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Key Points 10 

 11 

• Geostationary satellite data are used to estimate daily Tmin/Tmax over Europe  12 

• A dynamic empirical multiple-linear regression model is used 13 

• The majority of estimated Tmin/Tmax are within 3-4 deg C of station data 14 

 15 

 16 

Abstract  17 

Observations of daily minimum and maximum land air temperatures, Tmin and Tmax, 18 

have traditionally been obtained through in situ observations at meteorological stations.  19 

While the station network is extensive, many land masses are poorly observed. Moreover, 20 

observations at stations are ‘point’ observations and may not be representative of air 21 

temperatures at neighbouring locations.  Satellites provide the means to observe surface 22 

skin temperatures at spatial scales of tens of metres to kilometres.  But although skin and 23 

near-surface air temperatures may be strongly coupled, the two quantities can differ by 24 

several degrees over land, where the magnitude of the difference is variable in both space 25 

and time.  This study describes a method for estimating daily Tmin and Tmax at the pixel 26 

scale using geostationary satellite data, providing spatially-detailed observations for areas 27 

unobserved in situ.  A dynamic multiple linear regression model is developed using daily 28 

minimum and maximum land surface temperature (LSTmin and LSTmax), fraction of 29 

vegetation, distance from coast, latitude, urban fraction and elevation as predictors.  The 30 

method is demonstrated over Europe for 2012-2013; evaluation with collocated station 31 

observations indicates a mean satellite-minus-station bias of 0.0 to 0.5 °C with root-32 

mean-square difference of 2.3 to 2.7 °C.  The data derived here are not designed to 33 

replace traditional gridded station air temperature data sets, but to augment them.  34 



 

Satellite surface temperature data usually have larger uncertainties than in situ data sets, 35 

but they can offer spatial detail and coverage that the latter may not provide.   36 
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1 Introduction 48 

Near-surface air temperature (NSAT) is one of the key variables required by 49 

meteorologists and climate scientists, and is listed as one of the 50 Global Climate 50 

Observing System (GCOS) Essential Climate Variables (ECV).  Over land, NSAT is 51 

observed in situ at meteorological stations.  These data are typically aggregated onto 52 

grids that are widely used by the climate science community for model evaluation, 53 

monitoring and assessing climate change.  Well-known examples include the CRUTEM 54 

data set (Jones et al., 2012), which provides global land monthly temperature anomalies 55 

from 1850 to the present, the Goddard Institute for Space Studies Surface Temperature 56 

Analysis (GISTEMP), a global monthly anomaly time series from 1880 to the present 57 

(Hansen et al., 2010), and the National Climatic Data Center (NCDC) gridded mean 58 

temperature anomaly data set that also extends back to 1880 (Smith et al., 2008).  Data 59 

sets at daily resolution include E-OBS, a gridded analysis for European land that includes 60 

actual mean, maximum and minimum temperatures (Tmean, Tmax and Tmin) from 1950 61 

(Haylock et al., 2008) and HadGHCND (Caesar et al., 2006), which is a global land 62 

anomaly data set for Tmax and Tmin that also extends back to 1950. 63 

 64 

These data sets provide invaluable information about Earth surface temperatures but 65 

suffer from gaps and/or high uncertainties where station density is low.  Many such areas 66 

are in regions where the effects of climate change are predicted to be strongest, such as 67 

Africa and the high latitudes, and therefore a current research challenge is to seek ways to 68 

fill these gaps and reduce uncertainties.   69 

 70 

Using surface temperature estimates from satellites is one possible solution to this 71 

problem and this approach is already well established for sea surface temperature (SST) 72 



 

analyses (Donlon et al., 2012; Rayner et al., 2003; Reynolds et al., 2002).  Efforts to 73 

produce similar analyses over land are not well developed for two main reasons.  Firstly, 74 

satellite land surface temperature (LST) data sets are immature compared with SST.  75 

Land is heterogeneous in terms of land cover type, elevation and the overlying 76 

atmosphere and this makes estimating satellite LSTs very challenging as these effects 77 

must be accurately taken into account in any retrieval scheme [Becker and Li, 1990; Dash 78 

et al., 2001; Hulley and Hook, 2010, 2012; Hulley et al., 2012; Inamdar et al., 2008; Li et 79 

al., 2013; Trigo et al., 2008; Sun and Pinker, 2007].  Secondly, satellites observe the 80 

Earth’s ‘skin’ temperature, which is fundamentally different from the temperature usually 81 

measured in situ.  This necessitates that an observational alignment is performed before 82 

the two data types can be combined.  Over the ocean, satellite skin SSTs are adjusted to a 83 

SST at depth before they are blended with subsurface data from buoys and ships (Fairall 84 

et al., 1996).  Over the land, the analogous conversion of LST to NSAT is not as well 85 

understood.  The NSATs measured at ground stations can differ by several degrees with 86 

respect to the underlying skin temperature, where the magnitude and sign of the 87 

difference varies in both space and time (Figures 1 and 2).  The variation is a function of 88 

several factors, including time of day, meteorology, surface type, geographical location 89 

and elevation, and is therefore difficult to quantify.  Additionally, land temperatures are 90 

spatially heterogeneous, which makes combining the point observations from 91 

meteorological stations with the areal averages observed by satellites inherently difficult. 92 

 93 

Recent years have seen significant improvements in satellite LST retrieval techniques and 94 

a variety of LST products are now available to users, with many updated in real time.  95 

LST products from polar orbiting sensors include the Moderate Resolution Imaging 96 

Spectroradiometer (MODIS) onboard the Terra (1999-present) and Aqua (2002-present) 97 



 

satellite platforms [Wan and Dozier, 1996; Wan, 2014] and the Along-Track Scanning 98 

Radiometer onboard the ERS and Envisat platforms (1991-2012) [Prata, 1993, 1994, 99 

2002].  These products provide ‘snapshot’ LST images once or twice daily at 1 km or 100 

higher spatial resolution.  LST products are also available from geostationary sensors 101 

including the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard 102 

Meteosat Second Generation (MSG; 2004-present) [Freitas et al., 2010, 2013; Trigo et 103 

al., 2008] and Geostationary Operational Environmental Satellites (GOES) [Freitas et al., 104 

2013; Heidinger et al., 2013; Sun et al., 2012].  These data provide LST images every 15-105 

60 minutes but at a lower spatial resolution compared with polar-orbiters; for example, 106 

SEVIRI has 3 km spatial resolution at the sub-satellite point.  Efforts are also underway 107 

by several data providers to process historical satellite data to LST, which will lead to 108 

multi-decadal data sets that could be suitable for climate applications.  This includes the 109 

