052 



correlation structure of the errors have not yet been developed. Such techniques are likely 1053 

to be more computationally expensive and lead to larger analysis uncertainties. 1054 

 1055 

3.5.2 Other Structural Choices 1056 

 1057 

Analyses based on SST anomalies will also have an uncertainty associated with the 1058 

climatological reference fields used to calculate the anomalies. Sub-surface analyses have 1059 

been shown to be particularly sensitive to choice of base period [Lyman et al., 2010], due 1060 

in a large part to the relative sparseness of the data sets. Although the problem is likely to 1061 

be less severe for the better-observed SST record, there are still regions – the Southern 1062 

Ocean and Arctic Ocean – where observations are few. Yasunaka and Hanawa [2011] 1063 

found that differences between long-term-average SSTs from different analyses were 1064 

typically less than 0.5 K, but that they exceeded 1 K in places. The largest differences 1065 

were at high latitudes and in regions with strong SST gradients. There are also likely to 1066 

be pervasive systematic errors in the climatological averages [Kennedy et al., 2011c].  1067 

 1068 

Other structural differences arise from the way that SSTs are extended to the edge of the 1069 

sea ice. SSTs can be estimated from measurements of sea-ice concentration [Rayner et 1070 

al., 2003; Smith et al., 2008; Hirahara et al., 2013].  Although their global impact is 1071 

likely to be small, the uncertainties in these relationships and estimates need also to be 1072 

factored into the uncertainty of SSTs in these regions. At the moment, the uncertainty 1073 

associated with historical sea-ice concentrations is poorly understood. 1074 

 1075 



3.5.3 Comparisons of Reconstructions  1076 

 1077 

Yasunaka and Hanawa [2011] examined a range of climate indices based on seven 1078 

different SST data sets. They found that the disagreement between data sets was marked 1079 

before 1880, and that the trends in large scale averages and indices tend to diverge 1080 

outside of the common climatology period. For the global average, the differences 1081 

between analyses were around 0.2 K before 1920 and around 0.1-0.2 K in the modern 1082 

period. Even for relatively well-observed events such as the 1925/26 El Niño, the detailed 1083 

evolution of the SSTs in the tropical Pacific varied from analysis to analysis. The reasons 1084 

for the discrepancies are not completely clear because each data set is based on a slightly 1085 

different set of observations that have been quality controlled and processed in different 1086 

ways, a problem that could be alleviated by running analyses on identical input data sets.  1087 

 1088 

Combined with information about large-scale sampling uncertainties estimated in other 1089 

ways, the spread between analyses suggests that the large-scale sampling uncertainty in 1090 

global average SST anomaly is around 0.2 K in the late 19th century. For the large-scale 1091 

sampling uncertainty of the global average to be much larger would require variability in 1092 

the early record to have been different from variability in the modern period, which is a 1093 

possibility. The resolution of such a question is most likely to be achieved via the 1094 

digitisation of more observations from paper records. 1095 

 1096 

Progress in assessing the differences between analysis techniques can also be made by 1097 

studying the relative strengths and weaknesses of interpolation techniques on carefully 1098 



prepared test data sets using synthetic data, or on ‘withheld’ data from well observed 1099 

regions. By running each analysis on the same carefully-defined subsets and tests, it 1100 

should be possible to isolate reasons for the differences between the analyses and assess 1101 

the reliability of analysis uncertainty estimates. The International Surface Temperature 1102 

Initiative (http://www.surfacetemperatures.org/) has been working on such benchmarking 1103 

exercises for land surface air temperature data, building on work such as the COST 1104 

ACTION project [Venema et al., 2012]. 1105 

 1106 

3.5.4 Summary of Reconstruction Techniques and Structural Uncertainty 1107 

 1108 

A range of reconstruction techniques exist to make globally-complete or near globally-1109 

complete SST analyses. The spread in global mean SST between analyses is at worst 1110 

around 0.2K. The analyses are based on a variety of different statistical models 1111 

suggesting that estimates of global average SST are not strongly dependent on such 1112 

choices. However, current reconstruction techniques do not account for systematic errors 1113 

in the data – they assume errors are random and uncorrelated – and assume that SST 1114 

fields can be simply parameterized in terms of limited numbers of patterns or simple 1115 

covariance relationships. Objective comparison of different reconstruction techniques and 1116 

their associated uncertainty estimates would be aided by the creation of standard 1117 

benchmark tests which mimic the distribution and character of observational data.  1118 

 1119 

3.6 Comparing Components of Uncertainty 1120 

 1121 



Figure 7 shows individual components of the overall uncertainty estimated for three 1122 

months. The components include: estimates of structural uncertainty (in lieu of a formal 1123 

way to estimate this, it is calculated as the standard deviation of seven near-globally-1124 

complete analyses: COBE, Kaplan, ERSSTv3, HadISST, GPFA, GP and VBPCA), 1125 

sampling uncertainty, combined random and systematic measurement error uncertainty, 1126 

bias uncertainty (estimated from a 200-member ensemble described in section 4) and 1127 

analysis uncertainties from ERSSTv3b [Smith et al. 2008]. 1128 

 1129 

At a monthly, grid-box level, the parametric uncertainty in the Kennedy et al. [2011c] 1130 

systematic error estimates is typically the smallest uncertainty and is nearly always less 1131 

than 0.2 K. The sampling uncertainty and measurement uncertainty both depend on the 1132 

number of observations, so they are larger in areas with fewer observations. Of the two, 1133 

measurement uncertainty is typically larger. 1134 

 1135 

In well-observed periods, the spread between the different analyses is roughly what one 1136 

might expect: closer agreement in well-observed regions, poorer agreement in data-sparse 1137 

regions, principally the Southern Ocean and Arctic Ocean. At more poorly-observed 1138 

times, the spread between analyses is narrower than the climatological standard deviation 1139 

suggesting that the reconstructions are skilful in the sense that they are providing useful 1140 

information in data voids. However, the narrow spread is in contrast to those areas where 1141 

there have been changes in the input observations (see, for example, the Indian Ocean in 1142 

