
Proposed method for calculating area-averages

for NCMPs

January 28, 2014

1 Intro

The proposed method for calculating area averages of precipitation and temper-
ature anomalies and counts of warm days and cold nights is Ordinary Kriging
(it should also work for SPI, although this was not tested). Ordinary Kriging
is simple to implement. It takes a set of station data as an input and provides
an estimate of the geophysical �eld (such as temperature) at any point. It can
be used to create maps of various geophysical variables and area averages can
be calculated from these. The method is widely used in geophysics and it has a
number of agreeable properties. It is demonstrably a BLU estimator - that is,
Best, Linear and Unbiased - as long as the assumptions made in its derivation
hold. Even if the assumptions aren't quite right, it gives a reasonable estimate in
many cases. It is easy to implement and code and each of the steps is relatively
easy to learn and optimise. It performs better than other commonly-used meth-
ods such as simple gridding, near-neighbour interpolation and inverse distance
weighting.

I have tested the method for temperature, precipitation, warm days and
cold nights using station data from the United States, Australia, the United
Kingdom and some other countries in Europe. Where possible, I have compared
to available monitoring products as a validation of the method. This choice was
not systematic; it was based on data that were readily accessible.

When Kriging, there are two principal steps: calculating the variogram and
then kriging. The variogram gives an idea of the spatial correlations in the �eld
being assessed. The kriging step then uses that variogram to interpolate the
�elds.

2 The Variogram

We have a set of station data at locations, xi, where we have measured a partic-
ular geophysical variable (such as temperature) Z(xi). To calculate a variogram
we �rst calculate the dissimilarity, γ∗, between all pairs of points This is simply
half the squared di�erence of the temperatures (or whatever) at that point:
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Figure 1: Station locations xi

γ∗
ij =

(Z (xi) − Z (xj))
2

2
We can calculate this for all pairs of points and then graph them as a function

of the distance between the points (dots in Figure 2a). This relationship is
typically noisy, but if we divide the distance axis into bins and average the
dissimilarity in each bin, a relationship can be seen (solid line in Figure 2a).
This relationship between the bin-averaged dissimilarity and distance is the
empirical variogram.

The next step is to �nd a theoretical function that neatly (or nearly) �ts
the empirical variogram. Typically these have a portion that rises smoothly
and then there is a plateau. Three functional forms are widely used and �t
well to the majority of data tested. These are the spherical, exponential and
gaussian functions. Here h is just the distance between two points (on earth
this is usually the great-circle distance) and a, b, and c are three parameters of
the function which we can tune to get it to �t the empirical variogram. These
are the functional forms:

Spherical : γ(h) = b

(
3h

2a
− h3

2a3

)
+ c for h < a and b + c for h > a

Exponential : γ(h) = b

(
1 − exp

(
−h

a

))
+ c

Gaussian : γ(h) = b
(

1 − exp
(
−h2

a

))
+ c
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Exponential Variogram precip January
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Gaussian Variogram precip January
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Spherical Variogram precip January
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Figure 2: (a) Dissimilarity for all pairs of monthly precipitation measurements
for Australia in January 1961 (points) and empirical variogram (solid line). (b)-
(d) empirical variogram (black line) for Januarys betweem 1961 and 1990 and, in
red, the best �t functional variogram for an exponential function (b), Gaussian
function (c) and Spherical function (d).

Figure 2 b-d show the best �t of each of these functions to the same vari-
ogram. a is an e�ective length scale and b is the dissimilarity at large distances,
the height of the plateau. The parameter c is the y-intercept of the variogram.
There are various ways to interpret this. As it measures the dissimilarity at zero
separation, one interpretation is that this naturally represents measurement er-
ror although there are versions of Kriging that explicitly include a measurement
error term.

3 Kriging

We have the same set of station data as before. At locations, xi, we measure
a geophysical variable (such as temperature) Z(xi). We want to estimate what
the geophysical variable is at some other point x0. i.e. We want to know Z(x0)
and we can estimate this as a linear weighted sum of the measurements Z(xi).