European Space Agency (ESA) GlobTemperature project 110 

(http://www.globtemperature.info/), the German Aerospace Center (DLR) TIMELINE 111 

project (http://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9035/15754_read-38904/), 112 

and the Eumetsat Satellite Application Facility on Climate Monitoring (CM SAF; 113 

http://www.meteoswiss.admin.ch/web/en/research/current_projects/climate/cmsaf.html).  114 

Long-term LST data at 0.1° latitude/longitude are also available over N. America from 115 

PATMOS-x (http://cimss.ssec.wisc.edu/patmosx/data/) [Heidinger et al., 2013]. These 116 

developments have led to increasing interest in satellite LSTs for weather and climate 117 

applications and as a result, efforts to make use of these data sets have intensified.  118 

 119 

A number of studies have recently been published describing methods for estimating 120 

NSAT over land from satellite data, which is also useful as a first step toward achieving a 121 

blended satellite-station temperature analysis over land [Basist et al., 1998].  The 122 



 

majority of these studies utilise empirical models, where NSAT is predicted from satellite 123 

LST and other observed variables, most commonly a vegetation metric such as the 124 

Normalised Difference Vegetation index (NDVI), and auxiliary data.   125 

 126 

For example, Nieto et al. [2011] adopt the Temperature Vegetation Index (TVX) method 127 

to estimate day time NSAT over Spain during 2005 using data from the MSG, achieving 128 

accuracies of around 3-5 °C.  The TVX method assumes NSAT approaches LST with 129 

increasing NDVI, such that the two are equivalent at full canopy cover.  An issue with 130 

this method is establishing the value of NDVI for full canopy cover: Nieto et al. [2011] 131 

offer improvements on previous studies that use the TVX method by defining different 132 

NDVI values for different vegetation types.  In another study, Kawashima et al. [2000] 133 

use spatially-averaged LSTs and NDVI derived from Landsat to predict NSAT over 134 

Japan for four winter nights between 1984 and 1986 with a reported accuracy of better 135 

than 1 °C.   136 

 137 

Other studies present regressions that use predictors in addition to LST and vegetation.  138 

For example, Vancutsem et al. [2010] use LSTs from the MODIS together with the NDVI 139 

and solar zenith angle (SZA) to estimate Tmin and Tmax for 28 stations in Africa for 140 

various overpasses occurring between 2002 and 2008.  They report a mean absolute error 141 

(MAE) of 1.73 °C and a standard deviation of 2.4 °C in their study.   Cristobal et al. 142 

[2008] use latitude, distance from coast, altitude and solar radiation in addition to LST 143 

and NDVI over the Iberian Peninsula to estimate daily, monthly and annual mean, 144 

minimum and maximum NSAT (Tmean, Tmin and Tmax) between 2000-2005 using 145 

Landsat, MODIS and National Oceanic and Atmospheric Administration (NOAA) 146 



 

satellite data.  They achieve an averaged root mean square error (RMSE) of 1.75 °C for 147 

daily NSATs and 1.00 °C for monthly and annual temperatures. 148 

 149 

Several studies report success in estimating NSAT without using vegetation parameters.  150 

Zhang et al. [2011] use MODIS LST data to calculate daily Tmean, Tmax and Tmin over 151 

China during 2003.  They find that improved results are obtained by including solar 152 

declination in their regression, and report uncertainties of less than 3 °C for 60-85% of 153 

their estimated NSATs.   154 

 155 

Several studies have utilised kriging to predict NSAT.  Florio et al. [2004] compare the 156 

traditional regression-based approaches with three kriging methods over N. America 157 

using data from the Advanced Very High Resolution Radiometer (AVHRR) for six days 158 

during 2000.  They conclude that the kriging methods are superior to regression, 159 

achieving average errors of 0.9 °C and 1.4 °C, respectively.  Recently, Kilibarda et al. 160 

[2014] used spatio-temporal regression kriging with in situ data using 8-day LST 161 

composites from MODIS together with topography to predict global daily NSAT during 162 

2011.  Kilibarda et al. [2014] report RMSEs in their method of around 2 °C for station-163 

dense regions, 2-4 °C for station sparse regions, with RMSE of up to 6 °C for Antarctica.  164 

Chen et al. [2014] compare conventional regression- and kriging-based estimates of 165 

NSAT with a new geographically-weighted regression approach over China using 166 

MODIS LSTs for 2010.  In this study, Tmean, Tmin and Tmax are estimated with 8-day 167 

and monthly temporal resolution using all three methods.  Chen et al. [2014] find their 168 

new approach achieves an RMSE of 0.8-1.5 °C, and outperforms the conventional 169 

regression and kriging methods.  They also find that errors are lower for monthly than for 170 

8-day estimates.   171 



 

 172 

An interesting physically-based method has also been proposed by Sun et al. [2005], who 173 

derive NSAT using thermodynamics.  They define an equation for NSAT that requires 174 

inputs of LST, NDVI, net radiation, aerodynamic resistance and crop water stress index 175 

(CWSI).  Sun et al. [2005] trial their method for two MODIS overpasses in 2002 over a 176 

3x9 degree region on the North China Plain to estimate instantaneous NSAT and report 177 

an accuracy of better than 3 °C for 80% of the estimated NSATs.   178 

 179 

Most studies reported in the literature use data from infrared sensors, but there are also 180 

examples of studies that use microwave data.  Unlike infrared sensors, microwave 181 

sensors have the advantage of providing observations during cloudy conditions.  182 

However, the spatial resolution is much lower (several tens of km vs a few km or better), 183 

which is a disadvantage for many applications.  Early in the satellite era, Davis and 184 

Tarpley [1983] used a multiple linear regression model to estimate daily NSAT from base 185 

atmospheric temperature, skin temperature and microwave channel-2 (from the 186 

Microwave Sounding Unit, MSU) top of atmosphere (TOA) brightness temperatures 187 

derived from the TIROS Operational Vertical Sounder (TOVS) system.  They obtained 188 

uncertainties of around 1.6-2.6 °C under cloud-free and partially cloudy conditions and 189 

2.9-4.0 °C under cloud conditions (microwave data only).  Later, Basist et al. [1998] used 190 

data from the seven channels of the Special Sensor Microwave/Imager (SSM/I) to 191 

estimate NSAT with a reported standard error of approximately 2.0 °C.  The authors also 192 

trial a blended station-satellite gridded temperature product and demonstrate this offers 193 

improved performance over one derived from station data alone.   194 

 195 



 

Jones et al. [2010] use the Advanced Microwave Scanning Radiometer (AMSR-E/Aqua) 196 

channels at 18.7 and 23.8 (both polarisations) to estimate daily Tmin and Tmax at 25 km 197 

spatial resolution over ice and snow-free Northern hemisphere land masses.  Jones et al. 198 

[2010] obtain an RMSE of 1-4 °C, although find uncertainties can exceed this over 199 

sparsely vegetated, desert, and mountainous regions.  Köhn and Royer [2012] also use 200 