Figure 7(b) and Figure 7(h)). A small number of observations, which are available to one 1143 

analysis but not another, lead to a larger spread than is seen in data-free regions implying 1144 



that, while there is diversity in the approaches, there may still be too little for the best 1145 

estimates alone to effectively bracket the true uncertainty range. 1146 

 1147 

The ERSSTv3 analysis uncertainties are largest in regions where there are consistent data 1148 

voids. They show a similar pattern to the structural uncertainty estimate in 1944 and 1149 

2003, but there is marked difference in 1891, with the analysis uncertainty being larger 1150 

than the structural uncertainty in the poorly-observed western Pacific.  1151 

 1152 

Figure 8 shows time series of the different components of uncertainty at different spatial 1153 

scales from global to grid box. The bias uncertainty is relatively constant and is the 1154 

smallest component of uncertainty at the grid box level for much of the record. The 1155 

sampling uncertainty for a grid box is larger than the bias uncertainty when observations 1156 

are few, but in the recent record they are comparable. In this example, the measurement 1157 

uncertainty is larger than bias and sampling uncertainties at the grid box level, even when 1158 

observations are numerous. However, in other grid boxes, characterised by strong SST 1159 

gradients or high variability, such as the western boundary currents, the sampling 1160 

uncertainty could be larger. 1161 

 1162 

As the size of the area increases and more observations are included in the average, the 1163 

sampling and measurement uncertainties decrease. Two estimates of the measurement 1164 

uncertainty are included. In one, correlations between individual errors are taken into 1165 

account. In the other, measurement errors are assumed to be random and independent. In 1166 

the latter case, the measurement uncertainties become small relative to other sources of 1167 



uncertainty at a basin scale early in the 20th century. However, the effect of correlated 1168 

errors is such that measurement uncertainty remains a major source of uncertainty at all 1169 

scales until the 1980s when the global VOS fleet reached its peak and the deployment of 1170 

drifting and moored buoys began. 1171 

 1172 

The largest component at the scales shown here is the structural uncertainty. In the grid 1173 

box shown, the structural uncertainty is, at times, larger than the combined uncertainty 1174 

from other components suggesting that some or all of the analyses are losing information. 1175 

At a global level, where estimated analysis uncertainties are available for COBE, COBE-1176 

2, Kaplan and ERSSTv3b data sets, the structural uncertainty is comparable to the 1177 

estimated analysis uncertainties. For example, in 1900, the ERSSTv3b analysis 1178 

uncertainty is 0.03K, the COBE analysis uncertainty is 0.06K, COBE-2 gives 0.05K and 1179 

Kaplan is around 0.05K.  1180 

 1181 

Because of the nature of the uncertainties arising from the adjustments for pervasive 1182 

systematic errors, the uncertainties become relatively more important as the averaging 1183 

scale increases. At a global scale, bias uncertainties are comparable to or larger than all 1184 

other uncertainty components from the 1940s to the present. There is a caveat: because 1185 

the SSTs are expressed as anomalies, the size of the bias uncertainty depends on the base 1186 

period used to calculate the anomalies. In Figure 8, the period used is 1961-1990, which 1187 

is why there is a local minimum in the bias uncertainty centred on that period.  1188 

 1189 

3.7 Estimates of Total Uncertainty 1190 



 1191 

Smith and Reynolds [2005] attempted to combine all the different uncertainties described 1192 

above to get a total uncertainty estimate. They combined their analysis uncertainty with 1193 

measurement uncertainty, bias uncertainty and structural uncertainty. Uncertainty 1194 

associated with pervasive systematic errors and structural uncertainty in the adjustments 1195 

were estimated by taking the mean squared difference between the Smith and Reynolds 1196 

[2002] and Folland and Parker [1995] bias adjustments in the prewar period. After 1197 

World War 2, the bias uncertainty was estimated by calculating the average difference 1198 

between engine room measurements and all measurements. Structural uncertainties were 1199 

estimated by analysing the spread of three SST analyses. 1200 

 1201 

Figure 9 shows the total uncertainty estimate from the latest version of the ERSST 1202 

analysis, ERSSTv3b, in blue. A similar estimate was made based on the HadSST3 data 1203 

set in the following way. Measurement uncertainties, grid-box sampling uncertainties and 1204 

large-scale sampling uncertainties were estimated using the method of Kennedy et al. 1205 

[2011b, 2011c]. To estimate the uncertainty associated with pervasive systematic 1206 

errors,an ensemble of 200 data sets, comprising the 100 original ensemble members from 1207 

HadSST3 and a 100-member ensemble generated by replacing the Rayner et al. [2006] 1208 

bucket-correction fields with the fields from Smith and Reynolds [2002]. The adjustment 1209 

uncertainties on individual months were assumed to be correlated within a year, giving a 1210 

greater uncertainty range than in Kennedy et al. [2011c], particularly before 1941. During 1211 

the war years 0.2 K was added to reflect the additional uncertainty during that period as 1212 



described by Kennedy et al. [2011c]. As above, structural uncertainties were estimated by 1213 

taking the standard deviation of area-average time series from seven analyses. 1214 

