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1. Introduction
The UKCP18 land projections have been designed to replace the previous UKCP09 scenarios (Jenkins et al., 
2009), taking into account subsequent feedback from users and developments in modelling capability. The 
new projections consist of three Strands, described in detail in sections 2-4. The Strands are built to serve 
types of user requirement that are related, but also somewhat distinct, and each Strand uses different 
climate modelling inputs. For some applications it may be appropriate to consider combining information 
from two or more Strands to obtain the most comprehensive advice (section 5.2). The Strands include some 
inter-dependencies in their designs, to help with this. Below, we discuss how developments since UKCP09 
have informed the content of UKCP18, and introduce the three Strands. We describe and evaluate their 
underpinning projection systems in more detail in sections 2-4, and compare their future projections in 
section 5. This includes discussion of how the results should be interpreted and used, taking into 
consideration the nature of the products and the degree of consistency between their results. A summary is 
provided in section 6.  

1.1. Recap of UKCP09

The centrepiece of the UKCP09 land component was a set of probabilistic projections (Murphy et al., 2009). 
These expressed a broad range of plausible outcomes for UK climate during the 21st century, for a set of key 
climate variables. They were provided for three future emissions pathways (the B1, A1B and A1FI scenarios 
of Nakicenovic and Swart (2000), labelled “low”, “medium” and “high”), for a national 25km grid and two 
sets of aggregated regions. The probabilistic projections were presented as 30-year monthly, seasonal and 
annual average changes, expressed relative to a 1961-1990 baseline. They represented known 
uncertainties (due to internal climate variability and the modelling of key Earth system processes), 
consistent with available climate model simulations and the knowledge contained within them. The 
projections were constructed from several ensembles of variants of a single climate model (HadCM3), 
representing modelling uncertainties by perturbing model parameters within expert-specified ranges. These 
perturbed parameter ensembles (PPEs) were combined with results from the Coupled Model 
Intercomparison Project Phase 3 (CMIP3) ensemble of international global climate models (GCMs), and a 
set of observational metrics of historical model performance (Sexton et al., 2012; Harris et al., 2013). A 
weather generator (Jones et al., 2010) was also provided. This was driven by change factors sampled from 
the projections in order to assess localised impacts and risks in many applications. The UKCP09 projections 
were the first UK scenarios to include intrinsic, quantitative estimates of uncertainty. They formed a major 
component of the evidence bases for the first and second national climate change risk assessments 
(CCRA), published in 2012 (https://www.gov.uk/government/publications/uk-climate-change-risk-
assessment-government-report) and 2017 (CCRA2, see https://www.theccc.org.uk/tackling-climate-
change/preparing-for-climate-change/uk-climate-change-risk-assessment-2017/).
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1.2. User and science drivers for UKCP18

In addition to the CCRAs, UKCP09 has been used in many specific impacts and adaptation studies. User 
feedback has accumulated steadily on strengths, limitations and gaps, to be addressed in subsequent 
scenarios. This insight has been further updated and refined during the development of UKCP18, through 
engagement with Government and non-Government users through two active groups. Key points include:

1. The assessments of uncertainty afforded by the probabilistic projections are important, and should be 
retained. 

2. However, some users require a simpler and more flexible dataset, and prefer to work directly with 
climate model output. This is because the latter provides access to future projections with full spatial 
and temporal coherence, and a wider range of variables and time resolutions. Some impacts studies 
therefore used an eleven-member PPE of regional climate model (RCM) simulations (Murphy et al., 
2009). For example, these included applications requiring assessment of multiple drivers of changing 
hazards in distributed networks, such as electricity (McColl et al., 2012) and rail (Palin et al., 2013).

3. Related to (2), UKCP18 should provide products capable of supporting development of a limited set of 
“storylines”. These could take a number of potential forms, including high resolution narratives of how 
impacts related to particular types of weather event might change in future (Hazeleger et al., 2015), or 
characterisations of simulated regional changes that promote understanding in terms of specific remote 
circulation drivers (Zappa and Shepherd, 2017).

4. UKCP18 should retain and update projections that cover the whole 21st century, but provide more 
information on climate variability on annual to decadal time scales, and more information on extreme 
events.

5. The new projections should remain aligned with international activities such as the Intergovernmental 
Panel on Climate Change (IPCC), and account for the latest developments in climate modelling capability 
and scientific understanding.

6. Information on 21st century climate in other worldwide regions should be available, to support analysis of 
imported risks to the UK.

The major scientific driver for new projections arises from development of new generations of climate 
models. Since UKCP09, the CMIP5 ensemble of international climate models (Taylor et al., 2012) has 
replaced CMIP3 as an international focus for assessments of projected changes and impacts, notably in the 
IPCC Fifth Assessment Report (AR5, Collins et al., 2013). The recent CCRA2 assessment drew heavily on 
projections from both UKCP09 and CMIP5, along with observational results and other evidence from 
climate science literature (Humphrey and Murphy, 2016). 

www.metoffice.gov.uk
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Since CMIP5, the UK and other countries have continued to develop their climate models, in preparation for 
the next phase (CMIP6, Eyring et al., 2016). Recent developments have improved the representation of 
some dynamical influences on regional climate variability and change in the European/North Atlantic sector. 
For example, Scaife et al. (2012) and Karpechko and Manzini (2012) showed that improving dynamical 
coupling between the stratosphere and troposphere (not well represented in UKCP09, or in most CMIP5 
models) may influence projected changes in the winter storm track and precipitation in the North Atlantic/
European sector. Recent versions of the Met Office seasonal prediction system, based on the latest UK 
climate model HadGEM3, have shown significant improvements in prediction of the winter North Atlantic 
Oscillation (NAO). This is accompanied by skill in modelling the teleconnection patterns of potential drivers, 
such as the El Nino Southern Oscillation (ENSO), the quasi-biennial oscillation (QBO) of equatorial 
stratospheric winds, and sea-ice anomalies in the Kara Sea (Scaife et al., 2014).These developments offer 
potential to provide new high-resolution projections, capable of supporting advice on future extremes and 
impacts underpinned by better simulation of driving mechanisms. In UKCP18, we use a new coupled ocean-
atmosphere model, HadGEM3-GC3.05, as the basis for developing ensembles of such projections. 
HadGEM3-GC3.05 (hereafter GC3.05) is a high-resolution physical climate system model (horizontal grid 
spacing ~60km at mid-latitudes) which also includes a sophisticated explicit representation of atmospheric 
aerosols. The horizontal resolution of GC3.05 is comparable to that used in regional downscaling for the 
UKCIP02 scenarios (Hulme and Jenkins, 2002), and provides much better representation of synoptic-scale 
weather systems, mountains and coastlines, compared with the ~300km-scale global simulations that 
formed the core of UKCP09. The GC3.05 model is described in more detail in section 3.2. It is closely related 
(see Appendix D) to the HadGEM3-GC3.1 model (hereafter GC3.1) that forms the basis of the UK 
submission to CMIP6. GC3.1 contains many changes to its physical components relative to the HadGEM2-
AO model submitted to CMIP5. These include an improved dynamical core, new ocean and sea-ice models 
and a new parameterisation of cloud (Williams et al., 2018). 

1.3. Three strands of UKCP18 land projections

In response to these motivating factors, a three-strand strategy has been implemented for UKCP18. Strand 
1 provides updates to the probabilistic projections of UKCP09. The probabilistic projections express a broad 
range of potential outcomes derived from around 350 climate model simulations, and constrained by a set 
of observational measures of model performance. The results are conditional upon, and limited by, the 
knowledge contained within the model simulations, and are also conditional on various expert choices 
required in the statistical methodology used to combine the input information. 

Provision of Strand 1 addresses a continuing requirement for a product focused on exploring uncertainties 
(user driver 1 above). It is intended to provide support for future risk assessments, in particular by providing 
context for applications reliant on projection systems containing more limited sampling of uncertainties 
(such as Strands 2 and 3, described below). In order to achieve this, Strand 1 requires ensembles of earth 
system model simulations that include an interactive carbon cycle component, so that uncertainties in 
carbon cycle feedbacks can be considered alongside those in physical climate processes and aerosol 
chemistry. In this way, Strand 1 can provide a more complete view of the range of future outcomes 
consistent with a given scenario of future emissions. On the other hand, Strand 1 does not account for 
uncertainties associated with earth system processes not included in the available model projections, such 
as potential carbon release from melting of permafrost or destabilisation of ocean methane hydrates 
(Collins et al., 2013).

www.metoffice.gov.uk
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Although a new UK community earth system model (UKESM1, see http://www.jwcrp.org.uk/research-
activity/ukesm.asp) has recently been developed from GC3.1, it was not feasible to consider building a new 
PPE of UKESM1 variants in time for UKCP18. Therefore, PPEs derived from HadCM3 continue to form the 
kernel of the modelling strategy for Strand 1. These are combined with results from CMIP5 earth system 
models, which replace the CMIP3 climate models as the source of information on the structural component 
of modelling uncertainty (see section 2.1). 

In the light of the user drivers of section 1.2, the main limitations of Strand 1 are that the large sample of 
potential outcomes needed to support probabilistic projections is not suitable for derivation of a small set of 
storylines, that results are only provided for a limited set of climate variables, and that the projections lack 
the full spatial and temporal coherence of raw climate model output. The latter feature is due to the need 
to apply various statistical techniques within the methodology (see section 2.2). These issues are addressed 
through provision of Strands 2 and 3, which are provided in response to user drivers 2 and 3 for a limited set 
of plausible projections capable of supporting a wide range of impacts studies and development of 
narratives. In order to help fulfil these drivers, new PPEs have been developed from the GC3.05 model (see 
section 1.2). Strand 2 consists of 15 PPE simulations run from 1900-2100 (hereafter GC3.05-PPE), plus 13 
simulations from CMIP5 coupled ocean-atmosphere models (hereafter CMIP5-13). These were selected 
using performance and diversity criteria, in order to increase the range of global and regional changes 
sampled in the projections. Being global projections, the Strand 2 results are particularly suited to 
development of physical narratives in which future UK changes are explained in terms of large-scale drivers, 
such as remote changes in circulation (Zappa and Shepherd, 2017). They also provide a resource for analysis 
of international risks (user driver 6). 

Strand 3 consists of a 12-member PPE of projections at 12km horizontal resolution. These are obtained by 
configuring corresponding members of GC3.05-PPE as regional climate model variants (hereafter RCM-
PPE) using a European domain. The RCP-PPE members are then driven from 1980-2080 by output from the 
global simulations. Results from Strand 3 provide a source of impacts and storyline information for 
applications requiring analysis at local to regional scales, accounting in greater detail for the effects of 
mountains, coastlines, lakes and mesoscale atmospheric circulations. Analysis of distributed impacts at 
regional to national scales can potentially be carried out using either Strand 2 or Strand 3. Here, a key 
choice concerns the relative benefits of improved spatial detail from Strand 3, against the broader range of 
projections available from Strand 2. For studies with a European focus, or which seek to set UK changes in a 
European context, either Strand 2 or Strand 3 can be used. 

In this report, we use the term 'ensemble' when describing GC3.05-PPE, CMIP5-13 and RCM-PPE, following 
traditional practice. However, it does not imply that the relevant subset of model projections forms a 
uniform sample of the full space1 of possible model configurations. When describing the combined 
collection of simulations that forms Strand 2, we use the term ‘set’.

1  In the case of a perturbed parameter ensemble, such a space would consist of the full range of parameter space. For a multi-model ensemble it 
might consist of a broader space of climate models that could, in theory, be created by considering all possible combinations of alternative model 
sub-components.
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In previous long-term climate simulations, and the new UKCP18 simulations outlined above, the dynamics 
of atmospheric convection is parameterised. However, Kendon et al (2014) reported the first UK climate 
change simulation in which the dynamics of larger convective storms is explicitly represented, using a 1.5 
km resolution regional model. They found substantial increases in the intensity of hourly summer rainfall 
extremes that were not captured in a coarser 12 km simulation in which convection was parameterised. 
Ban et al. (2015) found a similar result for the Alpine region. In winter, sub-daily rainfall extremes increased 
substantially in both the 1.5 km and 12 km simulations of Kendon et al. (2014). Kendon et al (2017) 
cautioned that further kilometre-scale simulations are needed to assess the robustness of their results, and 
that moving to this resolution does not address all sources of bias in modelled convection. Nevertheless, 
this development provides a first opportunity to include convective storm dynamics in projections 
contributing to a set of national climate scenarios. Accordingly, an ensemble of projections using a 2.2km 
convective-permitting regional model is being produced. 

These simulations are driven by the 12km RCM-PPE simulations, for a domain covering the whole UK. They 
will be documented in a separate report, forming a second phase of Strand 3. This will provide advice on the 
projected changes and their degree of credibility, relating in particular to potential new capabilities to 
provide information at higher spatial and temporal resolution than before, including changes in heavy 
sub-daily rainfall events.

1.4. Emissions scenarios

In Strand 1, projections are provided for each of the RCP scenarios (Moss et al., 2010) assessed in AR5 (2.6, 
4.5, 6.0 and 8.5), and also the SRES A1B scenario (Nakicenovic and Swart, 2000). The latter allows a direct 
comparison with UKCP09. As noted above, these represent “emissions-driven” projections that describe 
uncertainties in the conversion of carbon emissions to CO2 concentrations in the atmosphere, as well as 
uncertainty in the physical climate system response to changes in greenhouse gas concentrations. For each 
emissions scenario, the probabilistic projections from Strand 1 therefore account for a range of future CO2 
concentration pathways.