AMSR-E to estimate instantaneous NSAT over Northern Canada over two winters using 201 

an empirical model and obtain an RMSE of 4.9 °C.   202 

 203 

More recently, Jang et al. [2014] estimate instantaneous all-sky NSAT by using data 204 

derived from MODIS and AMSR-E onboard Aqua through empirical linear regression.  205 

Rather than using MODIS LST retrievals directly, Jang et al. [2014] use temperature 206 

profiles from the MODIS atmospheric product to derive NSAT for clear-sky conditions 207 

and augment these with estimates of NSAT from AMSR-E under cloud.  They obtain an 208 

RMSE of 4.5 to 5 °C on evaluating their data set with NSAT observations from forty US 209 

stations.   210 

 211 

There have also been several studies that document methods to estimate ocean NSAT 212 

using satellite data [Jackson et al., 2006; Roberts et al., 2010; Shi et al., 2012]. 213 

 214 

Of the land-based studies described above, only the Jones et al. [2010] data are publicly 215 

available in digital form and a global version of the data set covering June 2002 to 216 

September 2011 is available from http://nsidc.org/data/nsidc-0451.  Most of these studies 217 

have been limited to discrete periods of time or specific satellite overpasses for a specific 218 

region or country.  This paper describes a new study where daily Tmin and Tmax are 219 

estimated at the satellite native field of view (FOV) using a multiple linear regression 220 



 

model.  The work carried out here differs from the other infrared regression-based studies 221 

described above in that the method is applied to the whole of Europe and that maximum 222 

and minimum LST (LSTmin and LSTmax) are estimated from geostationary data before 223 

a regression is performed.  In addition, an urban fraction predictor is included in the 224 

regression for the first time and the model regression coefficients are calculated on a 225 

daily basis in order to improve the prediction of NSAT.  Until now, MODIS has been the 226 

sensor of choice in nearly all studies of this nature.  The benefits of using geostationary 227 

data include providing sub-daily observations that potentially resolve the diurnal cycle, 228 

required for many applications, and increasing the pool of available satellite observations.  229 

(Nearly all current satellite LST data sets utilise infrared observations, which are only 230 

available under cloud-free conditions, which can result in large data gaps.).  Additionally, 231 

geostationary platforms provide some of the longest satellite data records: for example, 232 

viable Meteosat observations extend back to the early 1980s.  This means that the method 233 

developed here could eventually be used to generate a global, multi-decadal satellite, sub-234 

daily NSAT data set.  Europe is selected as the study region as it is generally well 235 

observed in situ and so presents a good opportunity to test and develop the methodology.  236 

Data are presented here for the years 2012-2013 and are freely available to download in 237 

NetCDF format at  http://www.metoffice.gov.uk/hadobs/msg_tmaxmin/.  The data will 238 

be updated regularly. 239 

 240 

2 Data Sets  241 

2.1 Satellite data 242 

The data used here are from the SEVIRI onboard the geostationary MSG platforms, 243 

which have been the operational 'weather' satellites for Europe since 2004.  The MSG-1 244 



 

was launched in August 2002, and was re-designated Meteosat-8 in January 2004 when it 245 

became operational.  MSG-2 and MSG-3 then followed in December 2005 and July 246 

2012, respectively.  SEVIRI has twelve spectral channels covering visible and infrared 247 

wavelengths and provides full-disc images every 15 minutes with a spatial resolution at 248 

the sub-satellite point (0 degrees longitude/latitude) of 3 km (1 km for the high-resolution 249 

visible channel).   250 

 251 

An operational LST product is provided by the Land Surface Analysis Satellite 252 

Applications Facility (LSA SAF) in near-real time at the full space/time resolution of the 253 

SEVIRI.  The product is available from 2009 and can be obtained by users through the 254 

LSA SAF website (http://landsaf.meteo.pt/), or automatically in near-real-time through 255 

the EUMETCAST dissemination service.  LSTs are calculated using a generalised split 256 

window (GSW) algorithm, following Wan and Dozier [1996], with estimated errors and 257 

quality information, including a cloud mask, provided in the product for each pixel.  The 258 

GSW method utilises observations from the ‘window’ channels at approximately 11 and 259 

12 µm to account for atmospheric effects, which vary with wavelength.  Regression 260 

coefficients are sourced from a look up table based on satellite viewing angle, water 261 

vapour and NSAT.  Surface emissivity is estimated using a geometrical model and 262 

Fraction of Vegetation Cover (FVC), another LSA SAF product, available at daily 263 

resolution.  As for LST, FVC data are available at the full spatial resolution of the 264 

SEVIRI instrument from 2009 onwards from the LSA SAF website and EUMETCAST 265 

service.  FVC is estimated from the weighted combination of the probability that an 266 

observation is bare soil or fully vegetated, where the probability is computed using a 267 

Bayesian model (see LSA-SAF Product User Manual for Vegetation Parameters, v2.1, 268 

200, available from the LSA-SAF website).  The data are expressed as values between 0 269 



 

and 100%, with estimated errors and quality information given per pixel; the overall 270 

accuracy of the FVC product is expected to be within 10% for 70-75% of land pixels. 271 

 272 

Pixel cloud information is sourced from the Satellite Application Facility to support 273 

NoWCasting and very-short-range forecasting (SAFNWC).  The theoretical RMSE for 274 

the LST retrievals is typically less than 2 °C under cloud free conditions, with similar 275 

uncertainties obtained through in situ validation experiments [Freitas et al., 2010; Trigo 276 

et al., 2008].  However, undetected cloud can cause systematic errors in the LST 277 

retrievals that may exceed this. 278 

 279 

2.2 Ancillary Data 280 

The latitude, longitude and elevation for each SEVIRI pixel is available from the LSA-281 

SAF static data products archive (http://landsaf.meteo.pt/).  In this study, sub-pixel land 282 

use information was also considered using data from the European Space Agency’s 300-283 

m GlobCover data set [Arino et al., 2008; http://due.esrin.esa.int/globcover/].  These data 284 

were used to estimate the urban and water fraction (UF and FoW) for each SEVIRI pixel 285 

by calculating the fraction of 300-m GlobCover pixels nominally contained within each 286 

SEVIRI pixel for each of these surface classes.  The GlobCover data were also used to 287 

calculate the distance from coast (DfC) for each SEVIRI land pixel.  288 

 289 

2.3 Station Data 290 

In situ Tmin and Tmax were sourced from the European Climate Assessment and Dataset 291 

(ECA&D) [Klein Tank et al., 2002].  This data set includes observations from 7862 292 

meteorological stations throughout Europe, where more than half the station records are 293 