 1215 

The total uncertainty estimates from these two assessments are comparable between 1880 1216 

and 1915. Between 1915 and 1941, the ERSSTv3b uncertainty estimate is larger because 1217 

the estimated bias uncertainty is larger. The difference is most obvious in the northern 1218 

hemisphere where the differences between the Smith and Reynolds [2002] and Folland 1219 

and Parker [1995] bias adjustments are largest. From 1941 to present, the HadSST3-1220 

based uncertainty estimate is the larger because the bias uncertainty is larger than in 1221 

ERSSTv3b. 1222 

 1223 

The obvious question that arises is “do these assessments span the full uncertainty 1224 

range?” In this case, it probably pays to err on the side of caution. Although the structural 1225 

uncertainty is based on a range of methods for infilling missing data, there are still 1226 

commonalities in the approaches taken and there is little diversity in the approaches to 1227 

bias adjustment. The lack of diversity is troubling because the differences between the 1228 

median estimates of HadSST3 and ERSSTv3b are greater than the estimated uncertainties 1229 

of the ERSSTv3b analysis at times during the period 1950-1970 suggesting that the 1230 

uncertainties may have been underestimated in the earlier assessment. 1231 

  1232 

4 Presentation of Uncertainty 1233 

 1234 



At present, some groups provide explicit uncertainty estimates based on their analysis 1235 

techniques [Kaplan et al., 1998; Smith et al., 2008; Kennedy et al., 2011b, 2011c, Ishii et 1236 

al., 2005; Hirahara et al., 2013]. The uncertainty estimates derived from a particular 1237 

analysis will tend to misestimate the true uncertainty because they rely on the analysis 1238 

method and the assumptions on which it is based being correct. 1239 

 1240 

Comparing uncertainty estimates provided with analyses can be difficult because not all 1241 

analyses consider the same sources of uncertainties. Consequently, a narrower 1242 

uncertainty range does not necessarily imply a better analysis. One way that data set 1243 

providers could help users is to provide an inventory of sources of uncertainty that have 1244 

been considered either explicitly or implicitly. This would allow users to assess the 1245 

relative maturity of the uncertainty analysis. 1246 

 1247 

There is a further difficulty in supplying and using uncertainty estimates: the traditional 1248 

means of displaying uncertainties – the error bar, or error range – does not preserve the 1249 

covariance structure of the uncertainties. Unfortunately, storing covariance information 1250 

for all but the lowest resolution data sets can be prohibitively expensive. EOF-based 1251 

analyses, like that of Kaplan et al. [1998], could in principle efficiently store the spatial-1252 

error covariances because only the covariances of the reduced space of principal 1253 

components need to be kept. For Kaplan et al. [1998], based on a reduced space of only 1254 

80 EOFs, this is a matrix of order 802 elements for each time step as opposed to 10002 1255 

elements for the full-field covariance matrix. The difficulty with this approach is that not 1256 



all variability can be resolved by the leading EOFs and excluding higher-order EOFs will 1257 

underestimate the full uncertainty. 1258 

 1259 

Karspeck et al. [2012] drew samples from the posterior probability produced by their 1260 

analysis. Each sample provides an SST field that is consistent with the available 1261 

observations and the estimated covariance structure. Sampling has the added advantage 1262 

that it can be combined easily with Monte-Carlo samples from the measurement bias 1263 

distributions. However, production of samples is not always computationally efficient. 1264 

Karspeck et al. [2012] were able to do it for the North Atlantic region, but the 1265 

computational costs of extending the analysis unchanged to the rest of the world could be 1266 

prohibitive. Kennedy et al. [2011c] provided an ensemble of 100 interchangeable 1267 

realizations of their bias-adjusted data set, HadSST3. The ensemble spans parametric 1268 

uncertainties in their adjustment method. 1269 

 1270 

By providing a set of plausible realizations of a data set, or alternatively by providing 1271 

plausible realizations of typical measurement errors [Mears et al., 2011], it can be 1272 

relatively easy for users to assess the sensitivity of their analysis to uncertainties in SST 1273 

data. For example, individual ensemble members of HadSST3 were used in Tokinaga et 1274 

al. [2012], along with other SST analyses, to show that their results were robust to the 1275 

estimated bias uncertainties in SSTs.  1276 

 1277 

Another approach [Merchant et al. 2013] is to separate out components of the uncertainty 1278 

that correlate at different scales. Random measurement errors, such as sensor noise, are 1279 



uncorrelated. Some uncertainties, for example those related to water vapor in a satellite 1280 

view, are correlated at a synoptic scale. Yet others are correlated at all times and places. 1281 

Grouping uncertainties in this way allows users to propagate uncertainty information 1282 

more easily. 1283 

 1284 

5 Minimizing Exposure to Uncertainty 1285 

 1286 

Alternative approaches to using the SST data in a way that is less sensitive to biases and 1287 

other data errors have been made. The following approaches make use of knowledge 1288 

concerning the types of errors and uncertainties found in SST data and have been adapted 1289 

to account for them. They highlight the importance of combining understanding of the 1290 

measurements and their potential errors, as well as understanding of the phenomenon 1291 

being analyzed. Perhaps the simplest example is Schell [1959] who suggested discarding 1292 

grid-box averages (in that case Marsden squares) based on small numbers of 1293 

observations. 1294 

 1295 

Thompson et al. [2008] identified an abrupt drop in the observed global average SST 1296 

anomaly in late 1945, which they attributed to a rapid change in the composition of 1297 

