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ABSTRACT

Uncertainties in observed records of atmospheric temperature aloft remain poorly quantified. This has
resulted in considerable controversy regarding signals of climate change over recent decades from tem-
perature records of radiosondes and satellites. This work revisits the problems associated with the removal
of inhomogeneities from the historical radiosonde temperature records, and provides a method for quan-
tifying uncertainty in an adjusted radiosonde climate record due to the subjective choices made during the
data homogenization.

This paper presents an automated homogenization method designed to replicate the decisions made by
manual judgment in the generation of an earlier radiosonde dataset [i.e., the Hadley Centre radiosonde
temperature dataset (HadAT)]. A number of validation experiments have been conducted to test the
system performance and impact on linear trends.

Using climate model data to simulate biased radiosonde data, the authors show that limitations in the
homogenization method are sufficiently large to explain much of the tropical trend discrepancy between
HadAT and estimates from satellite platforms and climate models. This situation arises from the combi-
nation of systematic (unknown magnitude) and random uncertainties (of order 0.05 K decade™) in the
radiosonde data. Previous assessment of trends and uncertainty in HadAT is likely to have underestimated
the systematic bias in tropical mean temperature trends. This objective assessment of radiosonde homog-
enization supports the conclusions of the synthesis report of the U.S. Climate Change Science Program
(CCSP), and associated research, regarding potential bias in tropospheric temperature records from radio-
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sondes.

1. Introduction

The most recently produced climate quality homog-
enized radiosonde datasets (Thorne et al. 2005a; Free et
al. 2005; Haimberger 2007) indicate warming through-
out the troposphere since 1958. Globally, this is at a
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similar rate to that reported at the surface (Karl et al.
2006). However, when considering the more recent sat-
ellite era (1979 onward), the same radiosonde datasets
indicate that the troposphere is warming at a slower
rate than at the surface, particularly within the tropics.
This is at odds with climate models, which predict am-
plification of the surface trends in the tropics (Santer et
al. 2005; Karl et al. 2006). Some Microwave Sounding
Unit (MSU) satellite records indicate similar changes in
the troposphere to radiosonde records (Christy and
Norris 2006), whereas others are in broad agreement



818

with the model predictions (Mears and Wentz 2005;
Vinnikov et al. 2006).

Differences between observational estimates of tem-
perature trends in the upper air reflect the difficulty in
adequately identifying and correcting for the many un-
documented changes that exist (Free and Seidel 2005)
and highlight the importance of structural uncertainty
arising from methodological considerations (Thorne et
al. 2005b). Techniques used to create radiosonde tem-
perature datasets, with the exception of Haimberger
(2007), have tended to be manually intensive and use
different station selections along with expert judgment
and incomplete metadata records. They have the ad-
vantage of using considered value judgments based
upon all available evidence. Their major limitation rela-
tive to other methods is that they require considerable
subjective judgment, and are therefore not fully repro-
ducible.

Here we present an automated method for creating
radiosonde temperature time series. The system uses a
neighbor-based iterative approach similar to the
manual method employed to create the current Hadley
Centre radiosonde temperature dataset (HadAT;
Thorne et al. 2005a). Its purpose is to assess bias and
uncertainty in a HadAT-like adjusted radiosonde cli-
mate record, and ultimately in estimates of decadal
trends, to complement the existing “best guess” bias-
corrected datasets. Our system allows for the genera-
tion of a large number of possible realizations of the
climate data record using a range of methodological
assumptions. In this paper we use both radiosonde data
and simulated data from a global climate model to ob-
jectively assess the effectiveness of the system, and
we quantify the main sensitivities of the system and
systematic biases that may explain at least part of the
apparent surface—troposphere temperature trend dis-
crepancy. To this end, this paper focuses on tempera-
ture trends observed by radiosondes in the lower tropo-
sphere during the satellite era, although other periods
and levels are also included.

2. Data sources

a. Radiosonde

Radiosonde data were collated from a number of
sources in the generation of the HadAT set in order to
provide as complete data coverage as possible, and to
provide a reference network of higher-quality station
records to use as neighbor stations in the correction of
the more comprehensive network. A full discussion on
the input data and their use can be found in Thorne et
al. (2005a). In this study we use the ungridded HadAT
station time series. HadATO comprises uncorrected
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seasonal mean data from 476" stations of mixed sources
and observation times. HadAT1 comprises the same
476 stations after homogenization.

In addition to HadAT we have used data and meta-
data from the Integrated Global Radiosonde Archive
(IGRA; Durre et al. 2006). Station soundings for the
period 1958 to 2003 were used. Monthly means were
computed for daily 0000 and 1200 UTC launches at 14
pressure levels (1000, 850, 700, 500, 400, 300, 250, 200,
150, 100, 70, 50, 30, and 20 hPa) where at least eight
ascents were recorded in a given month. A biweight
mean (Lanzante 1996) was used to reduce the influence
of outliers. Seasonal means were calculated where at
least two out of three monthly means were available,
and each station series was converted into anomalies
with reference to a 1966-95 climatology period. We
excluded stations and levels that did not have at least
five years of data containing at least three seasons for
each of the three decades within the climatology pe-
riod. We also excluded Indian stations because they
have been found to be difficult to homogenize (Thorne
et al. 2005a) and problematic for subsequent analysis of
long-term trends (Parker et al. 1997; Lanzante et al.
2003). The 0000 and 1200 UTC soundings were com-
bined to produce a comprehensive merged dataset of
509 stations, 50 of which are within the (20°S-20°N)
tropics.

A main advantage of IGRA over HadAT is the abil-
ity to separate the daytime and nighttime data. There-
fore, day and night datasets were generated using a
simple criterion that 90°E-90°W is daytime for 1200
UTC and nighttime for 0000 UTC, and vice versa for all
other longitudes. The stations were limited to between
70°N and 70°S to avoid the seasonality of polar day and
night. This gave a total of 465 stations for the daytime
and 384 stations for the nighttime IGRA datasets.

b. Simulated data

To investigate the capabilities of the homogenization
system, we have used data from the Third Hadley Cen-
tre Atmospheric Model (HadAM3: Pope et al. 2000).
The model data were forced with observed sea surface
temperature and sea ice distributions from the Hadley
Centre Sea Ice and SST (HadISST) dataset (Rayner et
al. 2003) for the period 1978-99. In addition, the model
included forcings from changing solar output, strato-
spheric aerosols from volcanic eruptions, tropospheric
and stratospheric ozone, greenhouse gases, land sur-
face, and sulfate aerosols (Tett et al. 2007).