 

available for public download from the ECA&D website (http://eca.knmi.nl/).   The data 294 

used here were from the archive of ‘blend and update’ station data.  The blended station 295 

data were used in this analysis to ensure coverage during the analysis period used in this 296 

study (2012-2013) as some stations have a lag time of several months or more before 297 

they are updated by their contributing countries.  In these cases, ECA&D ‘blend and 298 

update’ station records are in filled with data from the Global Telecommunication System 299 

(GTS) or other stations within 12.5 km distance and 25m elevation.  This method means 300 

that some observations are duplicated in two or more station records.  The source for each 301 

station observation is provided by ECA&D as metadata and this has been used in this 302 

analysis to remove any duplicate entries.  Data from the public ECA&D archive were 303 

used to build the regression relationships in this study (example shown in Figure 3).  304 

Additional data from the non-public ECA&D archive were provided for this study by the 305 

Royal Netherlands Meteorological Institute (KNMI) for Germany and the UK.  These 306 

additional data were used as independent validation data for the satellite-derived Tmin 307 

and Tmax produced in this study.   308 

 309 

3 Estimation of near surface air temperatures from satellite data 310 

The method selected for this study is a regression-based approach.  This approach is 311 

attractive because it is fairly simple to implement and in theory, relationships can be 312 

derived in well-observed regions that could be applied to sparsely-observed regions.  313 

While kriging-based methods appear to give good results, they do not perform so well in 314 

poorly-observed regions (Kilibarda et al., 2014).  Physical models, such as that of Sun et 315 

al. [2005], are less practical as they require input data that are not readily available.  LST 316 

data from the SEVIRI are used here to estimate daily LSTmin and LSTmax.  These LST 317 

data are then regressed with FVC, latitude, UF, elevation and DfC against station Tmin 318 



 

and Tmax data collocated in both space and time.  Separate regression models are 319 

produced for Tmin and Tmax; the derived regression coefficients are applied to every 320 

available SEVIRI LSTmin/max observation providing estimates of Tmin and Tmax 321 

where station data are absent.  Tmin and Tmax are the dependent variables of choice in 322 

this study rather than instantaneous NSAT, for example, principally because the study 323 

area (-25 to +45°E) spans several time zones.  Deriving a generalised regression model is 324 

therefore impractical as time-matched in situ and satellite temperature observations used 325 

to train the regression across the domain would be at different points in the diurnal cycle 326 

(in situ NSAT observations are typically at 00, 06, 12, 18 GMT, or hourly at best).  327 

Figure 4 shows a flow chart of the process used to estimate Tmin and Tmax from the 328 

SEVIRI data.  Each stage of the process is explained in detail below. 329 

 330 

3.1 Calculation of LSTmin and LSTmax 331 

The 15-minute SEVIRI LST data from the LSA-SAF are processed to obtain the LSTmin 332 

and LSTmax for each pixel for each day.  Observations are only considered between the 333 

local times of 23:00 and 08:00 for LSTmin, and 11:00 and 16:00 for LSTmax.  These 334 

temporal windows are employed to ensure only realistic data are considered for each 335 

observation type, for example to avoid daily LSTmax data being sourced from night time 336 

hours when there are few or no day time SEVIRI observations owing to rejection because 337 

of cloud-contamination.  Use of these temporal windows also achieves some consistency 338 

with conventional meteorological station observations of Tmin and Tmax.  (Note: 339 

LSTmax occurs close to solar noon, which often occurs earlier than Tmax.)  LST values 340 

are only recorded where the number of valid observations (cloudy and non-cloudy) 341 

exceeds 33 for the LSTmin window and 18 for the LSTmax window, which equates to 342 

approximately 90% valid observational coverage in each window.  This is a necessary 343 



 

step as satellite data are prone to missing observations, for example due to data feed 344 

interruptions or corruption.  For the LSA-SAF archive, 4.9% of slots (i.e. entire 15-345 

minute full-disc images) are missing or corrupt for the years 2012-2013.  The cloud mask 346 

provided within the LSA-SAF LST product is used to identify and exclude cloudy pixels 347 

from the analysis.  No limit on the number of valid cloud-free observations in each 348 

window is employed in deriving LSTmin and LSTmax.  However, the fraction of cloud-349 

free observations in each window is recorded at this stage of the processing as additional 350 

user information. 351 

 352 

3.2 Regression Formulation  353 

The linear regression model is constructed by regressing the observed station Tmin/Tmax 354 

data (in °C) against temporally and spatially collocated LSTmin/LSTmax (in °C), 355 

fraction of green vegetation (FVC; in %), latitude (Lat; in degrees N), elevation (Z; in 356 

metres), urban fraction (UF; in %) and distance from coast (DfC; in metres):  357 

 358 

DfCLatUFZFVCLSTT .....min.min minminminminminminmin γϕφδχβα ++++++=  (1) 359 

DfCLatUFZFVCLSTT .....max.max maxmaxmaxmaxmaxmaxmax γϕφδχβα ++++++=  (2) 360 

 361 

These variables were selected as they are all strongly and significantly correlated with 362 

NSAT (p <<0.05; also see Figures 5b and 6b).  Other variables, such as wind speed, solar 363 

zenith angle (SZA) and albedo were also considered but were not selected as they did not 364 

improve the regression model enough to warrant their inclusion.  For SZA and albedo 365 

this is partly because these parameters are strongly co-linear with LST/latitude and FVC, 366 

respectively.  For wind speed, the issue is also one of practicality as reanalysis or 367 



 

operational analyses provide the only viable source of wind speed data for locations 368 

without stations.  369 

 370 

Satellite-station matchups are excluded from the regression where the DfC is less than 1 371 

km, the fraction of water (FoW; see Section 2.2) within the SEVIRI pixel is more than 372 

50%, or the elevation is more than 1500 m.  These are excluded as the satellite LST 373 

retrievals are likely to be unreliable under these conditions and because satellite-station 374 

agreement is likely to be influenced by factors that cannot be accounted for easily (e.g. 375 

the moderating effect of water bodies on local air temperature, coastal winds and sharp 376 

changes in elevation and challenging landscape at very high elevations). 377 

 378 

The regression analysis is performed for each day with a moving 11-day window such 379 

that each day has a different set of regression coefficients and offset.  The moving 380 

window approach was selected for two reasons.  Firstly, the relationship between NSAT 381 

and several of the predictor variables varies with time, both on seasonal and local 382 

timescales (Figures 5b and 6b).  Secondly, the approach ensures that a large enough pool 383 

of data is available to perform a meaningful regression analysis, since the presence of 384 

cloud can significantly reduce the number of LST and FVC data available.  The FVC data 385 

are less affected by cloud as the LSA-SAF product uses observations from previous days 386 

for cloudy pixels.  Data from up to the preceding two days are used to fill gaps in the 387 

LSA-SAF FVC archive (10 daily files are missing between 2012 and 2013).  A 388 

regression relationship is only formulated for situations with at least 400 valid matchups. 389 