The Strand 2 and 3 simulations were run only for RCP8.5, due to restrictions in high performance computing 
(HPC) capacity. As GC3.05 does not include a carbon cycle component, the GC3.05-PPE members were 
run with prescribed CO2 concentrations. However, different concentration pathways were used for each 
member, chosen to replicate approximately the range of outcomes projected in Strand 1. In this way, the 
GC3.05-PPE simulations reflect the global effects of carbon cycle uncertainties on projected changes, 
though carbon cycle effects on regional patterns of change are omitted, in contrast to Strand 1. The CMIP5 
simulations added to Strand 2 are also based on physical climate system models lacking an interactive 
carbon cycle. In this sense they are consistent with GC3.05-PPE, however the relevant RCP8.5 experiment 
was a concentration-driven experiment in which all CMIP5 models used the same CO2 pathway. The spread 
of outcomes in the combined set of Strand 2 projections therefore contains contributions from internal 
variability, uncertainties in modelling of physical processes and aerosol chemistry (from both the GC3.05-
PPE and CMIP5 simulations), and from uncertainty in the globally-averaged effects of carbon cycle 
feedbacks (from GC3.05-PPE only).

In Strand 3, each RCM-PPE member inherits the CO2 pathway prescribed in its driving Strand 2 global 
simulation. This is also the case for changes in the forcing due to anthropogenic aerosols, which are 
prescribed from the driving model using a technique described in section 4.2.

www.metoffice.gov.uk
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Derived results are also produced for the RCP2.6 scenario, and for analysis of impacts under specific global 
warming targets. These are provided by applying time shifting and pattern scaling methods to the RCP8.5 
results from Strand 2 (Gohar et al., 2018). 

1.5. Choice of baseline

In this report, the period 1981-2000 is used as a standard baseline for calculation of projected future 
anomalies. This is partly because the UKCP09 baseline of 1961-1990 is now out of date as a representation 
of recent climate, and also because a start date of 1980 was used for the new 12km RCM simulations, 
precluding use of an earlier baseline in Strand 3. The standard baseline of the World Meteorological 
Organisation is currently 1981-2010. This was not adopted for UKCP18 because the RCP emissions 
scenarios used in the projections (section 1.4) start from 2006, hence the simulations include an element of 
predictive information during 2001-2010. However, users of data from Strands 1 and 2 will have the option 
to choose 1961-1990 or 1981-2010 as an alternative to the UKCP18 standard baseline. Users of the 
12km RCM runs will have the alternative option of 1981-2010. In section 2.3 we compare the Strand 1 
projections against UKCP09 results for the A1B scenario, including an illustration of the impact of reverting 
to the 1961-1990 baseline. 

1.6. Methodologies and evaluation

In sections 2-4 we describe the construction of the three Strands and evaluate the projection systems. We 
also provide examples of projected changes, in order to illustrate selected properties and applications 
specific to each Strand. Comparison of projections across all Strands follows in section 5.

For Strands 2 and 3 the major focus is the performance of the relevant sets of climate model simulations. 
For Strand 1, the evaluation involves comparing the probabilistic projections with changes given by the 
model simulations from which they are constructed. Appendices are used to provide some supporting 
information on data and methods, and comprehensive technical descriptions will appear later, in the 
specialist journal papers cited.

2. Strand 1: Probabilistic projections

2.1. Overview

The purpose of the probabilistic projections is to provide, for a given emissions scenario, information on 
known uncertainties in future climate changes. In particular, the aim is to represent uncertainties consistent 
with the knowledge incorporated in existing ensembles of climate model projections, plus the effects of 
internal climate variability. The probability distributions provide information on ranges of outcomes, and the 
relative likelihood of alternative outcomes within these ranges, conditioned on the evidence used to 
produce them. The results are Bayesian probabilities that represent the relative strength of evidence behind 
different potential future changes, and depend on subjective judgements required to develop the 
methodology used to produce them. As such, they should not be confused with (for example) probabilistic 
weather forecasts, which can be assessed in a frequentist sense through repeated trial and verification (e.g. 
Hamill, 1997).

www.metoffice.gov.uk
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By combining results from PPE and multi-model projections, the UKCP18 methodology (like its UKCP09 
predecessor) produces broad ranges. These are wider than those derived from the multi-model information 
in isolation (Sexton et al., 2012; Harris et al., 2013), and therefore give a fuller picture of plausible changes 
that reduces the risk of overconfident decision-making. However, the probabilistic format should not be 
misinterpreted as an indication of high confidence in the weight of evidence behind specific outcomes. For 
example, developments in our physical understanding of climate change drivers and improvements in 
modelling capability could lead in the future to revised projections giving different probabilities for changes 
in UK variables. The Strand 1 projections should be seen as a source of broad guidance that forms a useful 
starting point for risk assessments. They can be used together with other sources of information such as 
the Strand 2 and 3 projections (see also discussion in section 5.2). 

The methodology for Strand 1 is an updated version of the Bayesian statistical framework that underpinned 
UKCP09. This was outlined by Murphy et al. (2009), and described fully by Sexton et al (2012) and Harris et 
al. (2013). The technical description in section 2.2 focuses on summarising developments to the UKCP09 
methodology. It does not repeat a detailed description of aspects that remain unchanged since UKCP09, 
which interested readers can review in the papers cited above. A full description of the UKCP18 method will 
also appear in Harris et al. (2019). A brief review of key elements of the calculations is provided in the list 
below:

• Definition of a “prior” parameter space representing uncertainties in a set of key earth system processes 
in a single climate model.

• Use of PPE integrations to sample variations in historical simulation skill and projected future response at 
a set of locations in parameter space.

• Calibration of climate model emulators and pattern scaling techniques to provide estimates of past and 
future climate at any point in parameter space.

• Estimation of the “structural” component of model error, by searching parameter space for best 
analogues to results of an independent multi-model ensemble.

• Production of probabilistic projections of future response by integrating over parameter space, adding in 
the estimated structural component of model error in past and future climate, and weighting each point 
according to estimated model quality (expressed as a relative likelihood).

• Use of an emissions-driven approach to capture uncertainties in both physical and carbon cycle 
feedbacks on the response to a given emissions scenario. Both types of feedback contribute 
substantially to uncertainties in projections of global mean surface temperature (GMST) (e.g. Knutti et al., 
2008), which in turn influences the spread of projected regional changes. Accounting for carbon cycle 
uncertainties therefore ensures that the probabilistic projections take fuller account of known limitations 
in the current modelling of earth system processes. 

www.metoffice.gov.uk
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Interpretation of the probabilistic projections

As discussed above, the results are conditional on the climate models used in the methodology. For 
example, if each international climate modelling institute could be persuaded to run a PPE of variants of its 
CMIP5 model, combining these could potentially produce a range of outcomes shifted and/or broadened 
with respect to the Strand 1 results. However, this is a hypothetical scenario, since such an experiment does 
not currently exist. The probabilistic projections are also conditional on other methodological choices 
including the expert prior distributions for uncertain model parameters, the selection of observations used 
to constrain the distributions and the method used to estimate the structural component of modelling 
uncertainty (termed “discrepancy” by Sexton et al. 2012). Sexton and Murphy (2012) tested the sensitivity 
of the UKCP09 results to plausible variations in these choices, finding only modest impacts on the results. 

A key assumption is that the discrepancy term can be quantified by using the differences between outputs 
of PPE variants and other climate models as a proxy for structural simulation errors relative to the real 
world. This neglects the impact of systematic errors that are common to all climate models. Our rationale is 
that the presence of systematic errors represents an important but unavoidable caveat, and that the 
available models are sufficiently skilful that the conditional probabilistic projections derived from them 
provide useful advice about known uncertainties in future changes.

This and other methodological choices are subjective judgements, which some authors may disagree with. 
For example, Frigg et al. (2015) questioned the decision-relevance of the UKCP09 probabilistic projections, 
citing in particular concerns relating to systematic model errors. In practice, common biases occur in some 
but not all of the observables used to assess climate models. For example, the observed metrics of recent 
climatological averages used as constraints in UKCP09 were found to lie within the spread of modelled 
outcomes (Sexton et al., 2012). Nevertheless, current models do show common biases in their simulations 
of certain phenomena, such as a spurious convergence zone in the southern hemisphere of the tropical 
Pacific Ocean that leads to excessive precipitation in that region (Oueslati and Bellon, 2015).

In the future, climate models can be expected to improve, perhaps to the point at which a collection of 
climate models could be provided that is free from common biases. However, this is likely to be a slow 
process. For example, Knutti et al. (2013) show that whilst CMIP5 models showed some improvements 
relative to their CMIP3 predecessors, the progress in performance was incremental rather than substantial. 

www.metoffice.gov.uk
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Developments for UKCP18    

For UKCP18, the probabilistic projections are built from PPEs derived from the HadCM3 model, as in 
UKCP09 (see Introduction), while the required estimates of structural modelling uncertainty are provided by 
transient climate change simulations from CMIP5 earth system models. These replace the CMIP3 
atmosphere-mixed layer ocean simulations used for this purpose in UKCP09. A basic prerequisite is that the 
PPEs at the core of the methodology remain credible, in the context of the current state-of-the-art in 
climate modelling. Flato et al. (2013) found evidence of a general improvement in the CMIP5 ensemble 
compared to CMIP3, including better simulation of surface temperature at regional scales and rainfall at 
large (continental to global) scales. However, the improvements were modest, and the ranges of simulation 
skill across members of the CMIP3 and CMIP5 ensembles show considerable overlap (Knutti et al., 2013).
Sexton et al (2016) compared the UKCP09 results against CMIP5 models, considering both historical 
performance and projected changes. The HadCM3-based PPEs were found to be competitive with CMIP5 
models in historical simulation skill, based on evaluation using a standard set of model assessment criteria2 
(see also Murphy et al., 2014). This reflected the status of HadCM3 as one of the best-performing CMIP3 
models in terms of historical evaluation metrics. Ranges of projected change were also found to be broadly 
consistent between UKCP09 and CMIP5. An exception was that CMIP5 provided fewer projections showing 
substantial future reductions in summer rainfall (i.e. reductions of exceeding 10% per degree of global 
warming) for England and Wales, and more simulations showing modest increases, than suggested by the 
corresponding UKCP09 probability distributions.

These results support the chosen approach, allowing Strand 1 to provide an updated product that combines 
evidence from HadCM3-based PPEs and CMIP5 models in a consistent manner, retaining the Bayesian 
statistical framework used for UKCP09 (Goldstein and Rougier, 2004). The probabilistic projections are 
provided for a core set of UK climate variables (Fung et al., 2018). The new projections remove the 
requirement previously placed on users to evaluate the probabilistic projections and CMIP5 results as 
independent lines of evidence (see http://ukclimateprojections.metoffice.gov.uk/24127). However, we still 
recommend that the probabilistic results should, where feasible, be compared against alternative 
projections (notably Strands 2 and 3 of UKCP18), in order to support robust analysis of hazards relevant to 
impacts and decision-making.

2  The assessment included quantitative evaluation of spatial fields of multi-year climatological averages of surface temperature, precipitation, sea 
level pressure, net radiation, net cloud radiative effect and its shortwave and longwave components, planetary albedo, and atmospheric 
temperature and zonal wind at 200hPa and 850hPa. Also included was qualitative evaluation of the NAO, historical trends in Arctic sea-ice 
extent, the North Atlantic storm track and the frequency of atmospheric blocking events.
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In addition to use of CMIP5 earth system models, the updated probabilistic projections include several 
developments in methodology and scope:

• A 57-member PPE of variants of the earth system configuration of HadCM3 (Lambert et al., 2013; 
Murphy et al., 2014), produced subsequently to UKCP09, is used to represent the effects of parametric 
uncertainties due to ocean, aerosol and carbon cycle processes. Use of this ensemble (hereafter ESPPE) 
simplifies the method by allowing the number of PPE inputs to be reduced from seven to three. This is 
mainly because ocean, aerosol and carbon cycle uncertainties can now be quantified from one 
ensemble, whereas separate ensembles were used in UKCP09 (Murphy et al., 2009; Harris et al., 2013). 
It also allows the effects of uncertainties in ocean and carbon cycle processes on spatial patterns of 
climate change to be considered, alongside influences of land surface and atmospheric processes. In 
UKCP09, ocean and carbon cycle uncertainties were only accounted for in projections of GMST. 

• Improved observational constraints are used to weight projections from different points in parameter 
space, by adding metrics of historical change in upper ocean heat content and CO2 concentration (the 
latter to constrain carbon cycle feedbacks, following Booth et al., 2017). The use of historical surface 
temperature changes is also updated to consider changes up to 2017 rather than 2000, thus including 
the recent “warming hiatus” period (e.g. Trenberth, 2015).

• The representation of historical changes in external forcing has been improved, by using a probability 
distribution for anthropogenic aerosol forcing provided by AR5 (Myhre et al., 2013), and accounting for 
uncertainties in fossil fuel and land-use carbon emissions (Booth et al.,2017, updated).