ICOADS 2.0 [Worley et al., 2005] from mostly US ships immediately before the 1945 1298 

drop to mostly UK ships immediately afterwards. This hypothesis was lent further weight 1299 

by Kennedy et al. [2011c]. In a follow-up paper [Thompson et al., 2010], a drop in 1300 

northern-hemisphere SSTs was identified. In order to show that the drop was not an 1301 

artifact of the change in measurement method, they divided the ICOADS data into 1302 



distinct subsets based on the country of the ships making the measurements, considered a 1303 

range of different SST analyses, and looked at related variables such as NMAT and land 1304 

surface air temperatures. The probability of a drop being due to a coincident change in 1305 

the way that all countries measured SST, simultaneous with a sudden change in NMAT 1306 

and land temperature bias, is small. The fact that the drop was seen in all the different 1307 

data sets implied that the drop was real. Tokinaga et al. [2012] took a similar approach, 1308 

using bucket measurements from ICOADS as a quasi-homogeneous estimate of SST 1309 

change over the period 1950 to 2009. 1310 

 1311 

In detection and attribution studies it is common to reduce the coverage of the models to 1312 

match that of the data. Doing so reduces the exposure of the study to uncertainties 1313 

associated with interpolation techniques, but it does not avoid the problem of systematic 1314 

biases. Recent studies [Jones and Stott, 2011] have explicitly used a range of data sets to 1315 

start to map out the effects of structural uncertainties on detection and attribution studies. 1316 

 1317 

SST data sets are routinely compared to the output of climate simulations. Bearing in 1318 

mind the discussion in section 2 on the definition of SST it might be necessary to ensure 1319 

that the modeled output and the measured SST correspond to the same quantity. Many 1320 

climate models employ a surface mixed layer that is several meters thick. However, 1321 

models have been run with greater resolution in the near-surface ocean [e.g., Bernie et al., 1322 

2008] in order to simulate diurnal variability. 1323 

 1324 



Another common use of SST data for which an understanding of the limitations of the 1325 

data is important is in the calculation and interpretation of EOFs. In many studies EOFs 1326 

are calculated from globally complete SST analyses because the lack of missing data 1327 

makes calculating EOFs easy. However, it seems wise to bear in mind that a good deal of 1328 

statistical processing has already been applied to the SST analyses to make them globally 1329 

complete. Extracting EOFs from (or applying any other analysis technique to) what are in 1330 

some cases EOF analyses already, could lead to difficulties of interpretation on top of the 1331 

more general problems [Hannachi et al., 2007; Dommenget, 2007; Karnauskas, 2013]. 1332 

Techniques exist for estimating EOFs from gridded data sets with missing data and these 1333 

can also incorporate uncertainty information though many assume that the errors are 1334 

uncorrelated and will tend to underestimate uncertainty in the EOFs and their principal 1335 

components. See for example, Roweis [1998], Schneider [2001], Beckers and Rixen 1336 

[2003], Rutherford et al. [2004], Houseago-Stokes and Challenor [2004], Kondrashov 1337 

and Ghil  [2006], Ilin and Kaplan [2009] and Luttinen and Ilin [2009]. 1338 

 1339 

6 Satellites 1340 

 1341 

Although the present review is principally concerned with in situ measurements of SST it 1342 

is necessary to mention the important role that satellite data play in understanding SST 1343 

variability and uncertainty. The advantages of satellite data are obvious; particularly the 1344 

ability to measure large areas of the ocean using a single instrument, giving a more nearly 1345 

global view of SST. 1346 

 1347 



However, the first thing to note is that satellites monitor radiances and do not directly 1348 

measure SSTs. The measured radiances are affected by the state and constituents of the 1349 

atmosphere as well as variations in the state and temperature of the sea-surface. The 1350 

wavelengths that are sampled are set by the design of the instrument. Retrieving SST 1351 

from the radiances is a difficult inverse process and sensitive to biases and other errors 1352 

[Merchant et al. 2008b]. The second thing to note is that satellite instruments are 1353 

sensitive to the skin (upper few microns), or sub-skin (upper few millimeters) 1354 

temperature depending on the wavelengths measured by the satellite. Because satellite 1355 

instruments are sensitive to the topmost layer of the ocean, the diurnal range of retrieved 1356 

SSTs is larger than for measurements made at depth. Thirdly, accurate SST retrievals 1357 

from infra-red instruments are only possible when the view is not obscured by cloud. 1358 

Microwave retrievals can penetrate cloud, but suffer from problems near to coastlines, 1359 

and where precipitation rates are high. They also have coarser spatial resolution and 1360 

higher measurement uncertainties [O’Carroll et al., 2008]. 1361 

 1362 

The longest records of SST from satellite are derived from the AVHRR (Advanced Very 1363 

High Resolution Radiometer) instruments. These instruments make nadir measurements 1364 

using two infra-red channels. The retrievals are usually calibrated relative to in situ data. 1365 

More recent re-processings use optimal estimation to obtain a retrieval that is 1366 

independent of the in situ record [Merchant et al., 2008b] but these have not yet been 1367 

extended to calculating global averages. Furthermore, the AVHRR instrument is prone to 1368 

systematic errors caused by aerosols in the atmosphere and the satellite orbits drift slowly 1369 

altering the sampling of the diurnal cycle through time. Despite the numerous 1370 



shortcomings of the AVHRR record, Good et al. [2007] showed that there was a long-1371 

term warming trend in SSTs as measured by AVHRR. 1372 

 1373 

The Along-Track Scanning Radiometers (ATSR) [Smith et al., 2012] were designed to 1374 

meet the needs of climate monitoring. The satellite is a dual view instrument, taking nadir 1375 

and forward views using three infra-red channels. The dual view configuration allows for 1376 

more effective screening of aerosols and the three channels allow for accurate retrievals 1377 

across a wider range of conditions. Furthermore, the onboard calibration system allows 1378 

the stability of the radiance measurements from the instrument to be maintained. The 1379 