 390 

Figures 5 and 6 illustrate the regression analysis for 2012-2013 for Tmin and Tmax, 391 

respectively.  The figures include the time series of regression coefficients using 392 



 

normalised (panel c; normalisation of variables achieved by subtracting the mean and 393 

dividing by the standard deviation) and non-normalised data.  The coefficients for the 394 

normalised regression data allow the relative contribution of each predictor in the model 395 

to be assessed.  The dominant predictor variable is found to be the satellite LST, which 396 

accounts for around 70-80% of the variance in air temperature.  Latitude is the second 397 

strongest predictor.  The other predictors have lower weighting but are nonetheless 398 

important in the regression model as they can have significant effect on the predicted air 399 

temperatures in certain regimes.  For elevation, the mean correction, ∆T, is -0.4 ºC for 400 

both Tmin and Tmax (root mean square (RMS) 1.4 ºC).  For DfC, the mean ∆T is -0.2 ºC 401 

for Tmin (RMS 0.7 ºC) and 0.0 ºC for Tmax (RMS 0.9 ºC).  The UF correction ranges 402 

between -1.0 and 1.3 for Tmin and -2.5 and 1.3 ºC for Tmax in heavily urbanised areas 403 

(e.g. capital cities).  The ∆T values for FVC range between approximately -5 and +6 ºC 404 

for Tmin and -2 and 8 ºC for Tmax.  For latitude, the ∆T values are large in magnitude 405 

(40 ºC), but this is largely counteracted by the regression offset, which is typically 406 

between 10 and 30 ºC; if latitude is removed from the predictor variables used in the 407 

regression the offset reduces to a few degrees. 408 

 409 

4 Evaluation of predicted near surface air temperatures 410 

4.1 Analysis of regression residuals 411 

The bottom panels in Figures 5 and 6 show the residuals of the multiple-linear regression 412 

for the central analysis day (i.e. day 6 in the 11-day moving window).  Statistics for the 413 

residuals are only shown where at least 50 valid matchups occur to ensure the results are 414 

statistically robust.  The results are slightly better for Tmax than for Tmin, with the latter 415 

generally exhibiting more noise in the median satellite-minus-station difference.  In 416 



 

general, the Tmax 10th/90th percentiles are close to ±2.5 degrees, indicated by the dotted 417 

line on the plots, with the 5th/95th percentiles occurring around the ±4 °C mark.  For 418 

Tmin, these limits are about 0.5 °C or so larger in magnitude.  A slight reduction in 419 

variance is evident during the summer months, which is likely to be a result of increased 420 

data availability during this time due to less cloud.  A larger data pool will permit a more 421 

robust regression and reliable statistics.  Other than this, no seasonality is apparent in the 422 

results, which is to be expected given the moving 11-day analysis window used in the 423 

regression.  The mean satellite minus station bias is 0.0 °C for both Tmin and Tmax, with 424 

RMS differences of 2.7 °C and 2.5 °C, respectively. 425 

 426 

4.2 Independent station evaluation 427 

Figures 9 and 10 show a summary of the comparison between collocated non-public 428 

ECA&D German & UK station data, and satellite LSTs and NSATs.  The correlation 429 

between LSTmin and the station Tmin is notably lower than for the satellite Tmin vs 430 

station Tmin (Figure 7b).  The comparison shows the satellite LSTmin data are typically 431 

cold-biased by about 5 °C with respect to the station data (Figure 7c), whereas the mean 432 

satellite-minus-station Tmin bias is 0.5 °C (Figure 7d).  The satellite Tmin minus station 433 

Tmin differences also have much lower variance compared with the LSTmin comparison.  434 

Overall, the satellite-station Tmin bias is slightly worse than that obtained from the 435 

analysis of the regression residuals discussed above (0.5 °C compared with 0.0 °C), but 436 

with similar RMS difference (2.5 °C compared with 2.7 °C in Section 4.1). 437 

 438 

Similar results are obtained for Tmax: the correlation between satellite Tmax and station 439 

Tmax is higher than for satellite LSTmax vs station Tmax (Figure 8b), and the agreement 440 

between the modelled NSATs is better than between the LSTmax and station Tmax data 441 



 

(Figures 8c,d).  The LSTmax minus station Tmax differences show strong seasonal 442 

variability where the difference is negative in winter months and more positive during the 443 

summer (Figure 8c).  This seasonal variability is considerably reduced (nearly absent) in 444 

the satellite vs station Tmax data, which is encouraging and suggests that the dynamic 445 

approach adopted for the regression model is valid.  In fact, the performance of the Tmax 446 

regression is actually quite good, with high proportion of matchups falling within the 447 

±2.5 °C limits marked on the plot (dotted line), particularly during the spring to autumn 448 

months.  The mean bias for satellite-station Tmax is 0.0 °C with a RMS difference of 2.3 449 

°C, which is nearly the same as the results obtained from the residuals analysis (0.0 °C 450 

and 2.5 °C, respectively). 451 

 452 

The data used for the independent station evaluation are from the non-public ECA&D 453 

archive.  Only non-public data for Germany and the UK were available for this study and 454 

therefore the analysis is geographically limited.  The agreement between these results and 455 

those obtained for the residuals analysis in Section 4.1, which is for the whole of Europe, 456 

is encouraging and suggests that similar uncertainties could be expected in other regions.  457 

However, Figure 3 shows that a high proportion of the stations used for the regression 458 

model training are located in Scandinavia and Central Europe, which may result in the 459 

regression coefficients being weighted to favour conditions in these regions. 460 

 461 

5 Example data: March 2012 northern European heat wave  462 

Figures 9-11 show NSAT corresponding to a short heat wave experienced by parts of 463 

northern Europe during March 2012.  These Figures include the relevant SEVIRI Tmin 464 

and Tmax estimates from this study, station data from the ECA&D public archive, 465 

specifically the Paris Parc Montsouris station, and the data from E-OBS, which is a 466 



 

gridded version of the ECA&D described by Haylock et al. [2008].  The E-OBS data 467 

used here correspond to the 0.25 degree regularly gridded product.  The line graph 468 

(Figure 9) shows that all three data sets display a similar temperature evolution during the 469 

heat wave, while the maps (Figures 10 and 11) show that the three data sets also exhibit 470 

similar spatial patterns.  Examining Figures 10 and 11 highlight some important points.  471 

Firstly, the satellite data suffer from significant gaps due to cloud (white areas: e.g. the 472 

Alps and Poland) and secondly, the satellite data offer spatial detail that is not available 473 

from the station-based data set; for example, the Paris urban heat island is clearly visible 474 

in the SEVIRI data (Figure 11).  The largest differences between the in situ and satellite 475 

data sets are apparent when looking at the diurnal temperature ranges (Tmax minus 476 