! The HadAT literature refers to 477 stations. However, a du-
plicate station was found and removed.
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For each of the 476 HadAT station locations we cre-
ated seasonal mean anomaly time series from the
model grid box within which each station falls. Anoma-
lies were taken with respect to the entire model period.
Model data were available for eight pressure levels
(850, 700, 500, 300, 200, 150, 100, and 50 hPa). We
added random noise with a Gaussian distribution and
standard deviation half that of the model grid box. This
was done to ensure that simulated series from stations
that fell within the same model grid box were not iden-
tical, but were still highly correlated. The resulting
model dataset has the same spatial and monthly-mean
sampling as HadAT, but contains no instrumental
break points. The average of the ratio of standard de-
viations for individual station temperature time series
from the model data compared to radiosondes is 1.09.
This lends support for the use of the model data as a
surrogate for observations in our validation exercise.

3. Method

HadAT was generated using an iterative neighbor-
based homogenization. Break points were identified by
manual analysis of statistical and metadata evidence of
spurious step changes in the data record. We have au-
tomated this process so that we can objectively test the
sensitivity to several methodological assumptions,
which we now describe.

The basis for this, and many other breakpoint detec-
tion schemes, is to test the null hypothesis, H,, that
there are no break points. For this purpose a break
point is defined as a change in the mean value of the
time series that is a direct result of a change in instru-
mentation or observing practice. To test the null hy-
pothesis we use two pieces of information, the prob-
ability of rejecting the null hypothsis from a statistical
breakpoint identification, S, and a probability from the
metadata record of known changes at a given station,
M. We define the joint probability of obtaining M and
S given the null hypothesis as

P(MnNS|H,) = P(S|Ho)P(M|H,,). ey

Equation (1) assumes that M and S are dependent only
through the break points (i.e., they are conditionally
independent). The joint probability [left-hand side of
Eq. (1)] at each point in the time series is then used to
indicate the points where the null hypothesis may be
rejected.

For this study, as in HadAT, we use a nonparametric
Kolomogorov—Smirnov (K-S) test (Press et al. 1992) as
a statistical homogeneity test. This is applied to time
series of seasonal mean differences between station
data and weighted composites of data from neighboring
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stations. The weighting of each contributing neigh-
bor station is equal to the correlation coefficient be-
tween seasonal mean anomalies from reanalysis
fields [National Centers for Environmental Prediction—
National Center for Atmsopheric Research (NCEP-
NCAR; Kalnay et al. 1996) or the 40-yr European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis (ERA-40; Uppala et al. 2005)] sampled at
station locations over the period 1979-2003. Neigh-
bors are selected only from locations that fall within a
contiguous area with correlation coefficients greater
than 1/e surrounding the target station. The neighbor
weightings are calculated in the same way as those used
in HadAT; for further details on their determination
and limitations see Thorne et al. (2005a). A key as-
sumption here is that the neighbor reference series is a
reasonable estimate of the common natural variability
between the target station and its neighbors. This
ideally requires that break points in contributing neigh-
bor stations are randomly distributed about zero in
value and occur randomly in time so that their impact is
minimized through the process of averaging.

Previous studies (Gaffen et al. 2000) concluded that
neighbor-based checks were inappropriate for radio-
sondes due to the large station separation and co-
incident break points within countries. We tested the
suitability of using near-neighbor reference series by
running our system on the radiosonde station series in
isolation rather than using station minus neighbor dif-
ferences. In the station-only case it was found that
trends were completely removed from all levels. In the
neighbor-based system large-scale trends were in-
creased and decreased for different regions and time
periods, and the vertical trend profile was grossly re-
tained. Therefore, the use of a neighbor-based refer-
ence series for the detection and correction of break
points is a sufficient constraint on the large-scale mean
trends, but the limitations are further discussed in sec-
tion 5.

There exist multiple K-S test statistics, one for each
pressure level, P(L,), P(L,),..., P(L,). To maintain
consistency between the individual pressure levels, the
P(SIH,) component of the breakpoint detection algo-
rithm is estimated from the geometric mean of the
available K-S statistics:

n 1/n
P(S|H,) = (HP(L@) . 2)
k=1

We use a simple subjective probability model to es-
timate P(MIH,). We set a background value of 1, with
each metadata event represented as an inverted Gaussian
curve (see appendix A for alternatives) with a cutoff
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FiG. 1. The automatic breakpoint identification method for
station 03774 (Crawley, UK). (a) The original temperature data at
one level only (500 hPa). The station (thick solid), neighbor com-
posite (dotted), and station minus neighbor difference (thin solid)
are shown. The station and neighbor series are offset by 2 K from
the difference series, for clarity. (b) The geometric average of the
K-S statistic from all nine levels. (c) The metadata probability
function (see section 3b). (d) The product of (b) and (c). The
horizontal line denotes the critical threshold for detection in this
example (see text); dashed vertical lines highlight where break
points have been identified.

point six seasons either side of the reported timing of
the event. This model therefore accounts for some un-
certainty in the reported date and is similar to the
model used by Haimberger (2007). Metadata events
without specified dates are not used.

An example is shown in Fig. 1. Break points are iden-
tified from the product (Fig. 1d) of the K-S statistic
(Fig. 1b) and metadata statistic (Fig. 1c). We will refer
to this as the breakpoint score since it is not strictly
speaking a probability. The lower the score the greater
confidence we have that a potential break point exists
at that time point. We locate periods with a score less
than or equal to a predefined critical value for at least
three consecutive points so that the break point is a
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robust feature of the time series and not a numerical
artifact of the statistical breakpoint detection. The
minimum within each of these periods below the critical
value is assigned as the break point. Only one break
point is allowed to occur within a predefined period of
time (default of 2 yr, but see appendix A for a range of
possible values). Figure 1 represents a single step in a
system that simultaneously corrects neighbor stations
and is conducted iteratively. Therefore Fig. 1a should
not be interpreted as an indication of the complete set
of break points detected (or not) at this station.