Zk(x0) =
∑

wiZ(xi)

Ordinary Kriging provides the values of the weights, wi. The weights are
calculated based on the variogram. If we have a variogram functionγ(xi − xj)
which tells us what the average dissimilarity is as a function of distance between
any two locations then we can calculate the weights from this relationship
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...
...
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...
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γ(x1 − x0)

...
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or, more succinctly,

AW = B

The 1's and 0's in the matrix ensure that the weights sum to one. The
weights can then be estimated by calculating

W = A−1B

Which can be rather a slow process if there are a lot of stations because
it involves calculating the inverse of A. The inverse of A is a matrix which
encodes the relationships between the stations. B is vector that encodes the
relationships between each of the stations and the point at which we are trying
to estimate the geophysical variable.

4 Calculating area-averages

Once we have the regular lat-lon grids of the variable we are interested in, the
calculation of area-averages is simple. For these prototypes, I selected gridboxes
that wholly or partly lay within the country and weighted them by their area
(proportional to the cosine of the latitude). Because the grid boxes are rectan-
gular, this method incoporates areas outside the country of interest. I tried to
minimise this e�ect by ensuring that the grid boxes were su�ciently small (an
iterative process in some cases). A more sophisticated approach would be to
estimate what fraction of each grid box fell within the country, but I can't as
yet think of a way to automate that process.

5 Implementation

Kriging is usually performed on a single �eld, but with climatic data we often
have information from multiple �elds. This makes estimating a variogram easier,
because we can draw on information from more than one month to get a more
reliable estimate of the empirical variogram. I calculated a separate variogram
for each calendar month (jan, feb, mar...) because variability changes with
the time of year. To calculate a variogram for use in January, I calculated an
empirical variogram separately for each January in the climatology period. I
then averaged the 30 empirical variograms to get a single empirical variogram
for January.
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There are a number of ways to calculate the great-circle distances between
stations, h, that are needed to calculate the variogram. I found that the most
robust method was to use the formula

h = r. arctan


√

(cos φ2 sin∆λ)2 + (cos φ1 sinφ2 − sinφ1 cos φ2 cos ∆λ)2

sinφ1 sinφ2 + cos φ1 cos φ2 cos ∆λ


where ∆λ is the absolute di�erence between the station longitudes and φ1

and φ2are the station latitudes. r is the radius of the Earth, which is approx-
imately 6371.009 km. Care needs to be taken that arctan returns the correct
value. If the bottom half of the fraction is negative then some implementa-
tions of arctan will give the wrong value. Some programming languages have
a function atan2 that does this correctly, others allow atan to receive either
one argument or two and the latter allows the passing of the numerator and
denominator separately.

To �nd the functional form and parameters that best �t the empirical vari-
ogram, I separately �t each of the three functional forms described above (spher-
ical, gaussian, exponential) by �nding the values of a, b and c that minimised
the mean absolute di�erence between the empirical variogram and the vari-
ogram function. I then choose the variogram function that minimised the mean
absolute di�erence overall. Sometimes the empirical variogram rises to some
maximum value and then falls again. This can happen when the variability
within the region is not constant, or when the distance approaches the size of
the domain being analysed (i.e there are fewer pairs of points at the greatest
separations). For interpolation this is not a great problem because the kriged
estimate is relatively insensitive to this choice. On the other hand, if one were
estimating uncertainties for the kriged �elds, the problem would be more severe
because the uncertainty in a sparsely observed region depends on the estimated
variance. One option is to set a maximum distance for which the empirical
variogram is calculated. As defaults, I chose 3000 km for temperature anoma-
lies and 2000 kmfor precipitation anomalies, but for small regions I used smaller
separations. e.g. when I looked at the Netherlands, I chose a maximum sepa-
ration of 500 km as a �rst guess and even then I had to use information from
neighbouring countries.

To krige the data I �rst selected the variogram function and parameters that
are appropriate for the month. I then select those stations in the month that
have data. I calculate A for all the pairs of stations. I then calculate the inverse
of this. This is the most time consuming step, particularly if there are many
stations.