• The methodology has been extended to present the probabilistic projections for individual years rather 
than for the 30-year averages of UKCP09, based on the method of Sexton and Harris (2015, updated). 
This allows effects of climate variability on annual to decadal time scales to be accounted for, facilitating 
analysis of the changing risks of seasonal extremes and allowing observed events to be placed in the 
context of the projections. Also, this annual presentation of data allows users flexibility to choose their 
own baseline period (see Fig. 2.10 and related discussion), if they wish to depart from one of the options 
provided on the UKCP18 website. The website options consist of the standard UKCP18 period of 1981-
2000, plus 1961-1990 and 1981-2010.

• This extension allows the probabilistic projections to contribute to user requirements for more 
information on variability and extremes (driver 4 of section 1.2), providing context for the new modelling 
information in Strands 2 and 3. 
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2.2. Technical summary of methodology

This section provides more detail on the Strand 1 methodology, supported by further information in 
Appendices A-C. A full description will be given by Harris et al. (2019). Illustrative examples of key results 
follow in section 2.3.

 The probabilistic projections provide conditional probability density functions (pdfs) expressing a broad 
range of plausible outcomes for historical and future climate variability and change. The projections are 
driven by historical changes in natural and anthropogenic forcing agents to 2005, switching subsequently to 
scenarios of future emissions. 

Figure 2.1. Major components of the methodology underpinning the UKCP18 probabilistic projections. Yellow boxes show the three main stages of 
the statistical calculations, green boxes show the main climate modelling and observational inputs to the method.

The projections are constructed using three PPEs of variants of HadCM3 (Gordon et al., 2000). In these, 
process uncertainties are investigated by perturbing model parameters in the land, atmosphere, sea-ice, 
ocean, sulphur cycle and carbon cycle components, within expert-specified ranges. As outlined above, 
these PPEs are combined with results from CMIP5 earth system models in order to achieve a combined 
sampling of parametric and structural uncertainties in physical and carbon cycle responses. A set of 
observational metrics of historical model performance is used to account for differences in credibility 
between alternative outcomes. The methodology involves three main stages (Fig. 2.1), summarised below. 
Figure 2.2 shows how the modelling and observational inputs feed into the main statistical components 
included in each stage.
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Figure 2.2. Yellow boxes show the main statistical tools and steps in the three stages of the method used to produce the probabilistic projections. 
xa denotes the 31-dimensional prior distribution of uncertain parameters in the atmosphere component of HadCM3. xes refers to the 
50-dimensional space of uncertain earth system processes obtained by augmenting and combining xa with prior distributions for 19 earth system 
variables influencing global climate changes (details in text). Prior and posterior distributions of climate variables are obtained by sampling 
projected changes from multiple locations in these parameter spaces. Green boxes show (as in Figure 2.1) the main climate modelling and 
observational inputs to the method, but labelled here according to the stage(s) to which they contribute.

Stage 1: Prior pdfs of characteristic climate response

In the first stage, pdfs (for a given climate variable, location and season) are obtained as a characteristic 
20-year mean response per unit GMST rise that, when scaled by time-dependent GMST changes, 
maximises the explained variance of transient regional changes in coupled ocean-atmosphere simulations 
(Harris et al., 2006). We refer to such variables as normalised transient responses (NTR). At this stage, the 
pdfs are prior results which do not account for observational constraints. The calculations are updated from 
Sexton et al. (2012). The main elements are shown schematically in Fig. 2.2, and involve the following steps: 

a. The equilibrium response to doubled CO2 is predicted. This involves a relatively large (280 member) PPE 
of simulations using the coupled atmosphere-mixed-layer (hereafter SLAB) configuration of HadCM3 
(Box A in Fig. 2.1). These simulations provide values of a multivariate set of historical climate means 
expressed as global spatial fields (SLAB_CLIM), as well as the response to doubled CO2 (Sexton et al., 
2012). The response variables (Fig 2.3, top and middle panels) are the equilibrium climate sensitivity 
(ECS3), and regional changes per unit GMST change, hereafter normalised equilibrium responses (NER).

3  ECS is defined as the equilibrium (steady state) response of globally and annually averaged surface temperature to a doubling of CO2 
concentration in the atmosphere. It is a standard benchmark measuring the long term sensitivity of a climate model, or of the real climate system, 
to a sustained change in greenhouse gas concentrations.
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Figure 2.3. Stage 1 of the probabilistic projections method of Strand 1. Top panel shows distributions of equilibrium climate sensitivity (ECS). These 
consist of: simulated responses to doubled CO2 from the 280-member SLAB PPE using the atmosphere-mixed layer ocean configuration of 
HadCM3 (green histogram); prior distributions extended to sample the whole atmospheric parameter space of HadCM3 using statistical emulators, 
with (red curve) and without (green curve) the impact of structural model uncertainties (discrepancy). The mean and variance of the discrepancy 
distribution is calculated from the twelve distances between the asterisks and arrow heads, where the latter shows ECS values of the twelve 
CMIP5 earth system models used to estimate structural uncertainty, and the asterisks their nearest analogues in the HadCM3 parameter space. 
Middle and lower panels show the response of surface air temperature for Scotland in March to May, expressed as a normalised response per 
degree of globally-averaged warming. The middle panel shows prior distributions of the normalised equilibrium response (NER) to doubled CO2 
(green), and the normalised transient response (NTR, blue), adjusted to allow for ocean circulation changes and parametric uncertainties in ocean, 
sulphur cycle and terrestrial ecosystem processes in the earth system configuration of HadCM3. The average offset between NER and NTR is 
calculated from the 17 blue lines. Circles show NER values for 17 SLAB model variants, and arrow heads represent responses averaged over 
variants in the 57-member earth system perturbed parameter ensemble (ESPPE) using corresponding perturbation sets in their atmosphere 
component. The lower panel shows NTR values for the SLAB PPE (blue histogram) following application of the offset, and illustrates the impact of 
adding discrepancy to the prior distribution of NTR from the middle panel (cf red and blue curves). In this panel, asterisks and arrows show the 
relationship between CMIP5 estimates of NTR and their best PPE analogues.
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b. The 57-member ESPPE (Box B in Fig. 2.1) is used to account for the effects of coupled earth system 
processes omitted from SLAB. 

• The ESPPE uses the earth system configuration of HadCM3, including dynamical ocean and vegetation 
modules with an interactive carbon cycle (Lambert et al., 2013; Murphy et al., 2014). Members are 
distinguished by multiple simultaneous perturbations to parameters in the atmosphere, ocean, sulphur 
cycle and terrestrial ecosystem components. The simulations were driven using historical and future 
emissions of CO2 and aerosol precursors, and concentrations of other major greenhouse gases. Natural 
historical forcing, due to variations in solar irradiance and major volcanic eruptions, was also included. From 
previous experiments, 17 perturbed parameter sets were available for each of the four earth system 
components of the model (Harris et al., 2013), creating a space of 174 possible combinations of the 68 
parameter sets. It was not feasible to run an ensemble of this size. Therefore, a Latin hypercube 
experimental design was used to create an initial 68 member ESPPE in which parameter sets from each 
model component were combined to sample the space of possible combinations as efficiently as possible 
(details in Lambert et al., 2013). This ensemble was subsequently reduced to 57 members, following a 
simple screening based on historical performance. This removed members with substantial biases in 
planetary net radiation, global surface temperature or simulated vegetation distributions (Lambert et al., 
2013). Murphy et al. (2014) compared the performance of the surviving 57 members against CMIP5 earth 
system models for a few key aspects of historical climate, finding similar levels of skill in both ensembles4. 
ESPPE simulations are available for the RCP2.6 and 8.5 scenarios, and for SRES A1B.

• The perturbed atmospheric parameter sets in the ESPPE correspond to 17 members of SLAB, hereafter 
SLAB17. By comparing corresponding ESPPE and SLAB17 members, samples of 57 differences between 
their historical climatology (SLAB_CLIM cf COUPLED_CLIM) and future response variables (NTR cf NER, 
see Fig 2.3, middle panel) are obtained. These differences account for dynamic ocean effects and 
parametric uncertainties arising from ocean transport, sulphate aerosol and terrestrial carbon cycle 
processes. In the example of Fig 2.3, NTR is smaller than NER, partly because reductions in the North 
Atlantic Meridional Overturning Circulation (AMOC) restrict the regional warming in the ESPPE simulations. 
Values of COUPLED_CLIM are compared against their observed counterparts (CLIM) in Stage 2c below.

• The average of the 57 differences is added to SLAB_CLIM and NER to obtain estimates of COUPLED_
CLIM and NTR respectively. This simple approach assumes that the offset is independent of location 
in the atmosphere parameter space, because the ESPPE is too small to support reliable estimation of 
potential parametric dependencies. However, an estimate of uncertainty in the offset is accounted for 
below. This is derived from 15 of the SLAB-17 members for which more than one corresponding 
ESPPE member is available (Lambert et al., 2013). 

c. The estimated values of COUPLED_CLIM and NTR are then extended using statistical emulators trained 
on the climate model results. The emulators are used to estimate outcomes for parameter combinations 
for which no climate model simulation is available, allowing comprehensive sampling of prior 
distributions for 31 parameters in the atmosphere component of HadCM3 (blue curve in Fig 2.3, middle 
panel). The sampling accounts for uncertainties in the emulator output, and in the offsets discussed 
above (cf blue and green curves in Fig 2.3, middle panel). 

4  The comparison with CMIP5 models considered recent climatological patterns of surface air temperature, precipitation and sea level pressure, 
plus simulations of changes in GMST during the 20th century.  
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d. Results from (c) are then modified to account for structural modelling uncertainties, since these are not 
represented in PPEs constructed from a single climate model.

• Structural uncertainties (the aforementioned discrepancy term of Sexton et al., 2012) are estimated 
using an ensemble of CMIP5 earth system models (Box C in Fig. 2.1). Like the ESPPE, these transient 
simulations were driven by historical and future CO2 emissions, though an ensemble of sufficient size 
was only produced for RCP8.5. Fifteen models were available, however two were excluded due to 
data gaps, and one of a pair of closely-related models submitted by the Geophysical Fluid Dynamics 
Laboratory was excluded, leaving the 12 models (hereafter CMIP5-ESM) listed in Table 2.1. The 
structural uncertainty calculations involve searching the atmospheric parameter space for emulated 
estimates of COUPLED_CLIM, ECS and NTR that are closest to those of each CMIP5-ESM member. 
Differences between each CMIP5-ESM model and their best PPE analogues (e.g. Fig 2.3, top and 
bottom panels) are then used to define a multivariate Gaussian distribution of discrepancy.

• Prior pdfs of ECS and NTR (Fig. 2.3, red curves) are then produced using the Bayesian method of 
Sexton et al (2012), based on the general framework of Goldstein and Rougier (2004). These are 
presented as a set of 106 outcomes obtained by using the emulator to sample the prior atmospheric 
parameter space of HadCM3 (xa), and adding estimates of structural uncertainty sampled from the 
above discrepancy distribution (boxes labelled “1” in Fig. 2.2). Weighting according to relative 
likelihood is carried out in Stage 2 below. 

Table 2.1. The 12 CMIP5 earth system models selected to provide estimates of structural modelling uncertainty in the probabilistic projections of 
Strand 1, derived from simulations driven by prescribed future emissions of CO2 under the RCP8.5 scenario.

Modelling group Group 
acronym

Model 
designation

Univ. Tokyo, National Institute for Environmental Studies, and Japan 
Agency for Marine-Earth Science and Technology

MIROC MIROC-ESM

Beijing Climate Centre, China Meteorological Administration BCC BCC-CSM1.1(m)

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2

Beijing Normal University BNU BNU-ESM

Community Earth System Model Contributors NSF-DOE-NCAR CESM1-BGC

Centre National de Recherches Météorologiques / Centre Européen de 
Recherche et Formation Avancée en Calcul Scientifique

CNRM-CERFACS CNRM-CM5

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2G

Met Office Hadley Centre MOHC HadGEM2-ES

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR

Max-Planck-Institut für Meteorologie MPI-M MPI-ESM-LR

Meteorological Research Institute MRI MRI-ESM1

Russian Institute for Numerical Mathematics INM INM-CM4
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Stage 2: Posterior pdfs of time-dependent variability and change at large scales

The second stage is an updated version of the “timescaling” approach described by Sexton and Harris 
(2015), involving the statistical elements shown in Fig. 2.2 (yellow boxes labelled “2”). The basic approach 
involves producing time-dependent projections of GMST at the annual time scale (Fig. 2.4a), and using 
these to apply a simple linear scaling to corresponding estimates of NTR from Stage 1. This produces 
estimates of time-dependent regional variability and change (TRVC, Fig. 2.4b). These estimates are 
produced for multiple locations in a version of the HadCM3 parameter space expanded to consider 
uncertainties in ocean transport and global carbon cycle processes in addition to the atmospheric 
processes explored in xa. From these sampled estimates, probabilistic projections of GMST and TRVC are 
constructed (Figs. 2.4a,b). These TRVC pdfs are provided for five HadCM3 land boxes labelled “Scotland”, 
“Ireland”, “Northern England”, “Southern England” and ”Wales” in Fig. 3 of Harris et al. (2010). In Stage 3 
these variables, hereafter UK_GCM, are subsequently downscaled to obtain corresponding year-by-year 
projections for the 25km grid and aggregated (country, river-basin and administrative) regions of UKCP18 
(Fung et al., 2018). The main steps in Stage 2 are described below. Stages 2a-c describe the methodological 
components, and Stage 2d the production of constrained transient projections:

a. Transient global projections

• These are made using the two-box simple climate model (SCM) of Harris et al (2013), which uses 
energy balance principles to predict ocean and land surface temperature in response to prescribed 
natural and anthropogenic forcing. Vertical ocean heat transport is modelled using a one-dimensional 
diffusion-advection equation, and a carbon cycle component is included to allow the simple model to 
predict globally averaged carbon exchanges between atmosphere, land and ocean.