The selection of an appropriate critical value is an
important consideration. From an analysis of climate
model data, which are highly correlated in the vertical
and exhibit autocorrelation, we found that in the ab-
sence of break points approximately 5% of seasons in
eight level, upper-air temperature data will produce a
K-S statistic value of 0.1 or lower. Therefore, the criti-
cal value should not greatly exceed this threshold if we
wish to minimize the false detection rate.

We estimate the adjustment factor from the time se-
ries of station minus neighbor differences. It is calcu-
lated as the difference in the medians of predefined
periods (default 10 yr, also see appendix A) either side
of an identified break point. Should another break
point exist within this adjustment window, then the pe-
riod is reduced so as not to span any other break points.
At least five seasons of nonmissing data are required
either side of the break point in order for an adjustment
estimate to be calculated, otherwise it is ignored.

A critical step in the generation of HadAT was the
manual inspection of the statistical and metadata evi-
dence in the application of adjustments. This was re-
quired to confirm that the adjustment estimates were
well defined and not influenced by break points in the
neighbor composite or outliers in the neighbor or sta-
tion time series. We have attempted to replicate this
decision-making process as closely as possible with a
number of simple tests also used in the generation of
HadAT (Thorne et al. 2005a). These tests are described
in appendix B. If the break point fails this set of tests,
then the adjustment is not applied.

The system is run iteratively. The adjusted data from
each iteration are fed back through the system, recal-
culating neighbor composites each time. The neighbor
composites should therefore improve as subsequent it-
erations are conducted. In early iterations we set a very
low critical value threshold for break points so that only
the worst break points are identified. In later iterations,
after these worst offenders have been removed, we re-
lax this threshold to detect smaller break points, or
recalculate adjustments that were rejected in earlier it-
erations that are now better constrained.
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The automated system is critically reliant on a num-
ber of parameters that will directly or indirectly influ-
ence the number of break points detected, false detec-
tion rates, and adjustment estimates. These parameters
are summarized in appendix A. In the first instance we
set them to values that most closely resemble those
used in the manual generation of HadAT (sections 4 and
5). We then investigated the impact of changing these
parameters within reasonable bounds to investigate
methodological uncertainties and how these impact the
recovery of large-scale trends (sections 6 and 7).

4. Comparison with HadAT

To be able to infer conclusions about uncertainties in
HadAT (or similarly constructed datasets) we need to
show that, given appropriate tuning, the automated sys-
tem can reasonably replicate this manual process.
Therefore, we passed the unadjusted HadATO data
through our system, and compared the properties of the
breakpoint detection, adjustments, and large-scale
mean trends with those in the adjusted HadAT1.

The results of this are summarized in Fig. 2. A posi-
tive detection of a break point was defined as one that
occurs within one year of a HadAT break point. Sixty-
one percent of all HadATT1 break points were detected,
with 70% of the break points larger than 0.5 K de-
tected. Figure 2b shows that 14% of the break points
detected by the automated system were not found in
HadAcT, that is, 86 % of breaks found by the automated
system were found in HadAT. The agreement with
HadAT rises to 94% if we relax the time-match crite-
rion to 2 yr and decreases to 75% for a two seasons
criterion. The total number of break points found by
the automated system (1972) was less than in HadAT
(3063). In Figs. 2c and 2d we show that the automated
system and HadAT are in good agreement in terms of
the adjustment magnitudes, with no significant bias,
and a root-mean-square difference of 0.39 K.

In the tropics we find that the impact on trends of
both the automated and manual adjustments are similar
(Fig. 3) and act to slightly cool the trends relative to the
unadjusted data for the period 1958-2003. For global
data the differences between the three datasets (un-
adjusted, HadAT, and automated system) are not sta-
tistically significant.

In summary, we have found that the automated de-
cision process, when presented with equivalent evi-
dence, is able to replicate many of the decisions on
breakpoint location and magnitude made in the gen-
eration of HadAT. This gives us confidence that we can
use the automated system to objectively investigate un-
certainty inherent in the HadAT method of dataset
construction.
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5. Validation and system limitations

We have applied a number of simple breakpoint
models to the HadAM3 model data to investigate how
well the homogenization might be expected to perform
under simple assumptions regarding the properties of
break points. A total of nine experiments were con-
ducted and the properties of these are given in Table 1.

a. Breakpoint detection

The breakpoint detection statistics are summarized
in Table 2. A total of 462 break points were identi-
fied in the model data free of spurious break points
(UNADJ). These false break points were not entirely
randomly distributed through time. The system identi-
fied a small number of break points in the vicinity of
major climatic events associated with volcanic activity
(1983, 1991) and ENSO events. At any single event
some 5% of stations were affected. The assumption that
neighbor composites capture local, natural climate vari-
ability is deficient at some times and locations. This is to
be expected given the large distances between some
stations. Time-invariant neighbor coefficients are not
always appropriate in the presence of intermittent
large-scale phenomena, which impose time-varying
geographical coherence. However, the small proportion
of stations affected means that this is not a major con-
cern for large-scale mean diagnostics and linear trends
(see also Fig. 4, and associated discussion in section 5c).

The probability of detection shown in Table 2 is en-
couragingly high, with experiments RNDM, SKEW,
and SMALLSKEW all detecting more than 80% of
break points. The detection is higher if we only con-
sider the larger break points. For example RNDM cap-
tures 98% of breaks >0.4 K. The loss of metadata in
META results in a drop in detection rates. This primarily
affects the smaller break points. Increasing the density of
break points in experiments MULTI, MULTISKEW, and
HATA reduces the breakpoint detection for all break
sizes because the neighbor composite reference series
are more likely to be contaminated. In MULTISKEW
95% of breaks are <0.4 K, which also results in a sig-
nificantly lower detection rate. The false detection rate
is between 24% and 34% for most experiments. HATA
and META have the highest false detection rates, in-
dicating that metadata are important in both positive
and false detection rates.