I then prepare a regular latitude, longitude grid which has a su�ciently high
resolution that the area of interest (this will be a country and its surroundings
for NCMPs) contains several hundred to a few thousand grid points. For each
grid point I then compute B. I then calculate the weights wi from A−1B and
the kriged value at that grid point from

Zk(x0) =
∑

wiZ(xi)
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Sph Variogram precip February
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Exp Variogram precip March
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Sph Variogram precip April
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Exp Variogram precip May
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Exp Variogram precip June
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Exp Variogram precip July
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Exp Variogram precip August
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Exp Variogram precip September
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Exp Variogram precip October

0 500 1000 1500 2000
Distance

0

500

1000

1500

D
is

si
m

ila
rit

y 
(m

m
2 )

Exp Variogram precip November
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Exp Variogram precip December

0 500 1000 1500 2000
Distance

0

1000

2000

3000

4000

D
is

si
m

ila
rit

y 
(m

m
2 )

Figure 3: Empirical (black) and functional (red) variograms for Austrlian
monthly total precipitation (1961-1990) for each calendar month.

Because we are taking the inverse of a matrix, there are a number of things
to be wary of. First, if two of the columns of the matrix are identical, it is not
possible to calculate the inverse. This can happen if two stations have the same
latitude and longitude. One can avoid this by removing duplicate stations, or by
moving stations slightly so that they are in di�erent locations. Second, there can
also be di�culties when stations are very close together because of numerical
instabilities in the computation of the inverse. This is exacerbated by the shape
of the gaussian function which is relatively �at for small separations. This can
lead to columns being almost identical and the calculation of the inverse can fail
(spectacularly, beautifully). One way to �x this is to ensure that the parameter
c is not zero. In practice it rarely is, but it can help to constrain c to be larger
than some minimum value.

6 Results

6.1 Australia

I show �rst results for Austrlian precipitation data. I used data taken from the
Bureau of Meteorology web site which has monthly precipitation totals for 307
stations whose locations are shown in Figure 1. Figure 2 shows the creation
of the variogram for January. In this case the Gaussian function best �t the
variogram. Figure 3 shows variograms for each calendar month and their best
�t functions. In some cases the empirical variogram turns over at large distances
and starts to fall.

The monthly and annual Australian average total precipitation is shown
in Figure 4. The annual total anomaly is compared to the o�cial Bureau of
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Monthly area-average Australian precip anomaly
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Figure 4: Monthly (top) and annual (bottom) total precipitation anomalies for
Australia. The black lines are the kriged estimates and the red line is the o�cial
Bureau of Meteorology estimate.

Meteorology annual total time series. The large scale features and much of the
year to year variability is captured by the simple Kriged estimate and much
of the month to month variability. The standard deviation of the di�erences
between the two estimates is 4.5 mm whereas the total variability is around
17mm. Figure 5 shows a precipitation map for a single month and an o�cial
Bureau of Meteorology map for the same month. There are di�erences betweent
the two, but the broad scale features are captured well by kriging.

Daily max and min temperatures were taken from the ACORN data set
which contains 112 stations. The max and mins were used to calculate daily
mean temperatures and monthly mean temperature anomalies. Monthly and
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Figure 5: February 2010 precipitation anomalies from (left) Bureau of Meteo-
rology and (right) kriged estimate using freely available stations.
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Monthly area-average Australian temp anomaly
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Figure 6: Monthly (top) and annual (bottom) average mean temperature
anomalies for Australia. The kriged estimate is shown in black and the o�-
cial Bureau of Meteorology estimate is shown in red.

annual mean temperature anomaly (NCMP 1) series are shown in Figure 6.
A map for a single month is shown in Figure 7. Once again, the broad scale
features are picked up by the kriged estimate, but some of the detail is lost.
Nonetheless, the kriged estimate is usually within 0.1◦C of the o�cial value
(standard deviation of the di�erence is 0.09◦ C).

Figure 8 shows the counts of warm days and cold nights for each year and
month averaged across Australia. The data were taken from the ETCCDI web-
site.

6.2 United States

I downloaded data for several hundred USHCN stations from the NCDC website.
These contain monthly mean temperatures and precipitation totals. Station
coverage over the US is very high, so the calculation took a bit longer than
for Australia. Figures 9 and 10 show the kriged estimates of the US average
temperature and total precipitation anomalies. The di�erences between the
Kriged estimate and the o�cial temperature series have a standard deviation
of 0.08◦C. For the precipitation series the standard deviation is 1.8mm. Figure
11 shows the annual and monthly counts of warm days and cold nights for the
US (again taken from the ETCCDI web site). A map of temperature anomalies
is shown in Figure 12.
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Figure 7: Maps of monthly mean temperature anomalies for March 1987 for
Australia. (left) o�cial Bureau of Meteorology map. (right) kriged estimate
using freely available ACORN stations.
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Figure 8: (top) annual and (bottom) monthly counts of warm days (Tmax >
90th percentile) and cold nights (Tmin < 10th percentile) avergae over Aus-
tralia. The horizontal line indicates approximately 10% of days. During the
climatology period the average numbers of warm days and cold nights should
be around this line.