• In order to extend the Bayesian method of Stage 1, xa is generalised to include a set of 19 input 
parameters to the SCM (xscm) that control its response. Two of these are ECS_L and ECS_O (components of 
ECS calculated separately over land and ocean points). These are provided by Stage 1 as a function of 
location in xa. Other parameters in xscm control ocean heat uptake and the global carbon cycle. Prior 
distributions for these are obtained by calibrating the SCM to replicate the results of each ESPPE member, 
and then specifying distribution functions for SCM parameters consistent with the joint multivariate 
spread of the 57 sets of results. A space xes of earth system process uncertainties is then defined by 
combining the priors of xa and xscm. In this, we assume independence between SCM parameters and 
outputs from xa, apart from ECS_L and ECS_O. Sampling of xes to produce transient projections is described 
in (d) below.
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• Estimates of discrepancy are required for global, time-dependent outputs of the SCM. In addition to 
GMST, these include atmospheric CO2 concentration and upper ocean heat content (OHC, 
representing the top 700 metres). Historical changes in these variables are used as observational 
constraints in (c) below. For each CMIP5-ESM member, the best PPE analogues in xa, identified in 
Stage 1d, are augmented by finding best analogues in xscm. The SCM is then run using these parameter 
settings (Fig. 2.4a, top left). Differences between the GMST, CO2 and OHC outputs of each CMIP5-
ESM member and their best analogues (Fig 2.4a, top right) are then used to quantify means and 
variances of the relevant discrepancy distributions. The mean discrepancy for GMST reaches ~-0.3ºC 
beyond 2050 (dark blue curve in Fig. 2.4a, top right), partly because the HadCM3-based analogues 
tend to overestimate slightly the carbon cycle feedbacks in CMIP5-ESM members. Following 
production, the annual discrepancy estimates are low-pass filtered5. This is done to retain structural 
uncertainty signals in long-term climate change, and exclude residual effects of internal variability 
arising from the limited size of the CMIP5-ESM ensemble.

• The timescaling procedure also requires specification of time-dependent bias and residual variance 
terms. These are calibrated by comparing ESPPE results against timescaling estimates produced from 
corresponding locations in xes (e.g. red and yellow curves in Fig 2.4a, top left). The bias term (e.g. red 
curve in Fig. 2.4a, top right) represents the average error obtained in estimating transient responses 
from the time-invariant climate change metrics of Stage 1. In the case of GMST, contributions might 
arise, for example, from neglect in the SCM of potential time-dependence in the strength of global 
climate feedbacks (e.g. Gregory and Andrews, 2016), or variations in the efficacy of different forcing 
agents in driving surface temperature responses (Shindell, 2014). Potential dependencies of such 
errors on location in xes are not accounted for (since insufficient ESPPE simulations were available to 
quantify these), but may contribute to the residual variance term. In the case of GMST, for example, 
the residual variance is derived from the orange curves in Fig. 2.4a (top right). In addition, an important 
contribution to the residual arises from uncertainty due to climate variability on 1-20 year time 
scales. The bias and residual variance terms are low-pass filtered to remove noise arising from the 
limited number of ESPPE simulations available for calibration, with the exception that the bias is left 
unfiltered during years affected by major volcanic eruptions (see Appendix A).    

• Realisations6 of GMST (Fig 2.4a, bottom left), CO2 and OHC are produced by running the SCM using input 
parameters sampled from xes. Like the ESPPE, the SCM is driven by historical solar and volcanic forcing, 
plus emissions of CO2 and concentrations of other major greenhouse gases, switching from historical to 
scenario values after 2005. Anthropogenic changes in global-mean aerosol forcing are also included in 
the SCM. Uncertainties in these are accounted for by sampling from a skew normal distribution 
consistent with an estimate of the median and range for total aerosol forcing in 2011 (Myhre et al., 2013). 
Historical and future sulphur dioxide emissions are used to scale the forcing for other periods.

• Each SCM realisation is modified, by adding the timescaling bias term and sampling the discrepancy 
and timescaling residual distributions. The timescaling residual adds a noise component to the SCM 
outputs that accounts for climate variability, and is generated using a sampling method (AUTOVAR) 
that preserves temporal autocorrelations found during calibration to ESPPE simulations (Appendix A). 

5  In this report, low-pass filtering of time series is applied, to distinguish between long-term climate changes and variability on shorter time scales. 
This is done using a Butterworth filter, with a cut-off period of 20 years unless stated.  

6  The Strand 1 outputs consist of a large sample of projected changes produced using statistical methods. Individual members of this sample are 
referred to as “realisations” in this report. The individual simulations of climate change that constitute Strands 2 and 3, provided by global or 
regional climate models, are referred to as “projections”.
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Figure 2.4a. Stage 2 of the probabilistic projections method. Top left panel shows transient projections of global mean surface temperature (GMST) 
from two earth system model projections, one from the ESPPE (red) and one from CMIP5 (dark blue). Also shown in yellow and light blue are 
reconstructions of their time series obtained using the simple climate model (SCM), run with input climate response parameters prescribed from 
the earth system model results. Top right panel shows time-dependent errors (orange) in SCM predictions of the response of the 57 ESPPE 
members, of which the differences between the yellow and red lines in the top left panel are one example. These are used to calculate time-
dependent bias (red curve) and residual variance terms, that represent errors and uncertainties arising from use of time-invariant metrics of climate 
change from Stage 1 (such as ECS) to estimate transient changes via use of the SCM. Internal climate variability is a significant contributor to the 
residual term. The light blue curves show errors incurred by using the SCM to reconstruct the projections of CMIP5 earth system models. For these 
reconstructions, the SCM uses input parameters that represent the best analogues to the relevant CMIP5 model that can be found in the 
parameter space of HadCM3 earth system processes, xes (see text). The twelve light blue curves are used to calculate the time-dependent mean 
(dark blue curve) and variance of the discrepancy distribution for SCM outputs, in this case GMST. Bottom left panel shows prior probabilistic annual 
projections of GMST for the RCP8.5 scenario. These are produced by using the SCM to sample xes comprehensively, including the bias, residual and 
discrepancy terms described above. The white line shows the median, and shades of grey show the 5, 10, 25, 75, 90 and 95% probability levels. 
Bottom right shows corresponding transient posterior distributions, modified by application of observational constraints to weight outcomes from 
specific locations in xes. Coloured curves show three examples of the 3000 realisations of variability and change that constitute the probabilistic 
projections. 
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b.  Transient regional projections

• For a given sample member, time-dependent regional changes (TRVC) are obtained by using the prediction 
of GMST to scale the relevant emulated estimate of NTR (e.g. Fig. 2.4b, top left). Errors associated with this 
linear pattern-scaling assumption (Fig. 2.4b, top right) are accounted for by applying time-dependent bias 
and residual terms to the scaled regional projections (as for the global projections above). These terms are 
calibrated by comparing scaled projections from SLAB17 against TRVC outcomes from ESPPE members 
with corresponding atmosphere parameter sets. Since regional responses to volcanic eruptions cannot be 
assumed to scale with GMST in the same way as the response to greenhouse forcing, we modify the 
scaling method during historical periods affected by major eruptions (see Appendix A).

• At this stage, projected TRVC values consist of annual changes from 1860-2100 for the UK_GCM 
variables (e.g. Fig. 2.4b, bottom left), and also for four large-scale indices (BRAG) describing historical 
changes in global patterns of surface temperature (Braganza et al., 2003). These are used below to 
constrain the projections.

Figure 2.4b. As Fig. 2.4a, for summer surface air temperature over Southern England. In this case, reconstructed estimates (e.g. top left panel, 
yellow curve) are obtained by using the time series of GMST predicted by the simple model to scale NTR for the relevant ESPPE member. Orange 
curves in the top right panel show errors in these estimates for the 57 ESPPE members, with the average bias in red. There is no time-dependent 
discrepancy information in this panel, as this term is only calculated for global variables output by the SCM (GMST, CO2 concentration and upper 
ocean heat content). Structural uncertainty in regional patterns of change (NTR) is accounted for in Stage 1 (Fig. 2.3), and assumed invariant in 
time.
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c. Observational constraints (Box D in Fig. 2.1)

• The role of the specified observable quantities is to update joint prior probability distributions 
according to the relative likelihood that alternative sampled realisations replicate the observables. 
The observational constraints are applied by weighting sampled outcomes from locations in xes. 
Following Sexton et al. (2012), weights are calculated from the multivariate distance between 
emulated estimates of a set of historical variables and verifying observations, normalised by a 
covariance matrix representing the sum of uncertainties due to emulator error, observational error 
and discrepancy. 

• The observables consist of CLIM, plus several indicators of historical climate change, specifically 
GMST, BRAG, OHC and CO2 concentration (Booth et al., 2017). Our set of constraints is informed by 
an assumption that climate changes are expected to be subject to influences from a wide variety of 
earth system processes, both from within, and remote from, any given region of interest. Therefore, 
we design the constraints to cover a range of climate variables, expressed mainly at global or large 
regional scales. Use of a broad range of variables reduces the risk that a given model variant might 
receive an unrealistically high or low weight, due either to an untypically large bias in one particular 
metric, or due to a fortuitously good match that might arise from compensating biases. Metrics of 
historical climate change, for example, are prone to the latter issue, since a number of distinct 
physical or biogeochemical processes influence the net feedbacks that influence changes in 
properties such as GMST or global CO2 concentration (e.g. Gregory et al., 2009).  

•  The CLIM observables include seasonal climatological spatial fields for the twelve climate variables 
listed in Appendix B (Table B.1). This is the same set used in UKCP09, and includes surface air 
temperature, precipitation, sea-level pressure and a variety of additional diagnostics relating to the 
earth’s energy and hydrological cycles. The data amounts to about 175,000 observables. It is 
necessary to reduce its dimensionality, in order (a) to remove dependencies between variables 
affected by common physical processes7, and (b) to make the required multivariate statistical 
calculations computationally feasible. This is done by identifying the six leading eigenvectors of the 
climatological variables in the SLAB ensemble, following closely the UKCP09 approach (Sexton et al., 
2012). Amplitudes of these are emulated, and adjusted as described in Stage 1b to account for 
coupled ocean-atmosphere processes (COUPLED_CLIM). These are then compared with amplitudes 
for these observables projected onto the same set of eigenvectors, and used to estimate likelihoods 
associated with these mean climate constraints. 

7  For example, simulation errors in radiative fluxes, cloud amounts and surface air temperature at neighbouring grid points are likely to arise from 
common sources, and are therefore unlikely to provide independent information.
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• Details of the constraint variables based on historical climate change are listed in Appendix B (Table B.2). 
The BRAG variables consist of four global scale surface air temperature indices (Braganza et el 2003). 
These are identical to those used in UKCP09, except here we use 17 years of additional observed data to 
the end of 2017. We also use trends for two periods (Table B.2), rather the single period employed in 
UKCP09. Our decision to include a constraint derived from historical CO2 changes is based on Booth et al. 
(2017). They demonstrated that trends in atmospheric CO2 concentration (catm) could be used to rule out 
earth system model simulations with an interactive carbon cycle that produced results inconsistent with 
observations. As described in section 3.3g, this approach was also used to select a subset of catm 
pathways from the ESPPE and CMIP5-ESM ensembles to drive the GC3.05-PPE simulations in Strand 2. 
Following studies (e.g., Skeie et al, 2014; Bodman and Jones, 2016) which note that future projections 
can be sensitive to the historical trend in ocean heat content, we also use the change in global mean heat 
content in the upper 700m (OHC) in the likelihood estimation. The 700m depth is chosen because data 
with better coverage over a longer period is available, compared to other choices. For most observables, 
two datasets were compared to obtain estimates of observational uncertainty (Sexton et al., 2012). Four 
datasets were used in the case of OHC. For SST and surface air temperature constraints, single datasets 
provided with associated uncertainty estimates were used.

• The effects of the observational constraints on the projected changes are discussed below.

d. Production of time-dependent posterior projections (Fig. 2.2)

• For each of the 106 members sampling xa from Stage 1, plausible values of ocean heat uptake and 
carbon cycle parameters are added by randomly selecting points in the prior space of xscm (see Stage 
2a). This creates a new prior sample exploring xes, also of size 106, suitable for use in production of 
transient projections. 

• Initially, historical realisations from 1860-2015 are produced, allowing a weight to be attached to 
each of the 106 sample members. In these realisations, historical uncertainty due to fossil fuel (FF) 
and land-use (LU) carbon emissions is accounted for. FF is sampled from an assumed Gaussian 
distribution (derived from the uncertainty estimate of Le Quéré et al., 2015). Alternative LU results 
are sampled from ten dynamic global vegetation models (Booth et al., 2017, updated). This ensures 
that the contribution to the weight of historical change in CO2 concentration takes appropriate 
account of relevant emissions uncertainties. 