There is an additional concern relating to the vertical
coherency of break points. Break points can, and do,
occur at individual levels (Lanzante et al. 2003; Thorne
et al. 2005a). To test this we reran the RNDM experi-
ment, but only applied the break points to the 500-hPa
level. For this single-level breakpoint experiment the
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FIG. 2. (a) Probability of detection of a break point within one year of a HadAT1 break point from
our automated system at each iteration. The probability is estimated as the ratio of HadAT1 break
points found by the automated system to all HadAT1 break points. The total detection rate is also given.
(b) Probability of detection by the automated system, but not by HadAT. The probabilities of detection
are shown against the percentile of the breakpoint magnitude. The 10th and 90th percentiles are 0.19 and
1.2 K, respectively. (c) A scatterplot of the coincident HadAT1 and automated break points in terms of
the estimated adjustment magnitude. The mean bias and RMS error between the automated and
HadAT!1 adjustments are shown. (d) The normalized histograms of adjustments made by HadAT1

(solid) and the automated system (dotted).
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FiG. 3. Profile of trends from (dashed line) HadATO, (dotted
line) HadAT]1, and (solid line) the automated homogenization
system. Trends are median of pairwise slopes trends for the tropi-
cal mean temperature series at eight atmospheric pressure levels
from 1958 to 2003.

probability of detection was 59%, with a false detection
rate of 34%. Single-level break points are harder to
detect with our system, but they are still detected in
most cases, so we do not consider this to be a major flaw
in our methodology.

b. Adjustment

The uncertainty in the estimation of the adjustment is
largely independent of the magnitude of the break
point (e.g., Fig. 2¢). In other words, the likely magni-
tude of error for a 2-K break point will be the same as
that for a 0.2-K break point. However, it is sensitive to
the distribution of break points in both space and time
within the network of stations, as shown in Table 2. We
expect the largest contribution to random error to come
from the inadequacies in the neighbor reference series
due to natural climate variations (UNADJ), coincident
break points at neighbor stations (CNTY), or a high
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density of break points (MULTI), and the values in
Table 2 support this. The average root-mean-square-
error of all experiments is 0.4 K, suggesting that we
cannot resolve break points to better than 0.4 K, a value
also supported by the observations in the HadAT com-
parison (Fig. 2c).

For most of the experiments there is little or no bias
(the average difference between the estimated and ap-
plied adjustments) in the adjustments, suggesting that
any residual inhomogeneities should be random regard-
less of the distribution of the actual break points. How-
ever, in the presence of a pervasive bias within the
dataset, as in SKEW and MULTISKEW, there is a sys-
tematic underestimate of breakpoint magnitudes of up
to 0.1 K, which will result in a sign bias in the residual
errors that remain following the homogenization. This
has important implications for the recovery of trends in
biased datasets using the HadAT-like method of data
homogenization.

c. Trends

Both the model and observations have a vertical
trend gradient, with strong stratospheric cooling (=1 K
decade ™! at 50 hPa) and weak tropospheric warming
(+0.15 K decade™" at 300 hPa), but we find that for
these tests, where the break points are identical at all
levels, the impact of the homogenization is largely in-
dependent of pressure level. Therefore, our results are
summarized as averages across all the model pressure
levels and can be considered indicative of any indi-
vidual level.

The absolute trend error averaged across all pressure
levels, before and after homogenization, for each of the
nine model experiments is shown in Fig. 4. Uncertain-
ties of order 0.4 K in each adjustment applied to the
data, and the presence of false break points results in
residual trend uncertainties of 0.02-0.05 K decade ™' in
experiments without a significant systematic trend bias
(UNADJ, RNDM, CNTY, and META). The upper
bound in this range is the CNTY experiment, resulting
from larger uncertainties in the adjustments made for
this experiment (Table 2). These trend uncertainties
are similar in magnitude to those presented in Thorne
et al. (2005a), which were estimated using a Monte
Carlo method of aggregating uncertainties from indi-
vidual adjustments.

In SKEW and SMALLSKEW the trend bias is sig-
nificantly reduced by the homogenization process. In
the case of SKEW this was achieved by reducing tropo-
spheric trends that were biased positive, and for
SMALLSKEW trends were biased negative and there-
fore increased following homogenization. This confirms
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TABLE 1. Summary of the experiment details for assessing the performance of homogenization under a number of idealized conditions.

Expt Description

UNADJ The model data were passed through the system without any break points added. Therefore, any break
points found were false detections.

RNDM Each station was given two artificial break points randomly located in time, but separated by at least five
years and of random magnitude. The magnitude was from a normal distribution about zero with
standard deviation of 0.7 K (estimated from the distribution of HadAT break points). Each break point
was applied to all pressure levels, and the system was provided with a metadata record of the location,
but not magnitude, of these changes.

CNTY As in RNDM but in this experiment all stations within the same country were given identical break points.
This tests how well the system performs where coincident break points of the same magnitude exist at a
number of neighboring stations.

META As in RNDM but this time the system was run without metadata information. RNDM and META
therefore provide a study of the extreme cases of complete metadata and no metadata, respectively.

SKEW As in RNDM but in this experiment each break point was sampled from a normal distribution with mean
of +0.5 K so that the break points were preferentially positive. This tests how well the system performs
when the break points act to introduce a spurious trend in the station data.

SMALLSKEW As in SKEW but the offset was —0.15. This removes the mean tropospheric temperature trend. The
combination of SKEW and SMALLSKEW is also an important test that the system can recover trends
that are both smaller or larger than the bias in the data.

MULTI As in RNDM but in this experiment each station contained five break points separated by at least 2 yr.

MULTISKEW The same as MULTI, but all the break points were positive and 95% of break points were less than 0.4 K
in magnitude.