9



Monthly area-average US temperature anomaly
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Figure 9: (top) monthly and (bottom) annual average temperature anomalies
for the US. The black line shows the kriged estimate based on USHCN stations
and the red lines shows the o�cial NCDC estimate.
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Figure 10: (top) monthly and (bottom) annual total precipitation anomalies
(mm) for the US. The kriged estimate is shown in black and the o�cial NCDC
estimate is shown in red.
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Figure 11: (top) annual and (bottom) monthly counts of warm days (Tmax >
90th percentile) and cold nights (Tmin < 10th percentile) avergae over Aus-
tralia. The horizontal line indicates approximately 10% of days. During the
climatology period the average numbers of warm days and cold nights should
be around this line.
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Figure 12: Monthly temperature anomalies for the US. The o�cial US HPRCC
product is shown on the left and the kriged estimate is shown on the right. Note
that the climatology periods are di�erent on the left and right.
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Monthly area-average UK temperature anomaly
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Figure 13: (top) monthly and (bottom) annual average temperature anomalies
for the UK. The black line shows the kriged estimate based on public stations
and the red lines shows the o�cial NCIC estimate.

6.3 United Kingdom

I downloaded data for 38 stations from the Met O�ce website. These sta-
tions contain long term records of monthly mean temperature and precipita-
tion. Monthly and annual mean temperature and total precipitation anomalies
(expressed as percentages of normal) are shown in Figures 13 and 14. Al-
though temperatures are reasonably well captured, the sparse network means
that annual and monthly temperature and (particularly) precipitation averages
are somewhat less well captured than they were for the US or Australia where
the available network was denser. The UK does have more than 38 stations -
the o�cial �gures are based on data from 100s of stations - but these are the
stations that I had to hand.

7 Discussion

Implementing the NCMPs from existing indices was relatively simple. The
kriging method worked well for the three example countries presented here.
These were chosen because the data were easily accessible. I have gathered
other data sets which I hope to try out in the near future, but I would also
welcome suggestions of other data sets to try. For the countries I looked at,
station density was relatively high. This means it was possible to estimate the
variograms from the data although the UK with only 38 stations was close to
being inadequate for this purpose. For someone producing NCMPs for a country
with only a small number of stations, estimating the variogram would be either
di�cult, or impossible. One possible solution to this would be to provide default
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Monthly area-average UK precipitation anomaly
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Figure 14: (top) monthly and (bottom) annual total precipitation anomalies
(expressed as a percentage of 1961-1990 average) for the UK. The kriged esti-
mate is shown in black and the o�cial NCIC estimate is shown in red.

variograms or use data from neighbouring countries to help with the estimation.
Some of the NCMPs have properties that make them more �exible as mon-

itoring tools. For example the monthly mean temperature can be averaged in
time to give seasonal and annual means. The monthly counts of warm days and
cold nights can be summed to give seasonal and annual totals.

7.1 Producing and updating NCMPs

Having gone through this process for four variables for a number of di�erent
countries, it's worth re�ecting on what would be involved to produce and update
the NCMPs. Once the code was written to do the Kriging, the bulk of the work
was in organising the input data - �nding it, checking for missing data, getting
it into an appropriate format.

The calculation of the variograms involves a bit of judgement. It is normally
necessary to �rst calculate the empirical variograms and visually inspect them.
The aim is to assess whether there are su�cient stations to estimate the vari-
ogram, what the maximum reasonable distance for the variogram is and what
the best functional forms are. Sometimes none of the functional forms listed
above gives a perfect �t. In fact, the greater the station density, the smoother
the empirical variogram will be. Consequently, when station density is great,
none of the functional forms will give a perfect �t.

Once the data have been ingested and the variograms and parameters have
been chosen, Kriging is simply a matter of running the code. I visually inspected
the output �elds and time series to check for outliers and other peculiarities.
Sometimes missing data �ags get mistyped or mangled in the input data and
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appear in the output �elds. In a few cases it was necessary to go back to the
variograms and recompute.
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