• The 106 members are then resampled with replacement according to weight, to create a new 50,000 
member sample that is convenient for the calculation of probability levels8 of the time-evolving pdfs.

• A 3000-member sub-sample of timescaled realisations, of convenient size for users, is then produced 
(Figs. 2.4a,b show examples of pdfs derived from these, bottom right panels). In these, standard 
CMIP5 specifications of historical and future carbon emissions are used, rather than sampling FF and 
LU uncertainties as described above. For a given emissions scenario, each realisation therefore uses 
the same specification of past and future CO2 emissions (as do the CMIP5-ESM and ESPPE 
simulations). Uncertainty in future FF and LU emissions therefore contributes to differences between 
the pdfs for different emissions scenarios (Fig. 2.8, discussed later), but not to the spread of outcomes 
for a specific emissions scenario.  

8  In this report, we use the term “probability level” to refer to quantiles of probability distributions from Strand 1. We use the term “percentile” 
where we are discussing quantiles from frequency distributions of results from Strands 2 and 3. This reflects the non-probabilistic nature of 
Strands 2 and 3, which are composed from sets of individual simulations that are not designed to provide estimates of the relative likelihood of 
different future climate outcomes.
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Stage 3: Downscaled projections

The final stage (Fig. 2.2, yellow boxes labelled “3”) involves downscaling the TRVC realisations to the four 
sets of target regions for Strand 1. The calculations use an 11-member PPE of the RCM configuration of 
HadCM3 (Box E in Fig. 2.1), documented in Murphy et al. (2009) and referred to henceforth as HadRM3-
PPE. This was run from 1951-2100 at 25km horizontal resolution using a European domain (Fig. 3.8 of 
Murphy et al., 2009). The RCM simulations were driven by 11 members of the AO-PPE-A ensemble of 
Collins et al. (2011), a coupled ocean-atmosphere PPE containing the same atmospheric parameter 
settings as SLAB17. We used data from 1961-2100 to calibrate the downscaling relationships used in 
Strand 1. Prior to downscaling, HadRM3-PPE data is spatially interpolated to the target regions.

a.  For monthly and seasonal variables (Fung et al., 2018), downscaling is achieved using linear regression 
relationships (e.g. Fig. 2.5, left panel) between projected changes in the RCM and driving GCM. The latter 
are provided by selecting a predictor grid point9 from the UK_GCM variables described in Stage 2. This 
adjusts the GCM-based results to account for the finer scale information available from the RCM. For a 
given variable, a single regression relationship is calibrated by pooling changes for 1990-2099 relative to 
1981-2000 from all eleven GCM-RCM pairs. The GCM predictor variables are low-pass filtered, to allow 
the regression coefficients to capture long-term climate change signals more effectively (e.g. blue curve 
in Fig. 2,5, right panel). The predictand RCM variables are left unfiltered, so that the regression residuals 
include uncertainties due to interannual variability (e.g. red curve in Fig. 2.5, right panel). These typically 
provides the dominant contribution to the spread of residuals. This can be seen by comparing the ranges 
of the black bar and grey shading during 2080-2099 in Fig. 2.5 (right panel). In addition, the residuals 
capture errors arising from the simple downscaling regression model, which does not account for 
potential non-linearities, or variations in the downscaling relationship across parameter space. The 
residuals are used to calibrate AUTOVAR for use in (c) below.

b. The 3000 TRVC realisations from Stage 2 are then filtered to extract low-pass climate change signals, 
and converted using the above downscaling relationship, under the assumptions that the relationships 
are independent of location in xes and choice of emissions scenario (noting that the AO-PPE-A and 
HadRM3-PPE simulations were driven by the A1B scenario).

c. Finally, variability on 1-20 year time scales (grey shading in Fig. 2.5, right panel) is added to the 
downscaled realisations of long-term climate change, using AUTOVAR. For most variables the AUTOVAR 
sampling is as described by Sexton and Harris (2015), in which the residuals are assumed to be Gaussian. 
However, for specific humidity, total cloud amount and precipitation, the residual distributions are adjusted 
to account for errors introduced by this assumption. In the case of summer precipitation, for example, this 
preserves a positive skew present in the HadRM3-PPE simulations, ensuring that the statistical treatment 
of wet events is consistent with the underlying climate modelling results (Appendix A).

9  For locations in the national 25km grid (Fung et al., 2018), candidate UK_GCM grid points include the one nearest the target location, and its 
neighbours. The nearest point is selected unless a neighbour can be found for which the downscaling residuals (measured by mean absolute 
deviation) are significantly smaller at the 10% significance level, determined by bootstrap resampling of the downscaling residuals. For the 
aggregated regions, predictors are chosen by selecting the UK_GCM point that is picked most often amongst the subset of 25km grid locations 
contained within the relevant region.
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Figure 2.5. Stage 3 of the probabilistic projections method. Circles (left panel) show values of surface air temperature changes for a single 25km 
grid box containing Cardiff, comparing values from individual HadRM3-PPE members (distinguished by colour) against corresponding values from 
their driving global model simulations (which used the A1B emissions scenario, Collins et al., 2011). The regional model responses are for individual 
years from 1990-2099, relative to a baseline of 1981-2000. Contemporaneous global model changes are low-pass filtered to remove variability on 
time scales shorter than 20 years, in order to emphasise long-term climate changes. The linear regression (black line) has a coefficient of 0.90, and 
shows the relationship between the downscaled 25km climate change signal and that at the 300km driving model land point chosen to provide the 
predictor variable (see text). The scatter of the coloured dots around the regression line is due to residual uncertainties (see below). These 
uncertainties are sampled in the probabilistic projections, using the AUTOVAR method described in Appendix A. This is based on a Singular Value 
Decomposition that accounts for interannual and inter-variable covariances in the downscaling residuals, and temporal dependencies in the 
variance of residuals. The right panel shows the predicted low frequency signal of change (blue) obtained by applying the regression relationship to 
one of the driving model simulations, with the time series of variability and change in the corresponding HadRM3-PPE member in red. The grey 
shading shows the 5th-95th percentile range of the residual downscaling uncertainty (assumed Gaussian) around the blue curve. This uncertainty is 
sampled in each of the individual realisations that comprise the probabilistic projections. The black bar shows the 5th-95th percentile range of 
internal RCM variability on time scales of 1-20 years for 2080-2099. The corresponding residual range is slightly broader. This shows that internal 
variability in the RCM simulations provides a dominant contribution to the residual variance, with errors in the simple downscaling relationship 
providing a modest additional contribution. Such errors can arise from potential non-linearities and/or member-specific dependencies in the 
relationship. 
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Impact of observational constraints

Figure 2.6 demonstrates how posterior distributions for the transient response to RCP8.5 emissions change, 
as the observational constraints are applied successively. Examples are given for three variables, 
considering changes for 2081-2100 relative to 1981-2000: GMST (top panel), summer surface air 
temperature in Southern England (middle panel), summer precipitation change for Southern England 
(bottom panel). The starting point in each case is the red curve, which is the prior distribution emerging 
from Stages 2a,b above. This accounts for sampling of parametric modelling uncertainties in the earth 
system configuration of HadCM3 and discrepancy, estimated using CMIP5-ESM members. However, the red 
curves do not account for variations in the credibility of PPE variants at different locations in the parameter 
space of HadCM3. 

In common with UKCP09, constraining the GMST response with only the historical mean climate variables 
leads to a substantial narrowing of the probability distribution (orange curve cf red curve in Fig. 2.6, top 
panel). A further narrowing is obtained when the constraint due to historical changes in surface air 
temperature is added (dark green curve cf orange curve). The impact is a little greater than was found in 
Harris et al (2013). This is due partly to the signal present in the additional 17 years of observational data 
used in UKCP18. The inclusion of atmospheric CO2 trends in the likelihood weighting (an innovation in 
UKCP18) leads to a cooler GMST response. The 95% probability level becomes 0.34°C cooler, for example, 
when this constraint is added. Although subsequent inclusion of OHC does not alter the posterior 
substantially, this does not necessarily imply it is unimportant. This is because sequential application of 
constraints can be expected to lead to diminishing returns, especially when simulation errors are not 
independent, as is the case for the historical trends used here. 

For surface air temperature in Southern England10, successive application of constraints leads to a 
progressive reduction in the spread of the pdf. For example, the 90% prior range of 10.0°C is reduced to 
8.4°C when the full set of constraints is applied. In common with UKCP09 (Sexton and Murphy, 2012), the 
relative impact of likelihood weighting is less for UK-scale variables than for GMST. In the case of summer 
precipitation change, the principal effect of the constraints is to reduce the estimated chance of an increase 
in precipitation, compared to the prior distribution. The change at the 95% probability level is reduced from 
60% to 25%, for example. Application of the constraints also leads to a modest shift to greater drying, in 
the median response.

10  In Fig. 2.6, one of the UK_GCM grid boxes of Harris et al. (2010) is used to define Southern England (see section 2.2, Stage 2), so the downscaling 
step in the methodology (section 2.2, Stage 3) is not applied.
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Figure 2.6 Dependence of the posterior pdfs for transient climate change on choice of observational constraints. All pdfs are for the 20-year mean 
response for 2081-2100 relative to 1981-2000, for the RCP8.5 scenario. The three variables are: annual GMST (upper panel), summer surface air 
temperature response for Southern England (middle panel), summer change in precipitation (%), also for Southern England. The red curve shows 
the prior (unweighted) distribution, and the others show the cumulative effects of adding constraints due to climatological spatial fields (orange), 
historical trends in surface air temperature (green), CO2 concentration (light blue) and upper ocean heat content (dark blue). P5, P50 and P95 
denote the 5, 50 and 95% probability levels of the various pdfs.

www.metoffice.gov.uk


 Source: Met Office © Crown Copyright 2018www.metoffice.gov.uk Pg 28 of 191

Checking the credibility of the probabilistic projections

For each of the twelve core UKCP18 variables (Fung et al., 2018), probabilistic projections were produced, 
and then checked for credibility. The main check (described in detail in Appendix C), involved comparing the 
probability distributions of projected change (for 2080-2099 relative to 1981-2000 under RCP8.5 
emissions) against 349 changes from the global climate model simulations used in Strand 1. For relative 
humidity and near-surface wind speed, the tails of the probability distribution often showed a significant 
cumulative probability (F) of 15 or 20% for outcomes beyond the most extreme of the climate model 
responses, which could be traced to a failure in one of the key assumptions in the methodology. These 
variables were rejected. The occurrence of high values of F was substantially smaller for the other variables, 
so these were assessed as credible. 

In Appendix C we also assess the representation of precipitation variability in the downscaling step (Stage 3 
above). In UKCP09, a logarithmic transformation was applied to precipitation values prior to the statistical 
calculations, which was then inverted to obtain final results as percentage changes. This was done to avoid 
generation of negative values. However, we found that this approach led to the generation of unrealistic wet 
extremes in UKCP18, compared to the variability simulated in HadRM3-PPE. We therefore performed the 
UKCP18 calculations directly in units of percentage anomalies, which eliminated the unrealistic wet 
extremes at the cost of losing the automatic bounding of dry anomalies at -100%.

The final set of sampled precipitation realisations were therefore clipped at -100%. In addition, a second 
level of clipping was applied to all variables at the 1% and 99% probability levels of the relevant pdfs, in 
order to avoid provision of potentially unrealistic extremes.    

Production of pdfs for different emissions scenarios

As explained in Stages 2a, b above, the generation of sampled climate change realisations requires 
specification of bias and residual terms associated with the timescaling procedure. For a given variable, 
these terms are calibrated by using global and regional metrics of climate change (assumed time-invariant) 
to predict the transient response of ESPPE members. This involves use of the simple climate model to 
predict the ESPPE GMST responses. Then, the bias and residual terms can be calibrated from the resulting 
errors. For the RCP2.6, 8.5 and A1B scenarios, ESPPE simulations are available for this purpose. However, 
this is not the case for the RCP4.5 and RCP6.0 scenarios, so direct calibration of timescaling errors is not 
possible.

Therefore, timescaling errors are estimated indirectly for these two scenarios, from errors obtained in the 
RCP8.5 case. We do this by assuming the bias term to be proportional to the response of GMST. The 
relationship is quantified by regressing the scaling error against the contemporaneous GMST response 
predicted by the simple model. A different relationship is obtained for each ESPPE member. Predicted GMST 
responses for RCP4.5 and RCP6.0 are then multiplied by these coefficients to estimate the time-varying 
bias term for these scenarios. The residual term (which accounts for interannual variability, as explained in 
Stage 2) is noisier than the bias term, hence it is difficult to justify expressing it as a function of GMST 
response. Therefore, it is simply assumed to be independent of scenario, and sampled as in the RCP8.5 case. 
The residual variances for the A1B and RCP8.5 scenarios are very similar, which provides some support for 
this choice. 
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A similar issue arises in the estimation of the time-dependent discrepancy terms for GMST, CO2 and OHC 
(Stage 2a above). In this case, direct calibration is only possible for the RCP8.5 scenario, for which data from 
the CMIP5-ESM multi-model ensemble is available. We apply an analogous approach to estimate the 
discrepancy distributions for the other four scenarios. The mean discrepancy is assumed proportional to the 
predicted GMST, and regression coefficients are calculated for CMIP5-ESM members under the RCP8.5 
scenario. Predictions of GMST for the other scenarios are then used to estimate the time-dependent mean 
values of discrepancy, while the variances of the discrepancy distributions are assumed to be identical to 
their RCP8.5 counterparts.