ATSR data have been reprocessed in the ATSR Reanalysis for Climate (ARC) project 1380 

[Merchant et al., 2008a] and the resulting time series have been shown to have biases of 1381 

less than 0.1 K and stability better than 5 mK/year since 1993 in the tropics where 1382 

reliable long term moorings can be found [Embury et al., 2012; Merchant et al., 2012]. 1383 

The ARC reprocessing is almost independent of the in situ network therefore it can be 1384 

used to corroborate trends seen in the in situ network. In a comparison between global 1385 

average SST anomalies (at a nominal depth of 0.2 m) calculated using the ARC data and 1386 

HadSST3, the two time series agree within the estimated HadSST3 uncertainties except 1387 

for parts of the ATSR1 record in the early 1990s. The ATSR1 period is believed to be of 1388 

lower quality as a result of the failure of one of the IR channels, failure of the satellite 1389 

cooling system as well as the high stratospheric aerosol loadings following the eruption 1390 

of Mount Pinatubo in 1991. 1391 

 1392 



The nearly global, high-resolution view of the world’s oceans provided by satellite 1393 

instruments can be used as a way of improving and testing many aspects of SST analysis. 1394 

By combining the more detailed fields produced by satellites with the long records of in 1395 

situ measurements, more detailed reconstructions are possible over a wider area of the 1396 

Earth [Rayner et al., 2003; Smith et al., 2008; Hirahara et al., 2013]. Satellite data can 1397 

also be used to assess the verisimilitude of reconstructions based on sparser in situ data. 1398 

 1399 

7 Concluding Remarks and Future Directions 1400 

 1401 

One of the chief difficulties in assessing the uncertainties in SST data sets is the 1402 

impossibility of tracing individual observations back via an unbroken chain to 1403 

international measurement standards. The creation of a global array of reference stations 1404 

each making simultaneous redundant measurements of a variety of marine variables 1405 

could solve some of the problems of SST analysis that have bedeviled the understanding 1406 

of historical SST change and would provide a gold standard against which the future 1407 

wider observing system – incorporating observations from ships, buoys, profiling floats 1408 

and satellites – can be assessed. Even without such traceability a climate record could be 1409 

more easily maintained by stricter adherence to the Global Climate Observing System 1410 

[GCOS 2003] climate monitoring principles. 1411 

 1412 

In the absence of such a network the estimation of uncertainties has depended heavily on 1413 

redundancies in measurement systems and in analysis techniques. Full use of the 1414 

redundancies is now being made in the modern period via comparisons of the many 1415 



available satellite sources with each other and with in situ sources [O’Carroll et al., 2008; 1416 

Merchant et al., 2012] and sub-surface data [Gille, 2012]. Analyses that ingest a variety 1417 

of data sources can produce bias statistics for each of the inputs [Brasnett, 2008; Xu and 1418 

Ignatov, 2010]. Such information can be exploited to assess their relative quality and, as 1419 

the analyses are pushed further back in time [Roberts-Jones et al., 2012], they will help 1420 

assess uncertainties through a larger part of the record. 1421 

 1422 

SSTs are physically related to other measurements including surface pressures and winds, 1423 

salinity, air temperatures, sub-surface temperatures and ocean biology amongst others. 1424 

Information from SST can be supplemented by analyses based on physical understanding 1425 

of the climate system. It has already been shown that by combining information from 1426 

night marine air temperatures with SST it was possible to greatly reduce uncertainties in 1427 

early 20th and late 19th century SST. Yu et al. [2004] used a joint estimation method to 1428 

minimize uncertainties in flux estimates based on a range of different variables mostly 1429 

based on satellite data. Other studies [Tung and Zhou, 2010; Deser et al., 2010] have used 1430 

physical reasoning based on a host of variables to explore uncertainties in the long-term 1431 

trends of tropical Pacific SSTs first raised by Vecchi et al. [2008]. It has even been 1432 

suggested that proxy records such as isotope ratios from corals and ice cores could be 1433 

used, with appropriate care, to understand uncertainties in the longest-term changes in 1434 

SST [Anderson et al., 2013]. The most advanced exemplars of physical and statistical 1435 

synthesis are ocean and coupled reanalyses which will play an increasingly important role 1436 

in understanding observational uncertainty and long-term climate change. 1437 

 1438 



A key barrier to understanding SST uncertainty is a lack of appropriate metadata. Better 1439 

information is needed concerning how measurements were made, which method was 1440 

used to make a particular observation, calibration information, the depths at which 1441 

observations were made, and even basic information such as the call sign or name of the 1442 

ship that made a particular observation. 1443 

 1444 

Some of this information can be inferred from data already contained in marine reports. 1445 

Where reports in ICOADS cannot be associated with a particular ship, either because 1446 

they have a missing ID, or a generic ID, there is much to be gained by grouping 1447 

observations to give plausible ship tracks, or voyages. By using data association 1448 

techniques to infer such metadata from the location information and other clues such as 1449 

how frequently observations were made and which variables were observed, it should be 1450 

possible to assess systematic and random errors on a ship-by-ship basis going back to the 1451 

start of the record and even infer likely measurement methods based on characteristic 1452 

variations of the measurements with the meteorological conditions. 1453 

 1454 

A more systematic approach to the assessment of analysis techniques is needed to 1455 

elucidate the reasons for the differences between analyses and to assess the verisimilitude 1456 

of analysis uncertainty estimates. Approaches could include theoretical inter-comparisons 1457 

of statistical methods, comparisons based on well-defined sets of common input 1458 

observations, and benchmarks built from datasets (such as model output) where the truth 1459 

is known a piori. Benchmark tests like those planned by the International Surface 1460 