Tmin). Particularly large differences occur in some regions such as northern England, and 477 

northern Germany, the Netherlands and Belgium (Figure 10); in both cases the SEVIRI 478 

diurnal temperature range is lower than for the equivalent in situ data.  The cause appears 479 

to be a low-biased SEVIRI Tmax in both areas.  This is indicated by the higher station 480 

Tmax values corresponding to the cluster of ECA&D stations in the Netherlands, and 481 

therefore probably corresponds to situations where the geographically generalised 482 

regression approach adopted in this study has not worked well.  483 

 484 

6 Discussion 485 

The satellite NSAT data may have lower uncertainties than the evaluation performed in 486 

this and other studies suggest.  In situ temperatures can only be measured at discrete 487 

points and can therefore only be representative of the air immediately around the station 488 

at the time of the observation.  In many cases, the observation can be extrapolated beyond 489 

the measurement location with confidence, depending on the location of the station.  490 

Indeed, meteorological station locations are chosen with this in mind but choices are 491 



 

limited by practicality and therefore the measured temperatures may not be representative 492 

of even close-neighbouring locations.  Satellite sensors such as the SEVIRI, on the other 493 

hand, view the radiation emitted by every point within their field of view and therefore 494 

the observed surface temperatures they provide are truly area-averaged.  For SEVIRI, this 495 

area is several km (3 km at the satellite point of 0 deg latitude/longitude and around 4-10 496 

km over Europe) and therefore a SEVIRI pixel temperature observation may be 497 

inherently different from an in situ observation located within the same SEVIRI pixel.  498 

This is illustrated in Figure 12, which shows the NSAT differences between two 499 

neighbouring stations in Sweden which are separated by only 1.26 km and 1 m elevation, 500 

but are both located within the same SEVIRI pixel.  The mean differences are 0.1 and 0.3 501 

°C for Tmin and Tmax, respectively, but daily differences of several °C are frequently 502 

observed.  This NSAT heterogeneity is documented elsewhere as it can result in non-503 

climatic changes in station temperature records if a station is relocated [Yan et al, 2010].   504 

 505 

The issue of satellite spatial scale has also been investigated recently by Sohrabinia et al. 506 

[2014] who find that the strength of the relationship between station-observed NSAT in 507 

New Zealand and LSTs from MODIS is strongest when the 1 km MODIS data are 508 

spatially averaged, for example, over 5x5 pixels or more.  Sohrabinia et al. [2014] 509 

attribute this to the lower internal variability of LST at larger scales.  However, they find 510 

that the station NSAT-satellite LST relationship begins to deteriorate at scales larger than 511 

25 km.  This could have implications for derivation and evaluation of microwave 512 

estimates of NSAT and may, at least in part, explain why the uncertainties of the Jones et 513 

al. [2010], Köhn and Royer [2012] and Jang et al. [2014] NSATs are higher than 514 

obtained in most of the infrared-based studies (e.g. this study, Cristobal et al. [2008], 515 

Kilibarda et al. [2014], Vancutsem et al. [2010], Zhang et al. [2011]).  In this study, the 516 



 

issue of scale has also been investigated by repeating the evaluation in Section 4 with 517 

averaged SEVIRI NSATs over 3x3, 5x5, 7x7, 9x9, 11x11 and 13x13 pixel blocks.  518 

Changes to the RMS differences for these pixel blocks are negligible (≤0.1 °C), although 519 

the tendency is for the RMS difference to decrease up to 7x7, beyond which the tendency 520 

is an increase.  Changes to the magnitude of the Tmax mean bias are also <0.1 °C while 521 

the Tmin mean bias becomes slightly more negative with increasing pixel block size (e.g. 522 

a reduction of 0.4 °C is observed for  the 13x13 pixel block.  This reduction could be a 523 

result of the inclusion of an increasing number of colder rural pixels around an urban 524 

station, for example.   525 

 526 

Spatio-observational discrepancies between the satellite and in situ station may also occur 527 

because of parallax effects resulting from the interaction between the SEVIRI line of 528 

sight (view angle) and topography.  In the extreme case, for example, SEVIRI might 529 

view only one side of a mountain when the station is located on the other side.  In this 530 

study, the regression formulation is only performed using a large pool of station data, 531 

which should minimise the uncertainties on the regression parameters that occur as a 532 

result of these problems as these satellite-station spatial mismatch errors are expected to 533 

be random.  For the evaluation component of the study, using a large pool of data will 534 

help to reduce any effects on the mean bias but not the variance, which is likely to be 535 

inflated as a result of the issues discussed here. 536 

 537 

Figure 13 shows an example of the satellite temperature maps for 21 August 2013, 538 

showing both LSTmin and LSTmax, and predicted Tmin and Tmax for this day.  The 539 

temperature difference between the LST and NSAT images is marked, particularly for 540 

LSTmax/Tmax, where a change of several degrees can be observed for some places – for 541 



 

example, Spain, where the LSTmax is more than 5 °C warmer.  Also of note are the 542 

(grey) gaps in the satellite data, for example in north-eastern Europe.  This is where 543 

SEVIRI observations of either LSTmin/LSTmax or FVC are not available owing to cloud 544 

obscuring the satellite view of the surface.  Cloud contamination is a major disadvantage 545 

of using infrared and visible satellite data for surface temperature applications.  Not only 546 

does it lead to gaps in the data coverage, but undetected cloud may lead to large errors in 547 

the surface temperature retrievals.  The effects of the coverage problem are minimised in 548 

this study through the use of multi-hour temporal windows for estimating LSTmin and 549 

LSTmax.  This increases the probability of obtaining a cloud-free observation for each 550 

temperature.  In the case of LSTmax, the chance of using an observation contaminated 551 

with undetected cloud is also reduced as the maximum LST in the window is the 552 

observation most likely to be cloud-free as cloud almost always results in a cold-bias in 553 

the retrieved LST.  For Tmin, however, the effect is the opposite with the minimum LST 554 

being that most likely to be contaminated with undetected cloud.  This may, at least in 555 

part, explain why the evaluation results for satellite Tmin data are not as good as for 556 

Tmax.  This sensitivity of Tmin to cloud-contamination biases could lead to some 557 

seasonal variation in bias at locations where there is a significant seasonal cycle in cloud 558 

fraction. 559 

 560 

Figures 14 and 15 illustrate the cloud problem.  The figures show that fewer day time 561 

observations are available due to presence of cloud compared with night (Figure 14 and 562 

15b).  This may be a real effect, or a result of the SEVIRI cloud detection methods, which 563 

include visible channel checks that cannot be carried out at night leading to increased 564 

incidences of missed cloud at night and larger errors in LST (cloud detection using 565 

infrared is carried out both at night and during the day).  As expected, incidences of 566 