2.3. Examples of the probabilistic projections

In this section we provide a few examples demonstrating the nature and scope of the probabilistic 
projections. Further information is presented in section 5.1 (alongside results from Strands 2 and 3), and 
also in Lowe et al. (2018).

Given the extensive use of the UKCP09 probabilistic projections, it is instructive to compare these against 
their UKCP18 equivalents. This illustrates the impact of new information and improvements in methodology 
(sections 2.1 and 2.2), and allows stakeholders to assess whether studies based on UKCP09 should be 
updated. Figure 2.7 compares the two set of projections for GMST, and for winter surface air temperature 
and summer precipitation for the South East England administrative region. In order to provide a like-for-like 
comparison, the UKCP18 results are (in this particular case) calculated for the A1B emissions scenario, 
using the UKCP09 baseline of 1961-1990. They are shown as a set of overlapping 30-year average 
changes stepped 10 years at a time, consistent with the presentation of UKCP09. 

The uncertainty ranges are considerable in both sets of projections, for all three variables. There is 
substantial overlap between the UKCP09 and UKCP18 distributions for all future periods, and the main 
characteristics of the changes are the same. Both show a monotonic11 increase in the medians of their 
30-year mean GMST and South East England winter temperature distributions, with the median warming 
over South East England being slightly smaller by the end of the 21st century. The median summer 
precipitation changes both show reductions that grow through the century, accompanied by uncertainty 
ranges wide enough to encompass the possibility of an increase. 

11  Note that at the annual time scale (e.g. Sexton and Harris (2015), Fig. 1), time series of individual realisations that comprise the probabilistic 
projections can show periods of 10-20 years during which GMST departs from a monotonic increase, due to the influence of internal variability. 
This is also true of the Strand 2 simulations (see Fig. 3.20).
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Figure 2.7. Probabilistic projections from UKCP09 (left) compared with those of UKCP18 (right), for the A1B emissions scenario. Top panels show 
GMST (°C), middle and lower panels show surface air temperature (°C) in winter and precipitation (%) in summer for the South-East England 
administrative region. The white line shows the median of the relevant probability distribution, and shading shows the 5, 10, 25, 75, 90 and 95% 
probability levels. Changes in 30-year averages are shown relative to the UKCP09 baseline of 1961-1990, for the seven overlapping future periods 
provided in UKCP09: 2011-40, 2021-50, .., 2071-00. In the case of GMST, results for earlier periods (1971-2000, 1981-2010, 1991-2020 and 
2001-2030) are also shown.a

However, there are also some differences between the UKCP18 and UKCP09 results. The median GMST 
warming is somewhat lower in UKCP18, amounting to 2.9°C by 2071-2100, compared with 3.2°C for 
UKCP09. A major driver of the cooler median response in UKCP18 is the addition of a time-dependent 
component to the calculation of discrepancy. This provides a negative contribution of 0.2-0.4°C to GMST 
changes, throughout the 21st century (Fig. 2.4a, dark blue curve in top right panel). By 2071-2000, the 
upper end of the UKCP18 GMST distribution is ~0.5°C cooler in UKCP18. The additional reduction reflects 
the new constraint on CO2 concentration (Fig. 2.6), which down-weights future outcomes with strong 
positive carbon cycle feedbacks (see Figure 3.7 in section 3.4).
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The median South East England winter warming is also lower in UKCP18, reaching 2.7°C by 2071-2100, cf 
3.0°C in UKCP09. This shift is apparent throughout the 21st century, with a median warming for 2010-2039 
of 0.8°C in UKCP18 cf 1.3°C in UKCP09. Most of this shift is due to the influence of the cooler GMST 
distribution discussed above, the contemporaneous difference in the median GMST response amounting to 
0.35°C. Also, South East England winter air temperature during 2010-2039 is projected to warm slightly 
more than GMST in UKCP09, but slightly less in UKCP18. As a result of these factors, UKCP18 shows a 10% 
probability for a small near-term cooling at the low end of its range, in contrast to UKCP09. 

The median reduction in summer South East England precipitation is slightly smaller in UKCP18 during the 
first half of the 21st century, but reaches a similar level to UKCP09 by 2071-2100, of just over 20%. The 
10-90% uncertainty range grows during the century in both products, but slightly more so at the dry end in 
UKCP18. By 2071-2100, the 10% probability level shows a drying of almost 60% in UKCP18, compared to 
~50% in UKCP09. 

Figure 2.8. Comparison of probabilistic projections of annual GMST (°C) from Strand 1, for different emissions scenarios. Left panel (red shading) 
shows the 5, 10, 25, 75, 90 and 95% probability levels of the time-evolving distributions under historical changes in radiative forcing to 2005, and 
future responses to the RCP8.5 scenario from 2006-2100. Blue shading shows the same probability levels for the 21st century response to RCP2.6. 
The white lines show the medians of the relevant probability distributions. Anomalies are calculated relative to the 1981-2000 baseline. Right 
panel shows probability distributions of change for 2099, for the RCP2.6, 4.5, 6.0 and 8.5 scenarios.
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In UKCP18, a key role of Strand 1 is to provide projections for a range of alternative emissions scenarios (see 
section 1.4). These include SRES A1B (for backwards-compatibility with UKCP09, see above), and RCP2.6, 
4.5, 6.0 and 8.5. The new simulations in Strands 2 and 3 are available only for RCP8.5, with derived results 
for RCP2.6 obtained from the Strand 2 outputs using statistical methods (Gohar et al., 2018). The RCP 
scenarios sample a range of pathways for anthropogenic forcing (Moss et al., 2010). The numbers denote 
the approximate forcing in Wm-2 by 2100, relative to pre-industrial conditions. In RCP8.5, carbon emissions 
are assumed to rise substantially, approaching 30 GtC per year by 2100, whereas RCP2.6 assumes 
aggressive mitigation measures, leading to small, or potentially negative, anthropogenic carbon emissions 
by the last decades of the 21st century.

Figure 2.8 (right panel) shows probabilistic projections for GMST for 2099 (relative to 1981-2000) for each 
RCP scenario, as a basic benchmark of changes expected in each case. The A1B scenario (not shown in Fig. 
2.8) gives very similar results to RCP6.0. Information on UK changes predicted by Strand 1, for each of the 
five available scenarios, is provided in Lowe et al. (2018). The different emissions profiles have a major 
impact on the ranges of projected change in GMST. Differences in response between RCP2.6 and RCP8.5 
emerge from about 2030 onwards12 (Fig. 2.8, left panel), and become substantial by 2050. At the end of the 
century, there is little overlap between the probability distributions for these two scenarios, despite the 
wide ranges in response in each case (particularly RCP8.5). Other pairs of scenarios show greater degrees of 
overlap, particularly between RCP4.5 and either 2.6 or 6.0, and 6.0 with either 4.5 or 8.5. In agreement with 
previous studies (e.g. Knutti et al., 2008; Hawkins and Sutton, 2009), the Strand 1 results indicate that 
uncertainties in emissions and climate response are comparable in their impacts on the range of plausible 
GMST outcomes during the coming century. For any specific emissions scenario, uncertainty in response 
leads to considerable uncertainty in the time at which any given threshold of GMST change might be 
exceeded (Joshi et al., 2011). 

Table 2.2. Lower and upper limits of projected changes in global mean surface temperature for 2081-2100 relative to 1986-2005 for RCP 
scenarios, from AR5 and Strand 1 of UKCP18. The lower and upper limits correspond to 5% and 95% probability levels respectively. For each 
emissions scenario, the AR5 results are derived from CMIP5 simulations that all use the standard prescribed CO2 concentration pathway. The 
UKCP18 results sample a range of alternative CO2 pathways, obtained from emissions-driven HadCM3 and CMIP5 simulations using the Strand 1 
methodology.

 Emissions scenario

5-95% Probability range of change in GMST (°C)

2081-2100 relative to 1986-2005

IPCC AR5 UKCP18 Strand 1

RCP2.6 0.3 – 1.7 0.5 – 2.2

RCP4.5 1.1 – 2.6 1.4 – 3.3

RCP6.0 1.4 – 3.1 1.7 – 3.9

RCP8.5 2.6 – 4.8 2.6 – 5.5

12  Although the CO2 emissions pathway in RCP2.6 differs from that of RCP8.5 after 2005, emissions in RCP2.6 are assumed not to start reducing 
until after 2020, and CO2 concentrations in the atmosphere stay close to those of RCP8.5 until the mid-2020s. Hence, there is a delay in the 
emergence of clear differences in GMST response between the two scenarios.
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The GMST projections of Fig. 2.8 can be compared against uncertainty ranges assessed by AR5. For each 
RCP scenario, AR5 provided 5-95% probability ranges13 of response for 2081-2100 relative to 1986-2005. 
These were derived from CMIP5 simulations using the standard RCP concentration pathway, assuming a 
Gaussian distribution of responses (Collins et al., 2013). These ranges are compared with corresponding 
UKCP18 results in Table 2.2. The lower ends of the UKCP18 5-95% ranges differ by 0.3°C or less from the 
AR5 results, while the upper limits are 0.5-0.8°C higher in UKCP18. The upper limit in Strand 1 is increased 
by the sampling of uncertainties in carbon cycle feedbacks, which are not accounted for in the AR5 results. 
In probabilistic projections made for RCP8.5 using the UKCP09 methodology, the upper limit in the 
emissions-driven projections reduced by 0.5°C when they were repeated as concentration-driven 
projections using the standard RCP8.5 pathway (Humphrey and Murphy, 2016). 

Figure 2.9. Probabilistic projections of annual GMST (°C, left), surface air temperature for England in summer (°C, middle) and precipitation for 
Scotland in winter (%, right), for 2061-2080 relative to 1981-2000 under the RCP8.5 emissions scenario. The curves show distributions of 
variability and change for the 20-year average (blue), and for all individual years within the future period (red).

As pointed out in section 2.1, the probabilistic projections are presented at the seasonal time scale, using a 
methodology based on Sexton and Harris (2015) to account for internal climate variability. This extends the 
UKCP09 information, in which probabilistic information was provided only for 30-year averages, to support 
analysis of changes in seasonal extremes. Users who need probabilistic information relating to long-term 
averages can obtain this by filtering or averaging the 3000 sampled realisations that form the output of 
Strand 1 (as done for Fig. 2.7, for example). 

For RCP8.5, Figure 2.9 compares probability distributions of individual seasonal anomalies projected during 
2061-2080 against distributions of 20-year mean changes for the same period. This illustrates the impacts 
of adding variability on 1-20 year time scales. For GMST (left panel), there is little difference between the 
two distributions, indicating that uncertainties in the global average response dominate those due to 
seasonal to decadal variability. For summer surface air temperature changes in England (middle panel), the 
range of seasonal responses is larger than for GMST. It is also dominated by the contribution from 20-year 
averages, although 1-20 year variability (larger at the regional scale14) does broaden the range more than it 
does for GMST. For Scotland precipitation in winter (right panel), uncertainties in the long-term average and 
1-20 year variability both contribute substantially to the overall range in seasonal anomalies.

13  In the specific case of global temperature projections, AR5 adjusted its quantitative language scale to interpret 5-95% probability ranges as likely 
rather than the usual interpretation of very likely, on the basis that the range of values of the transient climate response (TCR) found in CMIP5 
models was consistent with the likely range assessed by AR5 for TCR. TCR is defined as the change in GMST at the time of doubling in a 
simulation in which CO2 increases by 1% per year, and is an informative indicator of GMST change in future scenarios with steadily increasing 
radiative forcing. The AR5 assessment of TCR was based on multiple studies using partly independent lines of evidence, derived from a range of 
different climate model and observational datasets.

14  This can be seen by comparing the annual spread of the two variables during 1981-2000 (Figs. 5.6a and 2.8 respectively), since the average 
forced response is by construction zero during the baseline period.
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The relative importance of 1-20 year variability is larger at earlier lead times, when the forced changes, and 
their associated uncertainties, are smaller (Sexton and Harris, 2015). This is discussed further in section 5 
(Figs. 5.6 and 5.7).

Figure 2.10. Effects of changing the baseline period. Red curves show probabilistic projections of the response to RCP8.5 emissions of surface air 
temperature (°C) for England in summer (left), and precipitation (%) for Scotland in winter (right), for seasonal anomalies during 2030-39. 
Anomalies are expressed relative to the standard UKCP18 baseline of 1981-2000 (red), and the UKCP09 baseline of 1961-1990 (blue). The green 
and light blue curves show distributions of seasonal observed anomalies during 1910-2017, relative to the 1981-2000 and 1961-1990 baselines 
respectively. The vertical bars show the warmest English summer (1976) and wettest Scottish winter (2015-16) in the historical record, relative to 
each of the baselines. Observations are taken from NCIC datasets (Table E.2). 