HATA All adjustments applied to HadATO to create HadAT1 were applied inversely to the model test data. In

this case break points exhibit a combination of the characteristics of the tests above, with the added
complication that they are not vertically coherent. The record of metadata events used in HadAT was
used here (i.e., the metadata was incomplete in comparison to the actual break points applied and also
contained entries that were not associated with break points).

that the system is not simply achieving better statistics
by removing all trends from the data. The small bias
found in the adjustment estimates for these experi-
ments (Table 2), coupled with remaining bias from the
missed break points, means that some residual system-
atic trend error still remains following the homogeni-
zation. In MULTISKEW and MULTT the system per-

TABLE 2. Summary statistics of nine model experiments:
P(detection) is the probability of detecting a break point within
one year of its actual occurrence; P(false) is the proportion of all
break points identified that were false. Numbers in brackets refer
to the total number of break points that meet the detection or
false detection criteria. The rms difference and bias of the adjust-
ment estimates are shown relative to the expected adjustment.

Breakpoint detection (%)  Adjustment (K)

Expt P(detection) P(false) rms Bias
UNADJ 0% (0) 100% (462)  0.50 0.01
RNDM 82% (779) 27% (281)  0.31 -0.02
CNTY 76% (725)  24% (227)  0.50 0.03
META 66% (629) 33% (308)  0.30 —-0.01
SKEW 85% (809) 26% (284) 033 -0.1
SMALLSKEW  82% (781) 26% (276) 0.31 0.01
MULTI 61% (1455) 11% (171)  0.51 0.00
MULTISKEW  39% (926) 17% (195) 0.40 —0.06
HATA 58% (750) 34% (393)  0.36 —-0.03

forms poorly but does reduce the bias. These two ex-
periments suggest that a major limitation on the
recovery of trends from biased data is the breakpoint
density rather than the average breakpoint magnitude.
If the latter factor was more important, then we would
expect MULTI, which consists of larger breaks, to have
performed better than MULTISKEW, which consists
of smaller breaks. The undetected break points are the
greatest contribution to the remaining residual bias for
MULTISKEW. Experiment HATA also has a rela-
tively high breakpoint density, along with other com-
plicating factors, and the trend error remains close to
the unadjusted errors of 0.05 K decade ™' for global
means, and 0.075 K decade™! for tropical means.

d. Summary

From the preceding analysis we can make a number
of statements about the properties of the HadAT ho-
mogenization system and its limitations in recovering
large-scale mean trends. The results presented in Table
2 are for all break points. If we consider only the tropi-
cal region (not shown) the results are similar, as evi-
denced by the trend errors shown in Fig. 4, so we are
confident that these conclusions hold for both global
and tropical means.
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FIG. 4. Mean of nine model levels absolute trend error (K
decade™!) for (top) global and (bottom) tropical mean trends.
The trend error is calculated as the difference of the model data
with and without the addition of break points, both before and
after the homogenization.

e Breakpoint detection is effective, particularly for
breaks larger than 0.4 K. Good metadata will im-
prove the detection of small (<0.4 K) break points
and reduce false detection rates.

o Adjustment uncertainty of order 0.4 K means that
small break points will not be adequately corrected.
The presence of simultaneous break points within
countries, or high breakpoint density, increases the
adjustment uncertainty. The presence of a wide-
spread systematic bias in break points can lead to a
systematic underestimate of adjustments.

» In the absence of a systematic trend bias, the pres-
ence of adjustment uncertainty and false break points
yields a trend uncertainty following homogenization
of between 0.02 and 0.05 K decade .

e When there is a systematic bias in trends, the homog-
enization will act to reduce the trend error. The ex-
tent to which the true underlying trend is recovered is
strongly dependent upon the breakpoint density, and
the number of undetected breaks that remain follow-
ing homogenization, although other properties of the
break points (magnitude, vertical profile, etc.) also
play a role. When the homogenization system signifi-
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cantly alters the large-scale mean trends we would
expect there to be some residual systematic bias, of
the same sign as the shift produced but unknown
magnitude.

6. Ensembles of random experiments

a. Model experiment

In the above analysis we have assessed the system
capabilities and limitations under a single configuration
of the available system parameters. To assess the sen-
sitivity of results to different parameter settings we per-
form an ensemble of “random experiments” with sys-
tem parameters randomly set to within reasonable
bounds as defined in appendix A. In this way we can
investigate the sensitivity of estimates of large-scale
trends to changes in the methodology that will affect
the number and type of break points detected. We con-
ducted the first such ensemble on the SKEW experi-
ment, described in Table 1, because its large trend bias
provides scope for considerable spread in any such en-
semble of homogenized trend estimates.

Fifty random experiments were performed to pro-
duce the ensemble results, and the spread of solutions
for tropical means is shown in Fig. 5. The results are
very similar for the global mean trends. The magnitude
of the trend in the ensemble spans the space between
the trend profiles for the original and biased model
data. The shape of the vertical profile of trends for each
of the 50 ensemble members closely resembles the
shape of the original trend profile. The median of the
ensemble does not adequately eliminate the systematic
bias in the trends. This suggests that treating each en-
semble member with equal weight will not fully account
for systematic bias in trends. In this simple case there
are parameter settings that can achieve an almost com-
plete recovery of the original trend and alternative set-
tings that have no significant impact on the biased data
(many of which are likely to be conservative in the
identification and/or adjustment of break points).

The analysis gives us some confidence that, in apply-
ing random ensembles to real data, we can gain useful
information about the potential magnitude of uncer-
tainty. Some homogenization system configura-
tions will be more efficient in the removal of spurious
trend bias. The challenge is therefore to establish a
means of robustly distinguishing between the good and
poor homogenizations.