Temperature Initiative [Thorne et al. 2011b] provide an objective measure against which 1461 



analysis techniques can be evaluated. Both analysis techniques and benchmarks will have 1462 

to be tailored appropriately for the particular problems affecting SST measurements and 1463 

the latest understanding of measurement uncertainties. 1464 

 1465 

A key weakness of historical SST data sets is the lack of attention paid to evaluating the 1466 

effects of data biases particularly in the post-1941 records. Further independent estimates 1467 

of the biases produced need to be undertaken using as diverse a range of means as 1468 

possible and the robust critique of existing methods must continue. Ideally, these would 1469 

be complemented by carefully-designed field tests of buckets and other measurement 1470 

methods. 1471 

 1472 

Combining new analysis techniques that have been appropriately benchmarked with 1473 

novel approaches to assessing uncertainty arising from systematic errors, pervasive 1474 

systematic errors and their adjustments will give new end-to-end analyses that will help 1475 

to explore the uncertainties in historical SSTs in a more systematic manner. 1476 

 1477 

For long-term historical analyses, there is no substitute for actual observations and 1478 

relevant metadata. Efforts to identify archives of marine observations and digitize them 1479 

are ongoing [Brohan et al., 2009; Wilkinson et al., 2011]. Such programs are labor 1480 

intensive, first in identifying and cataloguing the holdings in archives around the world, 1481 

then in creating and storing digital images of the paper books and finally in keying the 1482 

observations. The difficulty of decoding hand written entries in a variety of languages, 1483 

formats and scripts means that optical character recognition technologies are of limited 1484 



use. A number of popular crowd-sourcing projects have been started to key information 1485 

from ships logs that have historical as well meteorological interest. OldWeather.org has 1486 

keyed data from Royal Navy logs from the First World War [Brohan et al., 2009] and is 1487 

now working on logs from polar expeditions. Digitization of data also holds the 1488 

possibility of extending instrumental records further back in time [Brohan et al., 2010]. 1489 

New observations, with reliable metadata, can be used not only to reduce uncertainty in 1490 

SST analyses, but also to test the reliability of existing interpolated products and their 1491 

uncertainties. 1492 

 1493 

The ultimate destination of newly digitized observations is the International 1494 

Comprehensive Ocean Atmosphere Data Set (ICOADS) [Woodruff et al., 2011]. The 1495 

ICOADS repository of marine meteorological data has long been the focus of advances in 1496 

the understanding of marine climatology. It provides a consistent baseline for a wide 1497 

range of studies, providing a solid basis for traceability and reproducibility. The 1498 

continued existence, maintenance and improvement of ICOADS are essential to the 1499 

future understanding of the global climate. 1500 

 1501 

Finally, the work of identifying and quantifying uncertainties will be pointless, if those 1502 

uncertainties are not used. Uncertainty estimates provided with data sets have sometimes 1503 

been difficult to use or easy to use inappropriately. As pointed out by Rayner et al. 1504 

[2009], "more reliable and user-friendly representations of uncertainty should be 1505 

provided" in order to encourage their widespread and effective use. 1506 

 1507 
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Appendix A 1521 

 1522 

Figure 1 was calculated in the following way. Observations were separated into three 1523 

groups – shallow, deep and unknown – using the metadata assignments of Kennedy et al. 1524 

[2011c]. Bucket and buoy measurements were considered to be shallow. Engine intake 1525 

and hull contact measurements were considered to be deep. Shallow measurements were 1526 

assumed to exhibit a diurnal cycle equal to that measured by drifting buoys [Kennedy et 1527 

al., 2007]. Deep measurements were assumed to have no diurnal cycle. The two groups 1528 

were assumed to measure the same temperature just before sunrise. The relative bias 1529 

between the two was calculated by subtracting the minimum of the diurnal cycle from the 1530 



daily average. This value varies by location and calendar month. The bias in each grid 1531 

box was estimated by multiplying the relative bias by the fraction of shallow 1532 

measurements. The bias was then normalized relative to the period 1961-1990, the 1533 

anomaly period used for HadSST3. Figure 1 shows the global monthly average of the 1534 

bias. 1535 
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References Estimated measurement uncertainty for 

ship measurements 

Stubbs [1965] 0.11±0.01K for canvas bucket 

measurements from an Ocean Weather 

Ship 

Strong and McLean [1984] 1.8K RMS difference between ship and 

AVHRR data 

Bernstein and Chelton [1985] pg 11620 1.1 K 

Sarachik [1984], Weare [1989] pg 359 1 K  

Wilkerson and Earle [1990] pg 3381 3.5 K 

Cummings [2005] Table 1, pg 3592  1.3 K (ERI) 0.6 K (Hull sensor) 1.2 K 

(bucket)  