Users of UKCP18 have the option of choosing alternative baselines (section 1.5). Figure 2.10 shows an 
example for seasonal projections during 2030-39, in which English summer surface air temperature 
anomalies (left) and Scottish winter precipitation anomalies (right) are expressed relative to the UKCP09 
and UKCP18 baselines of 1961-1990 (blue) and 1981-2000 (red). Interestingly, there is relatively little 
difference between the two curves, for either variable. The distribution of summer surface air temperature 
anomalies is shifted ~0.1°C warmer when the earlier baseline is used, while the winter precipitation 
anomalies become slightly wetter.

However, distributions of observed anomalies (light blue and green curves) differ more, when the baseline is 
changed. For example, the anomaly associated with the hottest English summer on record (1976) increases 
from 1.8°C to 2.1°C when based relative to 1961-1990, while the anomaly associated with the wettest 
Scottish winter (2015-16) increases substantially, from just over 50% to just under 90%.

This difference probably occurs because the observed record is only one realisation of climate, whereas the 
probabilistic projections include 3000 realisations. The small shifts seen in the Strand 1 distributions reflect 
modest signals of forced climate change in their time series between 1961 and 2000, distinguished from 
the effects of annual to decadal variability by considering a large sample of outcomes. By contrast, the 
observed record contains only one sample of low frequency variability, and therefore shows larger changes 
between the two baseline periods. For example, total winter precipitation in Scotland increased by about 
50mm between 1960 and 2000, but some of this change is likely to have been driven by an increasing 
positive trend in the NAO during 1961-1990 (Deser et al., 2017), in which internal climate variability may 
have played an important role (e.g. Selten et al., 2004).
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The different effects of changing the baseline between observations and the projections are worth noting. 
They reveal the importance of understanding that contrasts between recent observed climatological 
averages for different periods reflect an uncertain combination of low frequency variability and 
anthropogenic climate changes (e.g. Karoly and Stott, 2006). The smaller shifts seen in the Strand 1 
probability distributions are the result of considering many realisations of how baseline climate might have 
changed between 1961-1990 and 1981-2000, and are useful in placing recent observed trends in a 
broader uncertainty context. 

3.  Strand 2: A new set of global climate simulations from 1900 - 2100

3.1. Overview

Strand 2 includes GC3.05-PPE, a new 15-member PPE of global climate simulations from 1900-2100, using 
the RCP8.5 scenario beyond 2005. These simulations are provided to address several of the science and user 
drivers listed in section 1.2. In particular, GC3.05-PPE utilises the latest developments in UK modelling 
capability (driver 5) and provides a multi-variable dataset for impacts analysis with full spatial and temporal 
coherence (driver 2). It also supports development of storylines relating to future climate variability and 
extremes on a broad range of time scales, and provides new information on potential imported risks from 
other international regions (drivers 3, 4 and 6). These global simulations have also been used to drive new 
12km regional climate model simulations for the UK and Europe (Strand 3, described in section 4).

The GC3.05-PPE simulations are augmented by a subset of 13 CMIP5 models (CMIP5-13), in order to add 
sampling of diversity in model structure to the diversity arising from parametric process uncertainties in 
GC3.05-PPE. This creates a combined set of 28 projections. The CMIP5-13 members are selected using a 
mixture of quantitative and qualitative assessment criteria, with the aim of removing implausible 
simulations to identify a surviving subset of credible projections (McSweeney et al., 2015). Similar principles 
are used in the design of GC3.05-PPE. CMIP5 models are also used to represent structural uncertainties in 
Strand 1, however the methodology there is necessarily different. This is because (a) the probabilistic 
presentation of Strand 1 requires use of a formal mathematical framework containing a specific 
discrepancy term to quantify structural uncertainties (section 2.2), and (b) results from CMIP5 earth system 
models driven by carbon emissions are required in Strand 1, whereas concentration-driven simulations from 
physical ocean-atmosphere CMIP5 models are used in Strand 2 (see section 1.4).
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3.2. The new climate model underpinning GC3.05-PPE

The basis for the PPE is the GC3.05 coupled ocean-atmosphere model (see discussion in section 1.2). It 
incorporates the main improvements added to GC3.0 to produce GC3.1, the UK model submitted to CMIP6 
(Williams et al., 2018). The atmosphere and land15 components are configured on a regular latitude-
longitude grid at N21616 resolution, which gives a horizontal grid spacing of approximately 60km at mid-
latitudes. There are 85 vertical levels (L85), 30 of which are in or above the stratosphere. This provides 
improved resolution of middle atmosphere dynamics compared with most CMIP5 models, including the Met 
Office submissions HadGEM2-AO and HadGEM2-ES. Compared to HadGEM2, the GC3.05 atmosphere 
includes a major revision to its dynamical core (ENDGame, Wood et al., 2014), a new cloud scheme (PC2, 
Wilson et al., 2008), and numerous smaller changes to other parameterisations of sub-grid scale processes 
(Williams et al. (2018) and references therein). Two stochastic physics schemes are also included (Sanchez 
et al., 2016), representing uncertainty arising from aspects of unresolved sub-grid scale variability. The 
Stochastic Kinetic Energy Backscatter scheme version 2 (SKEB2) represents the backscatter to the 
resolved flow of small-scale kinetic energy lost via numerical diffusion, and the Stochastic Perturbation of 
Tendencies scheme (SPT) stochastically scales the outputs of physical parameterisations to represent 
variability about their best-estimate outputs.

The ocean and sea-ice models (NEMO and CICE, Hewitt et al., 2011) are also replacements for their 
HadGEM2-AO counterparts. The ocean component uses a tripolar eddy-permitting grid with 75 levels 
(ORCA025L75). The horizontal resolution is ¼° at the equator, where the grid is at its coarsest. This yields 
an improved simulation of the Gulf Stream extension compared to HadGEM2-AO, reducing a cold bias in 
North Atlantic sea surface temperature (SST) and hence ameliorating an important source of error in the 
simulation of climate variability over Europe (Scaife et al., 2011).

Williams et al. (2018) compare GC3.0 and GC3.1 to HadGEM2-AO, finding that the new models achieve 
improved simulation of the atmospheric temperature structure, surface and top of atmosphere radiative 
fluxes, synoptic variability at mid-latitudes, ENSO and tropical cyclones. However, several long-standing 
systematic biases remain, including excessive global average precipitation, cool and warm sea surface 
temperature biases in the northern hemisphere and Southern Ocean respectively, and insufficient 
frequency of blocking anticyclones in the northern hemisphere. The latter is an important factor in relation 
to the simulation of cold extremes in UK winters. Worldwide, SST biases are generally reduced in GC3.1 
compared to HadGEM2-AO, although the warm bias in the Southern Ocean is slightly larger.

15  The land module is the Joint UK Land Environment Simulator (JULES, Best et al., 2011). In GC3.05 JULES is run using prescribed vegetation 
distributions, as the model does not include an interactive carbon cycle.

16  Nx denotes a regular grid defined at 2x longitudinal points and 1.5x+1 latitudinal points, giving an approximately isotropic spacing at mid-
latitudes. The coupled ocean-atmosphere GC3.05-PPE projections in Strand 2 use N216, while the preliminary simulations used to identify 
potential PPE members use N96, at which the mid-latitude spacing is approximately 135km.   
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Scaife et al (2014) found important improvements in the predictability of the winter NAO when the Met 
Office seasonal prediction system was upgraded to use a version of the Met Office coupled model 
configured at N216L85 and ORCA025L75. Senior et al (2016) used HadGEM3-GC2, another recent 
coupled model version, to investigate the impact on climate change simulations of increasing horizontal 
resolution from N96 to N216 in the atmosphere and from 1° to ¼° in the ocean. They found minimal impact 
on projected changes in long-term averages at continental or larger scales. However, there were some 
important regional impacts, including a larger increase in the frequency of the most intense winter storms 
at N216 over the North Atlantic and Europe. 

The aerosol module in GC3.05 is GLOMAP-mode (Mann et al., 2010). This simulates the transport, growth, 
nucleation, coagulation, cloud-cycling and removal of sulphate, sea salt, dust, black carbon and particulate 
organic species, in response to primary natural and anthropogenic emissions. Direct radiative effects and 
those arising from aerosol-cloud interactions are accounted for, and the scheme transports both particle 
concentration and mass in seven multi-component modes, avoiding the simplifying assumption of a fixed 
particle size distribution made in most previous climate models. During the development cycle for GC3.0 
(Williams et al., 2018), the total anthropogenic radiative forcing simulated for the year 2000 relative to 
pre-industrial conditions was found to be negative, failing a basic model acceptance criterion. This was 
caused by excessively strong cooling due to anthropogenic aerosols. A limited set of physical improvements 
was then included in the GC3.1 configuration (Walters et al., 2017), partially addressing this issue. The main 
change was to include a parameterisation of the effect of droplet number (and hence aerosol loading) on 
the spectral dispersion for the cloud droplet size distribution (Liu et al., 2008). This parameterisation, and a 
change to the refractive index of black carbon (Bond and Bergstrom, 2006), were included in GC3.05. 
Additional minor changes applied in GC3.1 (see Appendix D) were not available in time to be included in 
GC3.05. The GC3.05-PPE members all simulate a positive change in low-pass filtered values of total 
anthropogenic radiative forcing at year 2000 (relative to 1900), although several members simulate a 
strong aerosol cooling during the second half of the 20th century. The GC3.05-PPE simulations of historical 
climate change are discussed further in section 3.4.  

3.3. Design of the strand 2 projections

In this section we describe the design of GC3.05-PPE and the selection of additional CMIP5-13 projections. 
Section 3.4 provides evaluation of the historical components of the 28 coupled ocean-atmosphere 
simulations, considering selected metrics of global and regional performance. The latter are focused on the 
UK and North Atlantic/Europe sector. Section 3.5 covers global aspects of the projected future changes 
given by the Strand 2 set. Projections for the UK are described in section 5, alongside those from Strands 1 
and 3.  

The GC3.05 model is computationally expensive. The choice of configuration reflects the aim in Strand 2 of 
producing a limited number of high-resolution future projections, underpinned by the best possible 
representation of regional climate variability. In order to maximise its utility, the design methodology for 
GC3.05-PPE is based on the twin principles of plausibility and diversity (Karmalkar et al., 2018). 
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Figure 3.1. Key steps in the production of the GC3.05 perturbed parameter ensemble (GC3.05-PPE) of global climate projections in Strand 2 of 
UKCP18. The choice of model configuration (red box) is described in section 3.2. Light purple boxes and dark blue box (section 3.3) denote steps 
required to select promising parameter combinations in the atmosphere, land and aerosol components for coupling to the GC3.05 ocean model. 
Light blue boxes denote preparation, evaluation and production of climate change simulations from 1900-2100 (sections 3.3-3.5).

Plausibility is assessed via three successive stages of model evaluation, involving five-day weather 
prediction tests followed by five year climate simulations carried out with the atmosphere model, and 
finally multidecadal coupled ocean atmosphere simulations (Fig. 3.1). The goal is to ensure that every 
GC3.05-PPE member performs to a good overall standard, so that available HPC resources are used 
effectively. 

Diversity refers to the spread of future climate responses and historical climates simulated across the 
ensemble. Here, the aim is to ensure that the broadest possible range of future outcomes is sampled, 
subject to the scientific constraint of ensuring plausibility in the selected members, and the technological 
constraint on ensemble size imposed by computational expense (see above). This is to ensure that process 
uncertainties are represented robustly in GC3.05-PPE, thus maximising its ability to provide a range of 
alternative future storylines. Diversity is addressed by first identifying a pool of model variants likely to 
provide good simulations of historical climate, and then combining this information with results from using 
short idealised climate change simulations to pick a subset of these (3.3d below).
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Our evaluation strategy follows a seamless model assessment philosophy (Hurrell et al., 2009), in which 
information from simulations of a few days (started from observed initial conditions) is combined with 
information from multiannual climate simulations in order to identify and minimise model biases common 
to all time scales. Seamless assessment plays an important role in the development strategy for the Met 
Office Unified Model (e.g. Martin et al., 2010). The methodology below is developed from the work of 
Sexton et al (2018a) and Karmalkar et al (2018), who showed that this approach can be used to build a 
PPE. This is because strong relationships are found between errors on weather and climate time scales 
(Rodwell and Palmer, 2007), which allows efficient screening of the model parameter space via the short 
simulations, and also strengthens the evidence base for accepting or rejecting potential PPE variants.

Development of GC3.05-PPE

Following the choice of GC3.05 as its parent model, design of the PPE involves several stages of 
development (Fig. 3.1). These start with definition of the parameter space from which plausible model 
variants may be drawn, followed by filtering of potential parameter combinations in the three stages 
outlined above. The initial 5-day pseudo-weather forecasts and 5-year climate simulations both involve 
running the atmosphere model using prescribed SSTs. The filtering involves quantitative metrics of global 
performance augmented (in the latter case) by qualitative assessment of performance in the North 
Atlantic/Europe region. Twenty-five potential members are then spun-up as coupled model variants, 
followed by production of historical climate change simulations. Assessment of these provides a final stage 
of filtering, leading to continuation of 15 members out to 2100 using the RCP8.5 scenario. These three 
stages are described below.

a. Expert elicitation of GC3.05 parameter space

The first step is to identify a set of model parameters to perturb. Design choices include which earth system 
components to consider, which areas of model physics, dynamics or chemistry (usually schemes 
parameterising sub-grid scale processes) to perturb within a given component, and which parameters to 
select in each perturbed scheme. We chose the atmosphere, land surface and aerosol components for 
perturbation. The ocean component was not perturbed. This was due to timing constraints and the lack of 
an established method for extending the use of seamless assessment ideas to coupled ocean-atmosphere 
simulations. In earlier PPEs using the HadCM3 model, perturbing ocean parameters was found to contribute 
little (compared to atmosphere, land and aerosol perturbations) to the uncertainty in projections of GMST 
(Collins et al., 2011), but was capable of producing a contribution to spread in regional changes beyond that 
attributable to internal climate variability (Brierley et al., 2010). 