 

cloud-free observations are higher in southern Europe, dropping off to around 30% 567 

coverage above a latitude of 50 degrees (Figure 15a).  The availability of cloud-free 568 

observations is highest during the summer (typically 40-70% depending on time of day) 569 

and lowest during northern hemisphere winter months (20-30%). 570 

 571 

6.1 Extension of the method in both space and time 572 

 573 

In addition to the SEVIRI, public geostationary LST data sets are currently available for 574 

GOES [Freitas et al., 2013; Heidinger et al., 2013; Sun et al., 2012] and the Multi-575 

Functional Transport Satellite (MTSAT) [Freitas et al., 2013].  Although geostationary 576 

satellite records extend for several decades, these data sets are currently short in length 577 

and only cover the past 10 years or less, with the exception of the Heidinger et al., [2013] 578 

data, which extends back to 1995 over N. America.  Previous studies also document 579 

efforts to derive LST from other geostationary sensors.  For example, Prata and Cechet 580 

[1999] estimate LST from the Visible and Infrared Spin Scan Radiometer (VISSR) 581 

onboard the Geostationary Meteorological Satellite 5 (GMS-5), which is the predecessor 582 

to the MTSAT.  Tang et al., [2008] use the generalised split window of Wan and Dozier 583 

[1996] to estimate LST from the geostationary FengYun Meteorological Satellite (FY-584 

2C).  Effort is also underway by the CM-SAF to develop multi-decadal LST from 585 

predecessors of the SEVIRI, onboard the Meteosat First Generation (MFG) platforms 586 

(http://www.meteoswiss.admin.ch/web/en/research/current_projects/climate/cmsaf.html).   587 

 588 

The method described in this study could, in theory, be applied to LST records derived 589 

from other geostationary sensors to create a global, multi-decadal satellite, sub-daily 590 

NSAT data set.  However, generating such a data set would pose several challenges.  591 

Firstly, the intercalibration and homogeneity of different LST data sources would need to 592 



 

be addressed as spectral characteristics and calibration vary between instruments and also 593 

with time.  For example, GOES I-L images were equipped with split-window channels 594 

where as the more recent GOES M-P do not have a 12 µm channel, prohibiting the use of 595 

a split-window retrieval to generate long-term LST [Heidinger et al., 2013].  Changes in 596 

instrument spectral characteristics will also affect the consistency of cloud detection 597 

techniques.  LST also varies with viewing geometry such that different geostationary 598 

sensors may observe a different LST for the same Earth location [Freitas et al., 2013; 599 

Vinnikov et al., 2012].  Secondly, the long-term homogeneity and spatial consistency of 600 

some of the other predictors used in the regression described in this study will be an 601 

issue.  In particular, the FVC data are derived from SEVIRI and are not global, thus 602 

alternative sources of data would be required for other sensors.  The GlobCover land use 603 

map adopted here to derive UF and DfC is global but derived from satellite data acquired 604 

during 2005/6 and may not accurately represent urban areas during the early part of the 605 

satellite era.  Thirdly, the characteristics of the station network will impact the application 606 

of this method to other regions.  Derivation of the regression coefficients requires the 607 

availability of training station data.  While it may be possible to construct the regressions 608 

in well-observed areas that could be applied to less-well observed areas with similar 609 

meteorology and land use, this is yet untested and will be investigated in future work.  It 610 

should be noted that the dynamic formulation of the regression presented here does not 611 

require stations to be consistently available over time.  However, inhomogeneities in 612 

station data records may propagate through the regression process and result in 613 

inhomogeneities in the derived satellite NSATs. 614 

 615 

6.2 Data set applications 616 

 617 



 

A global satellite NSAT data set, such as the one proposed above, is unlikely to replace 618 

conventional in situ data sets.  The primary application for these data will be in providing 619 

new observations of Tmin and Tmax for regions that are poorly, or unobserved in situ, 620 

e.g. to compare with model-estimated NSAT, as in independent data source, or 621 

incorporated into in situ-based NSAT analyses to reduce uncertainties.  The impact of 622 

incorporating additional data sources in data-sparse regions has recently be demonstrated 623 

by Jones et al. [2012], who find that including new Russian stations in the CRUTEM4 624 

data set results in changes in estimates of recent high-latitude warming.  Using satellite 625 

estimates of NSAT in this way will be explored further in a new Horizon2020 project, 626 

‘EUSTACE’ (EU Surface Temperatures for All Corners of Earth; 627 

http://www.theclimatesymposium2014.com/ClimateSymposiumNickRaynerEUSTACEfi628 

nal.pdf), which aims to produce a globally complete daily NSAT analysis back to 1850 629 

using a combination of satellite and in situ observations. A component of EUSTACE is to 630 

develop the method presented in this study further and apply it to a larger space and time 631 

domain; these data will then be statistically combined with in situ observations to 632 

produce the analysis over land. 633 

 634 

As demonstrated in Section 5, and Figures 10 and 11, satellite NSATs can also provide 635 

spatial detail that cannot be observed in situ, but is required for some applications, e.g. 636 

urban temperature studies [Dousset et al., 2011; De Ridder et al., 2012].  Existing Tmin 637 

and Tmax observational analyses are currently available at comparatively coarse 638 

resolution, for example, E-OBS (0.25° latitude/longitude) and HadGHCND (2.5° latitude 639 

by 3.75° longitude); satellite NSAT data, such as those presented in this study will 640 

therefore provide an alternative data source that may better meet the needs of some users.   641 

  642 



 

7 Conclusions 643 

This study describes a method for estimating daily Tmin and Tmax from geostationary 644 

satellite data, based on dynamic, empirical regression of satellite-observed and auxiliary 645 

parameters against collocated station observations.  The method, which has been tested 646 

over Europe for two years of data, allows the prediction of Tmin and Tmax for locations 647 

without station data at the spatial resolution of the satellite data (3 km at the sub-satellite 648 

point).  Analysis of the model residuals and evaluation with independent station data 649 

from the UK and Germany not used in the regression process suggests that for most days 650 

at least 50% of the estimated NSATs are within 3 °C of collocated station observations, 651 

with around 80% within 4 °C and 90% within 5 °C.  Results for Tmax are slightly better 652 

than for Tmin, with an overall mean bias of 0.0 °C compared with 0.0-0.5 °C for Tmin, 653 

and RMS differences of 2.3-2.5 °C for Tmax and 2.5-2.7 °C for Tmin.  The mean bias of 654 

the satellite-estimated NSATs shows no seasonal variation, although the variance is noted 655 

to be higher during winter months owing to the lower number of station-satellite 656 

matchups used to build the regression model because of increased cloud frequency.  The 657 

variance results are likely inflated through the inherent, random discrepancies that arise 658 

from comparing satellite area-averaged with in situ point temperature observations.  659 