Kent and Challenor [2006] pg 484 1.2±0.4 K or 1.3±0.3 K depending on 

how measurements were weighted 

Kent et al. [1999] abstract 1.5±0.1 K 

Kent and Berry [2005] Table 2 pg 853 1.3±0.1 K and 1.2±0.1 K 

Reynolds et al. [2002] pg 1613 1.3 K 

Kennedy et al. [2011a] pg 83 1.0 K 

Ingleby [2010] Table 10 pg 1487 0.9 K for automatic systems 1.2 K for 

manual measurements 

Kent and Berry [2008] Table 5a pg 11 1.1 K 

Xu and Ignatov [2010]  pg 16 of 18 1.16 K 



Table 1: List of estimates of measurement error uncertainties for ships where random and 2158 

systematic errors were not dealt with separately. 2159 

 2160 

References Estimated measurement uncertainty for 

drifting buoy measurements 

Strong and Mclean [1984] 0.6K RMS difference between drifter and 

AVHRR 

Reynolds et al. [2002] pg 1613 0.5 K 

Emery et al. [2001] pg 2393 0.3 K 

Cummings [2005] Table 1, pg 3592 0.12 K 

O'Carroll et al. [2008] abstract  0.23 K 

Kent and Berry [2008] Table 5c pg 12 0.67 K 

Ingleby [2010] Table 10 pg 1487 0.33 K 

Kennedy et al. [2011a] pg 83 0.2-0.4 K 

Xu and Ignatov [2010] pg 16 of 18 0.26 K 

Merchant et al. [2012] Table 2 pg 8 of 18 0.15-0.19 K 

Table 2: List of estimates of measurement error uncertainties for drifting buoys where 2161 

random and systematic errors were not dealt with separately. 2162 

 2163 

Reference Estimated measurement uncertainty for 

moored buoy measurements 

Cummings [2005] Table 1, pg 3592 0.05 K 

Kent and Berry [2008] Table 5b pg 11 0.4 K 



Kennedy et al. [2011a] pg 83 tropical moorings, 0.12 K; all moorings, 

0.21 K 

Xu and Ignatov [2010] pg 16 of 18 tropical moorings, 0.30 K; coastal 

moorings, 0.39 K 

Gilhousen [1987] Table 6 pg 104 0.22 K 

Table 3: List of estimates of measurement error uncertainties for moored buoys where 2164 

random and systematic errors were not dealt with separately. 2165 

 2166 

Reference Platform 

type 

Random Systematic Notes 

Kent and Berry 

[2008] pg 11 Table 

5a 

Ship 0.7 K 0.8 K From comparison with 

Numerical Weather 

Prediction fields provided 

with VOSClim data 

Pg 12 Table 5c Drifter 0.6 K 0.3 K  

Pg 11 Table 5b Mooring 0.3 K 0.2 K  

Kennedy et al. 

[2011a, 2011b] pg 

86 

Ship 0.74 K 0.71 K From comparison with 

Along Track Scanning 

Radiometer SST retrievals 

Pg 86 Drifter 0.26 K 0.29 K  

Brasnett [2008] 

values estimated for 

present study by 

Ship 1.16 K 0.69 K From comparison with 

interpolated fields 



author 

Xu and Ignatov 

[2010] values 

estimated for present 

study by author 

Ship 0.81 K 0.53 K From comparison with 

multisensor  satellite SST 

fields 

Kennedy et al. 

[2011a, 2011b] 

method using 

Atkinson et al. 

[2013] whitelist 

Ship 0.56 K 0.37 K From comparison with 

multisensor satellite SST 

fields 

Gilhousen [1987] 

Table 6 pg 104 

Mooring 0.22 K 0.13 K Comparison of moored 

buoys 

Table 4: List of estimates of measurement error uncertainties for all platforms for studies 2167 

where the measurement error uncertainty is decomposed into random and systematic 2168 

components. 2169 

 2170 

Data set Input data set Interpolation 

method 

Resolution 

ICOADS summaries 

[Woodruff et al., 

2011] 

ICOADS 2.5 None 2°x2° monthly 

HadSST2 [Rayner 

et al., 2006] 

ICOADS 2.1 None 5°x5° monthly 



HadSST3 [Kennedy 

et al., 2011b; 

Kennedy et al., 

2011c] 

ICOADS 2.5 None 5°x5° monthly 

TOHOKU 

[Yasunaka and 

Hanawa, 2002] 

ICOADS 2.1 None 5°x5° monthly 

HadISST1.1 

[Rayner et al., 2003] 

Met Office Marine 

Databank and 

COADS, AVHRR 

satellite retrievals 

Reduced Space 

Optimal 

Interpolation 

1°x1° monthly 

ERSSTv3b [Smith 

et al., 2008] 

ICOADS 2.1 Separate low and 

high frequency 

reconstructions. 

High frequency 

component based on 

EOTs 

2°x2° monthly 

COBE [Ishii et al., 

2005] 

ICOADS 2.1 and 

Kobe collection 

Optimal 

interpolation 

1°x1° monthly 

COBE-2 [Hirahara 

et al., 2013] 

ICOADS 2.5 and 

Kobe collection, 

AVHRR satellite 

retrievals 

Multi scale analysis 

based on EOFs 

1°x1° daily and 

monthly 



Kaplan [Kaplan et 

al., 1998] 

Met Office Marine 

Databank 

Reduced Space 

Optimal Smoothing 

5°x5° monthly 

NOCS [Berry and 

Kent, 2011] 

ICOADS 2.5 Optimal 

Interpolation 

1°x1° daily and 

monthly 

VBPCA [Ilin and 

Kaplan, 2009] 

ICOADS 2.5 Variational 

Bayesian Principal 

Component 

Analysis 

5°x5° monthly 

GPFA [Luttinen and 

Ilin, 2009] 

ICOADS 2.5 Gaussian Process 

Factor Analysis 

5°x5° monthly 

GP [Luttinen and 

Ilin,2012] 

ICOADS 2.5 Gaussian Process 5°x5° monthly 

Table 5: List of datasets used and referred to in the review. 2171 

 2172 

Figure Captions 2173 

 2174 

Figure 1: (a) Estimated bias (with respect to the 1961-1990 average) on global average 2175 