b. Observations

A total of 200 random experiments were conducted
on the IGRA merged (0000 and 1200 UTC) radiosonde
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FIG. 5. Vertical profile of trends in tropical mean temperature
for a set of 50 different versions of the automated homogenization
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original unadjusted model trend, dashed line is the biased model
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dataset described in section 2. This provides a large
sample with which to investigate system sensitivities.
Profiles of the spread of trend estimates are presented
in Fig. 6. The two-sigma spread of the ensembles are
+0.03 K decade ! in the global mean trends and +0.05
K decade ™! in the tropical mean trends for the lower
troposphere for the satellite era. These are consistent
with the random uncertainties derived from model ex-
periments free from systematic bias (Fig. 4). These un-
certainty estimates increase with height to =0.1 and
+0.14 K decade " for the global and tropical strato-
sphere, respectively. They are also broadly consistent
with the parametric uncertainty estimates presented for
HadAT in Thorne et al. (2005a, Fig. 10). It should also
be noted that, in the upper troposphere in particu-
lar, the ensemble of homogenized datasets show con-
siderable skewness, with a greater tail toward warming
values.
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FIG. 6. Profile of trends for the tropics in the satellite era (1979—
2003). The error bars represent the spread of 200 homogeniza-
tions; the thick solid line is the median of these 200 members; the
dotted line is the unadjusted data.

c. Investigating systematic bias

1) PARAMETER SENSITIVITIES

We know from the analysis so far that a neighbor-
based homogenization as used here will struggle to re-
cover true trends where systematic bias pervades the
network used for the neighbor-based reference series
(Fig. 4). We have also shown that particular system
configurations achieve better recovery of trends in bi-
ased model data (Fig. 5) and result in increased tropo-
spheric warming in the observations (Fig. 6). It is im-
portant therefore to objectively determine whether this
occurs by chance or if particular parameter settings are
beneficial. To summarize systematic trend differences
resulting from parameter choices we computed trends
from the IGRA homogenized data, during the satellite
era, of MSU T2LT lower-troposphere temperatures
(e.g., Mears et al. 2003) by weighting temperatures on
the pressure levels. Static weighting functions were pro-
vided by the University of Alabama, Huntsville. Only 2
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marked are the medians of the populations for which an adjust-
ment period equal to or less than 20 seasons was set and for which
an adjustment period equal to or greater than 40 seasons was set.

of the 14 tuneable parameters were found to have a
discernable systematic impact on the large-scale trends,
and both relate to the calculation of adjustments.
Trends in the tropical lower troposphere are increased
by 0.02 K decade ' on average if we allow the system to
recalculate all adjustments at every iteration, rather
than applying them only on the first iteration they are
found (see adjustment method in Table A1). Given that
the neighbor reference series is expected to improve
with each iteration we expect such an adaptive method
to be preferable. For the model experiments in section
6a the residual trend error following homogenization is
0.08 K decade ' using an adaptive method and 0.43 K
decade ' using a nonadaptive method (the trend error
in the unadjusted data is 0.53 K decade ™).

The second parameter is the adjustment period,
which is the time period used to estimate the adjust-
ment factor. Estimated tropical mean trends from ob-
servations in the lower troposphere were increased by
0.04 K decade ! with an adjustment period of less than
20 seasons (5 yr) compared with periods greater than 40
seasons (10 yr) (Fig. 7). While longer periods should
reduce the noise in adjustment estimates, if systematic
biases exist in the network these may be aliased into the
neighbor composites and potentially make longer ad-
justment periods undesirable. A clear distinction in
trend recovery for different adjustment periods was not
apparent in the model ensemble.

2) SEPARATING DAY AND NIGHT

To investigate further the potential magnitude of sys-
tematic bias in the trend estimates we separated the day
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and night data, which are known to be biased in relation
to one another (e.g., Sherwood et al. 2005; Randel and
Wu 2006). In Fig. 8 we show time series of global mean
temperature anomalies for both day and night. In this
example we have conducted the homogenization using
the same system configuration as used in sections 4 and
5 (i.e., the Had AT-like parameter set). The trend of day
relative to night in the unadjusted data changes sign
coincident with the inception of the satellite record. It is
clearly not true that unadjusted day data have a simple
warm bias that decreases over time. The biases are sig-
nificantly larger in the raw data than the adjusted data,
which implies that the homogenization has successfully
removed many of the inconsistencies, even when the
day and night are adjusted independently. This is an
encouraging result, supporting our earlier conclusions
that the homogenization will at least remove part of the
systematic bias and that HadAT will have at least par-
tially remedied day/night biases, even without explicitly
considering them. In an additional experiment we used
the adjusted night data as the neighbor reference field
for the day time dataset (bottom panel in Fig. 8). In this
case we found that the day-night trend discrepancy is
removed, suggesting that in the presence of a fixed ref-
erence network free from systematic bias we can expect
our system to effectively remove such bias from the
observations. However, we caution that the night data
are not necessarily a suitable transfer standard for the
day data and may also contain systematic inhomogene-
ities. For example, in recent decades temperature
probes have changed from being painted white to being
metallic. This affects the IR absorption characteristics
of the sensors, which can result in significant bias in
both day and nighttime measurements (J. Nash 2000,
personal communication).

7. Spanning the range and comparison to other
datasets

In the previous sections we have identified limita-
tions of the homogenization system and some key
potential sources of systematic bias. We now use this
information to create an ensemble of homogenizations
intended to span the possible trend solutions, using the
automated system, highlighting day-night bias, and
optimal system parameter settings. This should provide
a plausible uncertainty estimate for Had AT-like radio-
sonde climate records. Two sets of 50 experiments were
conducted on each for day and night. We used the same
50 experiments applied to the model data in section 6a,
but fixed the adjustment method and adjustment period
(section 6c¢). First the 50 experiments were set to have
adaptive adjustments with a short adjustment period
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period (1979).

(<20 seasons), called the “max” ensemble as this was
expected to produce the greatest tropical warming. The
same 50 experiments were then run with nonadaptive
adjustments and a long adjustment period (>40 sea-
sons), called the “min” ensemble.