Errors in the satellite data due to undetected cloud may cause significant biases in the 660 

estimated NSATs, particularly for Tmin.   661 

 662 

The results presented in this study are consistent with previous studies noted in this 663 

article, where typical uncertainties of around 2-5 °C are obtained for predictions of daily 664 

or sub-daily NSAT over timescales of more than a few days [Cristobal et al., 2008; Davis 665 

and Tarpley, 1983; Jang et al., 2014; Jones et al., 2010; Kilibarda et al., 2014; Köhn and 666 

Royer, 2012; Nieto et al., 2011; Vancutsem et al., 2010; Zhang et al., 2011].  The 667 



 

approach adopted for this study provides some enhancements over these previous studies.  668 

In particular, high-frequency geostationary observations are used to improve the 669 

probability of obtaining cloud-free daily IR observations of Tmin and Tmax, which is a 670 

significant problem for methods that use daily polar-orbiting IR data.  A method that uses 671 

geostationary observations is also beneficial as these data could provide the long-term 672 

records (>30 years) suitable for climate applications.  The use of IR LST data is 673 

advantageous as these data have higher spatial resolution compared with microwave 674 

observations; the NSAT estimates produced here at the satellite native FOV.  The 675 

regression developed in this study also uses urban fraction as a predictor for the first time.  676 

Finally, the data set presented here is available at 677 

http://www.metoffice.gov.uk/hadobs/msg_tmaxmin/ and will be updated regularly; at the 678 

time of writing, only the data of Jones et al., [2010] (daily microwave, 25-km spatial 679 

resolution for 2002-2011) are currently in the public domain.  A real-time version of the 680 

data set, updated daily, will also be implemented in 2015. 681 

 682 

The satellite NSATs presented here are not designed to replace conventional gridded 683 

station NSAT data sets, but to augment them.  Future work includes application of the 684 

method described in this study to other land masses in the new Horizon2020 project, 685 

‘EUSTACE’, which aims to produce a globally complete daily NSAT analysis back to 686 

1850 using a combination of satellite and in situ observations. 687 

 688 
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 896 

 897 

Figure 1: Diurnal cycle on 2 July 2011 for land surface temperature (LST) and near 898 

surface air temperature (NSAT) at meteorological station 607350 (35 40N, 10 06E; 899 

Kairouan, Tunisia).  The skin temperature data are from the Spinning Enhanced 900 

Visible and Infrared Imager (SEVIRI; see Section 2.1).  Missing SEVIRI data 901 

correspond to cloudy observations.  The in situ air temperatures are from the HadISD 902 

data set [Dunn et al., 2012]. 903 
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 905 



 

 906 

Figure 2: Histograms showing the difference between LST from the SEVIRI onboard 907 

MSG and temporally and spatially collocated HadISD [Dunn et al., 2012] station 908 

temperatures over Europe between 0 and 20 degrees longitude for December 2009-909 

February 2010 (winter), March-May 2010 (spring), June-August 2010 (summer) and 910 

September-November 2010. 911 

 912 

 913 

Figure 3: ECA&D stations (publicly available) with Tmin/Tmax data for 2012/2013. 914 



 

 915 

 916 

Figure 4: Process of deriving minimum and maximum land temperatures.  Input data 917 

sets are in green and output data sets are in yellow. 918 
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 922 

Figure 5:  Analysis of station air temperatures vs. empirical model predictor variables 923 

for Tmin for 2012/2013.  Regression coefficients formed from moving 11-day 924 

window centred on day in question.  Panels show (a) number of cloud-free satellite-925 

station matchups on day of observation (i.e. central day in window), (b) correlation 926 

coefficient between station air temperature and collocated predictor variables (black 927 

line indicates multiple linear regression coefficient), (c) normalised multiple linear 928 

regression coefficients, (d) regression offset, and (e) residuals (i.e. satellite minus 929 

station NSAT) on day of observation (i.e. central day in window), the solid black line 930 

indicates the median. 931 

 932 

 933 



 

 934 

Figure 6: As for Figure 5 but for Tmax. 935 
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 937 
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 941 

Figure 7: Validation of SEVIRI Tmin over Germany & UK for 2012-2013 showing 942 

(a) the number of SEVIRI-station matchups, (b) the correlation between station Tmin 943 

and SEVIRI LSTmin, and station Tmin and SEVIRI Tmin, (c) SEVIRI LSTmin 944 

minus station Tmin and (d) satellite Tmin minus station Tmin distributions for each 945 

day.  ‘SEVIRI LSTmin’ is the daily minimum LST (i.e. ‘skin’ temperature), while 946 

‘SEVIRI Tmin’ is the derived daily minimum NSAT (i.e. through the multiple-linear 947 

regression method described in this study). 948 
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 950 

Figure 8: As for Figure 7 but for Tmax. 951 

952 



 

 953 

 954 

Figure 9: Daily Tmin (lower group of lines) and Tmax (upper group of lines) over 955 

Paris between 20 March and 3 April 2012 observed in situ (ECA&D), from EOBS 956 

and SEVIRI.  The SEVIRI data correspond to a single pixel (1x1) and the average of 957 

a 3x3 block of pixels (3x3). 958 

959 



 

 960 

 961 

Figure 10: Tmin and Tmax observations for 27 March 2012.  (a) EOBS Tmin, (b) 962 

ECA&D public station Tmin, (c) SEVIRI Tmin, (d) EOBS Tmax, (e) ECA&D public 963 

station Tmax, (f) SEVIRI Tmax.  Panels (g) to (i) show the corresponding diurnal 964 

temperature ranges, i.e. Tmax minus Tmin.  Locations with no data or missing data, 965 

e.g. due to cloud, are shown in grey. 966 

967 



 

 968 

Figure 11: As for Figure 10 but centred over Paris. 969 

 970 

Figure 12:  Example of NSAT differences between neighbouring stations.  971 

Trollhattans-Flygpla (Sweden, ECA&D source 35772) minus Trollhattans (Sweden, 972 



 

ECA&D source 35769) for (a) Tmin and (b) Tmax.  The distance between stations is 973 

1.26 km with 1 m elevation difference.  Both stations are located within the same 974 

SEVIRI pixel. 975 

 976 

Figure 13: Example of satellite temperature data on 21 August 2013 showing (a) 977 

LSTmin, (b) Tmin, (c) Tmin for the Iberian Peninsula, (d) LSTmax, (e) Tmax and (f) 978 

Tmax for the Iberian Peninsula.  Locations with no data or missing data, e.g. due to 979 

cloud, are shown in grey. 980 
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 982 

Figure 14: Percentage of days in 2010 with cloud-free SEVIRI observations at 983 

synoptic times (labelled on plots). 984 

985 



 

 986 

 987 

Figure 15: Percentage of days in 2010 with cloud-free observations at HadISD station 988 

locations [Dunn et al., 2012] plotted as a function of (a) latitude and (b) date and 989 

coloured according to observation time. 990 
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