SST anomalies associated with measurement depth as a function of time (upper panel). 2176 

(b) Global average SST anomaly from the HadSST3 [Kennedy et al. 2011b, 2011c] 2177 

median before (black) and after (red) the measurement-depth bias has been subtracted. 2178 

The two red lines reflect different assumptions concerning data that could not be 2179 

definitively assigned to any particular measurement type. The large dip during World 2180 

War 2 arises because the majority of observations were ERI measurements. 2181 



 2182 

Figure 2: Time series of upper ocean temperatures (0-30 m) from nine moorings in the 2183 

Tropical Ocean Atmosphere (TAO) array and the Subduction Array. The mooring and its 2184 

location are given above each plot. The different coloured lines represent different depths 2185 

and these are indicated by the legends in each panel. The Subduction Array data are 2186 

described in Moyer and Weller [1997]. 2187 

 2188 

Figure 3: Distributions of estimated measurement errors and uncertainties from ships. (a) 2189 

distributions of systematic measurement errors for all entries (2003-2007) in Kennedy et 2190 

al. [2011a], Brasnett [2008], Berry and Kent [2008] and Xu and Ignatov [2010]. (b) 2191 

distributions of random measurement error uncertainties (expressed as variances) from 2192 

the same analyses as in the top left panel and Atkinson et al. [2013]. (c) as for top left 2193 

except each ship now has only a single entry so the analyses are directly comparable. (d) 2194 

scatter plot showing systematic measurement errors estimated by Brasnett [2008] and 2195 

Berry and Kent [2008] showing the good correlation between the estimates. 2196 

 2197 

Figure 4: (a) Estimated global average SST anomaly from HadSST3 [Kennedy et al. 2198 

2011b, 2011c] (red) and for subsamples of the HadSST3 dataset reduced to 19th century 2199 

coverage. The black line is the median of the samples and the blue area gives the range. 2200 

(b) difference, on an expanded temperature scale, between the global average SST 2201 

anomaly from the full HadSST3 data set and global averages calculated from the 2202 

subsamples. 2203 



 2204 

Figure 5: Global average sea-surface temperature anomalies and night marine air 2205 

temperature anomalies from a range of data sets. (a) Simple gridded SST data sets 2206 

including ICOADS v2.1 (red), 200 realizations of HadSST3 (pale grey), HadSST2 (dark 2207 

green), TOHOKU (darker grey), ARC (Merchant et al. [2012] lime green) and the 2208 

COBE-2 dataset sub-sampled to observational coverage (pale blue). (b) 8 Interpolated 2209 

SST analyses including the COBE-2 dataset (pale blue), HadISST1.1 (gold), ERSSTv3b 2210 

(orange), VBPCA, GPFA and GP (deep magenta), Kaplan (pink), NOCS (black). (c) 2211 

shows the series in (a) and (b) combined. (d) NMAT: Ishii et al. (2005, red and blue), 2212 

MOHMAT4N3 and HadMAT (Rayner et al. [2003], pink and orange), Berry and Kent 2213 

[2009] (green), HadNMAT2 (Kent et al. [2013], gold). 2214 

 2215 

Figure 6: Comparison between COBE-2 (black) and HadSST3 (red) metadata and bias 2216 

estimates for the period 1920 to 2010. (a) Fraction of buckets assessed as being 2217 

uninsulated. The two red lines indicate the earliest and latest switchover dates allowed in 2218 

the generation of the HadSST3 ensemble. (b) Fractional contribution to the global 2219 

average from buckets, buoys and engine room measurements. The total is less than unity; 2220 

the remainder are either unknown (in the HadSST3 analysis) or uncategorized (COBE-2).  2221 

(c) Estimated bias. There are 100 versions of HadSST3 and a single estimate from 2222 

COBE-2. 2223 

 2224 

Figure 7: Maps showing climatological standard deviation of SST (a, g, m), Structural 2225 

uncertainty (b, h, n), Sampling uncertainty (c, i, o), measurement uncertainty (d, j, p), bias 2226 



uncertainty (e,k,q) and analysis uncertainty from ERSST (f, l, r). Three months are 2227 

shown: (a-f) June 1891, (g-l) April 1944 and (m-r) August 2003. 2228 

 2229 

Figure 8: Time series of estimated uncertainties arising from different sources in area-2230 

averages: (a) Global annual, (b) Northern hemisphere annual, (c) North Pacific annual, 2231 

(d) North Atlantic annual and (e) a 5-degree grid box centered on 42.5°W, 27.5°N  2232 

monthly. Uncertainty components shown are: (pale blue) grid-box sampling uncertainty, 2233 

(green) uncorrelated measurement uncertainty, (red) correlated measurement uncertainty, 2234 

(dark blue) parametric bias uncertainty from a 200-member ensemble based on HadSST3, 2235 

(black) large-scale sampling uncertainty, and (magenta) structural uncertainty estimated 2236 

by taking the range of the area-average calculated from seven near-globally-complete 2237 

analyses.   2238 

 2239 

Figure 9: (a) Global, (b) Northern Hemisphere, (c) Southern Hemisphere and (d) 2240 

Tropical average sea-surface temperature anomalies with estimated 95% confidence 2241 

range for ERSSTv3b (1880-2012 dark blue line and pale blue shading) and for the  2242 

HadSST3 based analysis described in section 3.5 (1850-2011 red line and orange and 2243 

yellow shading). The yellow shading indicates an estimate of the additional structural 2244 

uncertainty in the HadSST3 series. 2245 
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