We compare our day and night ensembles with a
range of other estimates. Three of these come from the
satellite MSU instruments: University of Alabama,
Huntsville (UAH) version 5.2 (Christy and Norris 2004,
2006), Remote Sensing Systems (RSS), version 2.1
(Mears et al. 2003; Mears and Wentz 2005), and the
University of Maryland (UMd; Vinnikov et al. 2006).
Three estimates come from radiosonde datasets: the
Radiosonde Atmospheric Temperature Products for
Assessing Climate (RATPAC; Lanzante et al. 2003;
Free et al. 2005), Radiosonde Observation Correction
using Reanalyses (RAOBCORE), version 1.2 (Haim-
berger 2007), and HadAT1 (Thorne et al. 2005a). These

are all blends of day and nighttime observations. For
comparison the radiosonde datasets have been verti-
cally averaged with weightings to create equivalent
MSU retrieved bulk temperatures for T4 (strato-
sphere), T2 (troposphere), and T2LT (lower tropo-
sphere). For reference we also show the trend from
the Hadley Centre Climatic Research Unit, version 3
(HadCRUT3), surface records (Brohan et al. 2006),
and theoretical expectation from an ensemble of cli-
mate models (Santer et al. 2005).

Figure 9 shows the spread of trend estimates from
this ensemble of homogenizations for the tropical sat-
ellite era. Differences between the max and min en-
sembles grow with height, as would be expected if the
daytime radiation biases are a major contributing fac-
tor. The daytime radiosonde estimates are biased low
for T4 (the stratosphere) relative to MSU instrument
estimates. Mears et al. (2006) concluded that this most
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F1G. 9. The spread of trend estimates for the tropics in the
satellite era (1979-2003) for the maximum ensemble (dashed line)
and minimum ensemble (solid line), for day (red) and night
(blue). Median estimates are given by diamonds, and the uncor-
rected trends are shown as crosses. Trends are presented for MSU
equivalent bulk temperatures from (top) T4, peaking in the lower
stratosphere, T2 peaking in the mid upper troposphere, and T2LT
peaking in the low troposphere. For each channel other MSU
(purple) and radiosonde (black) estimates (see text) are also pre-
sented. T2LT includes an additional green cross denoting the
HadCRUTS3 surface record trends, and a range of theoretical es-
timates of what climate models predict for the T2LT trend given
the HadCRUTS3 surface warming. Please note the change of scale
for T4.

likely relates to pervasive cooling biases in the radio-
sondes within the stratosphere. The maximum en-
semble clearly shifts the trend in raw observations to-
ward closer agreement with the satellite estimates.
However, assuming the MSU measures are grossly ad-
equate, it does not move them far enough. This effect
also impacts T2, which has about 10%-15% of its
weighting from the stratosphere. The day—night trend
discrepancy is reduced in nearly all experiments for T4.

For the T2LT trends (Fig. 9) there is a distinction
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between the max and min ensembles for day, with the
median max ensemble resulting in a T2LT trend 0.05 K
decade ™! larger than the median of the min. The day-
night trend difference is reduced in 50% of the max
ensemble members, but for only 28% of the min en-
semble members. This is further evidence that the max
ensemble is a more robust homogenization method.
If we then consider only the max experiments in which
the day—night trend discrepancy is reduced, the median
daytime T2LT trend estimate (0.07 K decade™!) is
0.02 K decade ! larger than the median of all the day-
time max experiments (0.05 K decade™!). There is no
preferential shift in the night-only data but the uncer-
tainties are larger due to the reduced spatial sampling
of the night data.

Our analysis of the system suggests that where sys-
tematic bias is prevalent, the system is likely to only
partly recover the underlying natural trend (Figs. 4 and
5), and there is currently no a priori way of estimating
by how much. Figure 5 also showed that the median of
an ensemble of trend estimates from different homog-
enizations is unlikely to be a reliable indicator of the
magnitude of systematic bias, and in this analysis we
have used the median trends simply to quantify the
impact of particular system configurations. Therefore,
the results presented in Fig. 9 suggest that homogenized
radiosonde trends from HadAT are potentially under-
estimated due to daytime biases, and the spread of
trend estimates for day and night suggest that a com-
bination of the homogenization uncertainty and re-
sidual systematic bias is sufficient to encapsulate much
of the discrepancy between HadAT, theoretical expec-
tation, and surface temperature trends. Further analysis
is required to attempt to reduce this uncertainty.

8. Discussion and conclusions

We have presented an automated method for the
identification and adjustment of break points in radio-
sonde temperature data, which we propose can be used
to investigate uncertainty in estimates of multidecadal
trends in historical temperature records. The process
implemented here is based closely on that used in the
generation of HadAT (Thorne et al. 2005a) in order to
provide a benchmark for assessing the system.

The principal advantages of this approach are its flex-
ibility and reproducibility, and the short time taken to
produce a dataset (a few hours rather than a few years).
It can be run under many different configurations in
order to test the sensitivity of diagnostics such as linear
trend estimates, to the process of homogenization. Our
aim has not been to provide a single “best guess” as-
sessment of the evolution of the historical temperature
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record but rather to provide a method that we can use
to objectively assess the homogenization of HadAT.

With appropriate tuning of the system we have
shown that we are able to replicate many of the deci-
sions employed in the homogenization of HadAT, with
a detection rate of approximately 60% and a false de-
tection rate of 14%. This gives us confidence that the
automated system can be used to more rigorously as-
sess limitations and uncertainties in the homogeniza-
tion of HadAT-like datasets.

Break points can be successfully identified and ad-
justed by the system where they are at least 0.4 K in
magnitude, but are poorly resolved if much smaller
than this. Good metadata records will aid in the iden-
tification of these smaller break points (see also Free et
al. 2005; Haimberger 2007) and reduce the false detec-
tion rates. Coincident break points at neighboring sta-
tions or high breakpoint density is not hugely detrimen-
tal to the detection of break points, but will increase the
uncertainty on adjustment estimates. In the absence of
systematic bias, trend uncertainty from the homogeni-
zation process is 0.02-0.05 K decade . In the presence
of a pervasive systematic bias the homogenization is
likely to underestimate adjustments and will reduce,
but not remove, any bias in large-scale mean trends.
The density of break points and consequently the num-
ber of undetected break points following homogeniza-
tion is a major limiting factor for the recovery of trends
in such instances.

A number of factors discussed in this work are gen-
eral to all related attempts to homogenize radiosonde
temperature records:

 Biases exist in day relative to night radiosonde data
(e.g., Sherwood et al. 2005; Randel and Wu 2006;
Lanzante et al. 2003; Haimberger 2007).

 Quality of the background or neighbor reference is a
major influence on trend recovery (e.g., Thorne et al.
2005a; Haimberger 2007).

e The time interval used for estimating the breakpoint
adjustment is an important consideration for homog-
enization methods (e.g., Haimberger 2007).

» Methodological choices can result in significant para-
metric uncertainty in radiosonde trend estimates, and
methods should, if possible, be objectively tested in
their ability to recover climate signals from data with
trend biases. We have done this for the HadAT dataset.

Further development of our automated homogeniza-
tion method could be achieved by considering ways to
improve the reliability of the background reference by
accounting for transient regional climate anomalies, or
explicitly reducing the influence of break points in the
neighbor reference series. We should also consider ad-

JOURNAL OF CLIMATE

VOLUME 21

ditional independent evidence (either physical or sta-
tistical) that might be placed on the estimation of break
points. One example may be the thermal wind relation
(Allen and Sherwood 2007).

Our analysis provides further evidence that a combi-
nation of systematic and random uncertainties relating
to the removal of biases using a HadAT-like method-
ology are sufficiently large to explain the tropical trend
discrepancy between HadAT and estimates from other
observational platforms, theoretical expectations, and
trends at the surface. A previous assessment of trends
and uncertainty in HadAT (Thorne et al. 2005a) makes
a good estimate of the random homogenization uncer-
tainty but, due to limitations of the homogenization
method, is likely to have underestimated the daytime
systematic bias component and, therefore, the resultant
trends in the tropical troposphere. Further analysis of
the homogenization system is currently under way with
the aim of determining objectively the optimum con-
figurations for robustly recovering large-scale mean
trends in radiosonde temperature records and more ap-
propriate ways to reject unreasonable homogenizations
from an ensemble of the automated system.
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APPENDIX A

Homogenization System Parameters

The automated homogenization system contains a
number of sensitivities and subjective parameters that
affect various components of the homogenization pro-
cess. These sensitivities are outlined in Table A1, along
with a description of how the various parameters were
set for this study.

APPENDIX B

Assessing Bias Adjustment Estimates

After the statistical breakpoint detection and estima-
tion of adjustments, a number of quality assessments
are conducted on the adjustment estimates to check
that they arise from the station data, not the neighbor
composite, and are not greatly affected by outliers in
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TABLE Al. A summary of key parameters in the automated homogenization system.

Parameter

Default setting

Alternative settings

Description

Neighbor weighting

Derived from

Derived from

Weighting coefficients for possible neighbor stations.

coefficients NCEP-NCAR ERA-40 fields
reanalysis fields

Country Off On Excludes any neighbor stations within the same
country as the target station.

Metadata Off On Excludes any neighbor stations with similar
metadata records as the target station.

K-S window width 15 8-20 Number of seasons used for the K-S test used to
assign break points.

Metadata weighting 0.4 0-1 Weighting given to metadata events during the
breakpoint identification procedure (0: no weight,
1: break point at every metadata event).

Metadata_function Gaussian Exponential Shape of inversion in the metadata statistic series at

or step known events.
Vary metadata Off On Alters the background value of the metadata
background probability series for each station based on the

number of metadata events (i.e., penalizes stations
with poor metadata records).

Range 8 6-20 Minimum number of seasons required between each
break point.

Critical value 0.01 0.001-0.100 Initial critical threshold used to identify break points
in the first iteration.

Max iteration 5 1-15 Number of iterations performed.

Iteration step 0.03 0.001-0.050 Increment that the critical value is increased by with
each iteration.

Adjustment method Nonadaptive Semiadaptive Adjustment method used. Adaptive recalculates all

or adaptive adjustments at each iteration. Semiadaptive

recalculates only if the break point is found again
at a later iteration. Nonadaptive calculates
adjustment only when the break point is first
found.

Adjustment_period 40 5-105 Number of seasons either side of each break point
used to calculate an adjustment factor.

Adjustment_threshold [5, 8] [0, 0]-[7, 11] Thresholds for determining whether an adjustment

should be applied or not based on a points scoring
system (appendix B).

the data. A modified bootstrap method is used to make
200 estimates of the adjustment by dropping out a ran-
dom amount of randomly distributed data points either
side of the break point (Thorne et al. 2005a). Eleven
tests were carried out on this population of adjustment
estimates, each with a positive or negative outcome.
The number of positive results was counted for each
pressure level and then averaged over all levels to pro-
vide a breakpoint score. In order for an adjustment to
be applied to the data this score had to be larger than a
predefined value (default of 5, see appendix A). Alter-
natively if any single level scored highly (default of 8)
then the break point was also applied. The first two
tests were employed directly in HadAT and the others
were designed to replicate the key points of subjective
evidence used in the manual process of accepting or
rejecting break points that had been identified by the
statistical detection and adjustment algorithm.

¢ Is the adjustment significantly different from zero?
(1 point)
¢ Is the population of adjustment estimates approxi-
mately normally distributed (3 points)
« Isthe difference between the mean and median less
than 25% of the magnitude of the median?
o Are the 5th and 95th percentiles equidistant, to
within 25%, from the median?
 Are the first and 99th percentiles between 1.1 and
1.9 times the distance of the fifth and 95th from the
median?
¢ Is the break point an artifact of the station series, or
does it originate from errors in the neighbor compos-
ite? (5 points)
 Is the K-S statistic from the station minus neigh-
bor difference series smaller than the K-S statistic
calculated using the neighbor composite series
only?
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« Is the K-S test statistic calculated from the stations
series smaller than that calculated from the neigh-
bor composite series?

« Is the adjustment estimate calculated from the dif-
ference series greater than an equivalent estimate
calculated from the neighbor composite series?

« Is the adjustment estimate calculated from the sta-
tion series greater than that calculated from the
neighbor composite series?

e Is the adjustment estimate calculated from the
neighbor composite series less than 25% of the
magnitude of the estimated adjustment from the
difference series (i.e., close to zero).

 Is the break point associated with a metadata event?
(1 point)
 Is the adjustment vertically coherent, that is, within

25% of the adjustment estimated from linear inter-

polation of neighboring pressure levels)? (1 point)
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