The selection of schemes and parameters followed the procedure described in detail by Sexton et al. 
(2018a), and was based on guidance obtained from model development experts. It was decided to perturb 
parameters in schemes representing convection, boundary layer, gravity wave drag, and cloud radiative and 
microphysical properties in the atmosphere model, as well as parameters in the aerosol and land surface 
modules. The atmospheric dynamics and radiative transfer codes were not perturbed, although the 
simulation of dynamical transports and radiative fluxes were affected by other perturbations, for example 
by cloud parameters in the latter case. 
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Within each selected parameterisation, experts nominated a subset of parameters controlling a broad set 
of physical processes. This was done to avoid favouring a priori specific sub-processes within a given 
scheme. For example, the convection parameters cover entrainment, detrainment, radiative effects in 
shallow, mid-level and deep convection, and processes determining the vertical profile of cloud condensate. 
Figure 3.2 shows the expert distributions provided for the 47 selected parameters, and Appendix D (Table 
D.1) gives details of their roles and effects. The distributions describe the prior parameter space, explored 
using atmosphere-only simulations to identify 25 perturbed variants suitable for consideration in coupled 
ocean-atmosphere projections. This work is described in detail by Sexton et al. (2018b), and summarised in 
the following sub-sections (b), (c) and (d). 

Figure 3.2. Prior probability distributions (black) provided by modelling experts for the 47 parameters perturbed in the GC3.05-PPE. Blue lettering 
denotes the parameterisation scheme or model component to which each parameter belongs (convection, CONV; gravity wave drag, GWD; 
boundary layer, BL; cloud, CLD, large-scale precipitation, LSP; aerosol, MODE; land surface, JULES). Dashed lines indicate median values and 
diamonds the values used in the standard, unperturbed model variant. Table D.1 in Appendix D describes the roles of the parameters and effects of 
perturbing them. Red histograms show the relative frequency of sampling in the 442 members surviving the TAMIP assessment, following 
consideration of the quantitative assessment metrics shown in Fig. 3.3 (top panel). The histograms show relative frequencies in seven bins of equal 
width across the range of plausible values for each parameter.

b. Filtering of parameter space using retrospective weather forecasts 

The initial evaluation of combinations of parameter settings was carried out using five-day hindcasts 
(retrospective weather forecasts started from historical analyses of observations). A key assumption is that 
the predicted large-scale circulation will remain reasonably close to observations on this time scale, in 
which case hindcast biases should, to a substantial degree, reflect the growth of “fast” physics errors 
traceable to the parameterisation of sub-grid scale processes (Phillips et al., 2004). These short-term errors 
should be related to biases in longer term climate simulations, but can also provide complementary 
information on model credibility. This is because incipient error growth can be easier to relate to specific 
physical processes (Rodwell and Palmer, 2007), whereas emergent biases in longer simulations typically 
reflect the results of physical and dynamical interactions between multiple processes. 
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Hindcasts

We used an approach based on the Transpose-Atmospheric Model Intercomparison Project Phase II (TAMIP) 
experiment (Williams et al., 2013). In TAMIP, the primary state variables of atmosphere models are 
initialised using analyses of observations and run for five days, using SSTs and sea-ice extents also 
prescribed from observational analyses. The analyses are provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF). The full TAMIP protocol uses 64 start dates covering the period 
October 2008 to August 2009. We used 16 of these, reducing the number of start dates in order to support 
better sampling of parameter space within the available HPC resource. The dates17 were chosen to sample 
the diurnal and seasonal cycles during the relevant period.

Studies of the relationship between weather forecast errors and climate simulation biases have used 
forecast time scales ranging from a few timesteps ahead (e.g. Rodwell and Palmer, 2007) to 1-2 weeks 
ahead (e.g. Wan et al., 2014). The use of tendencies during the initial forecast timesteps was not possible in 
our case, as this requires use of a data assimilation cycle to achieve fully balanced initial states, rather than 
the simpler TAMIP approach used here. However, strong relationships with climate biases have been found 
using day-2 or day-5 forecast errors in TAMIP experiments using CMIP5 models (Ma et al., 2014). Here we 
use day-5 errors following Sexton et al. (2018a). They found that error signals at this range were stronger, 
and therefore gave clearer relationships with climate biases, in a recent PPE study using the GA4 release of 
the Unified Model (Walters et al., 2014). 

The TAMIP hindcasts, and also the 5-year climate simulations in (c) below, used an N96L85 configuration of 
the GC3.05 atmosphere. This allowed production of a 2800 member TAMIP PPE, an order of magnitude 
larger than would have been possible using the N216 version. Importantly, this ensemble was large enough 
to support use of a statistical emulator (as in Strand 1) to predict performance for untested parameter 
combinations. 

Use of the N96 configuration was based on previous model development experience, which suggested that 
this would provide a reliable guide to performance at N216 resolution. Following the selection of 25 variants 
for coupled simulations, the five-year simulations of (c) below were repeated using the N216L85 
configuration. The results confirmed the above “traceability” assumption, showing close relationships 
between model biases at the two resolutions accompanied (typically) by modest improvements at N216. 

All parameters were perturbed in each TAMIP member, in order to investigate interactions between 
processes as well as the individual effects of each parameter. The TAMIP PPE was built up in three 
successive groups of ensemble members (“waves”). See Sexton et al. (2018b) for a detailed description of 
the experiment design. A key aim was to sample parameter space consistently with the expert-prior 
distributions, which was essentially18 achieved. However, the choice of perturbed variants in successive 
waves was also influenced by accumulated experience. This included instances of model crashes due to 
numerical instabilities (waves 2 and 3 were designed to minimise the risk of these), and use of an emulator 
to identify variants (for wave 3) more likely to give acceptable performance. 

17  15/10/08, 00Z; 21/10/08, 06Z; 27/10/08, 12Z; 31/10/08, 06Z; 15/01/09, 00Z; 27/01/09, 12Z; 31/01/09, 06Z; 02/02/09, 18Z; 15/04/09, 
00Z; 21/04/09, 06Z; 27/04/09, 12Z; 03/05/09, 18Z; 15/07/09, 00Z; 21/07/09, 06Z; 27/07/09, 12Z; 02/08/09, 18Z.

18  One exception was ps_sigma_updraught. This is a scaling parameter that defines a distribution of updraught velocities, required to determine the 
activation of aerosols to produce cloud droplets. In the first wave of 680 TAMIP simulations the range of values sampled for this parameter was 
wrong, resulting in only low values being considered. In subsequent waves this error was corrected. The net result achieved representation of the 
full range in the 2800 members, but with oversampling of the low end compared with the prior distribution of Fig. 3.2. 
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Assessment of hindcasts

TAMIP performance was assessed using a broad range of variables commonly evaluated in longer term 
simulations. These cover circulation, temperature, water cycle, radiative and cloud metrics (Fig. 3.3, top 
panel). For each ensemble member and assessment variable, the averaged day-5 difference between 
hindcast and observations was calculated over the 16 TAMIP start dates. Most assessment metrics 
consisted of single-level variables presented as a global spatial field. For these, mean-square errors (MSE) 
were calculated for six (overlapping) large-scale regions, consisting of: 60°S-60°N (global land and ocean 
domain, excluding polar regions), 30°S-30°N (tropics, land only), 30°S-30°N (tropics, ocean only), 30-90°N 
(northern hemisphere extra-tropics, land only), 30-90°N (northern hemisphere extra-tropics, ocean only), 
30-90°S (southern hemisphere extra-tropics, ocean only). For variables defined as latitude-pressure 
distributions of zonal averages (temperature, specific and relative humidity, eastward and northward wind), 
global MSE values were calculated. 

The MSE values were divided by a normalising factor consisting of the mean-square-error for the standard 
model variant (MSE-STD), plus terms representing observational uncertainty19 (σ2

obs) and uncertainty 
associated with hindcast values for a given PPE member (σ2

var). In this factor, MSE-STD was used as a first-
order estimate of the irreducible (structural) component of model error20, while the sum of σ2

obs and σ2
var 

represent uncertainty in the measured MSE values as a true representation of model error. This normalisation 
allows us to express the MSE values relative to an approximate best attainable value. For variables where two 
datasets of verifying observations were available (Table E.2, Appendix E), one was used to calculate hindcast 
MSE values, and the other to provide a basic estimate of observational uncertainty. For variables where only 
one verifying dataset was available, observational uncertainty was estimated as a fraction of MSE-STD (20% 
in the TAMIP verification, and 10% in corresponding AMIP calculations in 3.3c below), guided by cases where 
two datasets could be used. The σ2

var term was calculated from a 32-member ensemble of alternative TAMIP 
hindcasts for the standard model variant. In this ensemble, the growth of small initial differences, introduced 
by different realisations of the stochastic parameterisation schemes in the model, acted as a proxy for the 
component of weather prediction uncertainty due to initial state errors. 

The normalised values (nMSE) provided a relative, dimensionless measure of skill suitable for identification of 
implausible members. The grey shading in Fig 3.3 shows the range of values obtained for each assessment 
variable. The red curve shows scores for a typical ensemble member that was not ruled out, illustrating that 
relative performance varies significantly across the assessment metrics. This is because the net effect of a 
given set of parameter perturbations tends to reduce some aspects of model bias while worsening others.

Rejection of implausible members was determined using error thresholds. The main21 criterion was a “hard” 
limit (Fig 3.3, black line): any PPE member was excluded in which nMSE exceeded 4.5, for any metric. Since 
there is no agreed objective method of choosing model performance thresholds, this choice involved 
subjective judgement. The value of 4.5 was selected to eliminate PPE members clearly inferior to the 
unperturbed member, while retaining sufficient members to sample parameter space, and potential 
diversity in simulated climate changes, as broadly as possible. 

19  Observational uncertainty (e.g. Morice et al., 2012) can result from several sources, including measurement errors, errors of representivity (for 
example due to incomplete spatial coverage) and structural errors related to the chosen methodology (for example in how observations are 
converted into gridded datasets). 

20  This choice is based on the assumption that the standard, unperturbed model variant will provide results that are close to the best hindcasts that 
could be found in the entire parameter space of GC3.05 (Fig. 3.2), if resources existed to sample it thoroughly. In practice, this is likely to be the 
case for most but not all variables (Karmalkar et al., 2018).

21  A second criterion was a “soft” limit (see Sexton et al., 2018b), set lower than the hard value, in which model variants were excluded if they 
exceeded the soft threshold for several variables. In practice, however, the hard limit was the main determinant of acceptance or rejection. 
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Applying the threshold left 442 surviving members. Circulation, water cycle and radiative variables all 
played important roles in the selection, while relatively few were ruled out based on cloud performance. 
While the TAMIP filtering excluded the majority of the 2800 members, the remainder sampled the full range 
of the prior distributions for most parameters (Fig. 3.2). This demonstrated retention of a high level of 
process diversity for consideration in longer simulations. 

Figure 3.3. Relative performance of PPE members created from GA7 (Walters et al., 2017), the atmospheric component of GC3.05. The metric, 
nMSE, is mean-squared error calculated relative to (MSE-STD + σ2

obs + σ2
var), the sum of the MSE for the standard model variant, observational 

uncertainty and uncertainty associated with the MSE for a given PPE member (details in text). Values are shown for each of the variables used to 
filter perturbed parameter ensemble members in 5-day hindcasts (TAMIP, top), and 5-year climate simulations (AMIP, bottom), carried out using the 
atmosphere model driven by prescribed sea surface temperatures. For TAMIP, errors for each member are calculated from the average bias across 
16 hindcast start dates covering the annual cycle. For AMIP, nMSE values are calculated separately for each season, giving four times as many 
entries per variable. For variables constituted as latitude-longitude spatial fields, values of nMSE are provided for each of the large-scale regions 
defined in the text, giving six separate ensemble distributions of values between each pair of grey lines for TAMIP, and 24 for AMIP. For variables 
defined as latitude-height fields of zonal averages (temperature, specific and relative humidity, eastward and northward wind on pressure levels), 
nMSE values for the whole globe are calculated. For aerosol optical depth (only calculated in the AMIP case), a single nMSE value is calculated from 
errors with respect to observations of optical depth at wavelength 550nm, at a set of specific site locations (see Holben et al., 2001). For a given 
variable, region and period, grey shading22 shows the full range of scores across the 2800 TAMIP members and 557 AMIP members. Black lines 
denote the hard limits used to identify unacceptable members (see text). Red lines show the variation in scores by variable, for a typical ensemble 
member. The dotted blue line shows nMSE for the standard model variant, which is always a little smaller than 1.0 due to the σ2

obs and σ2
var terms.

22  For high medium-thick cloud, the grey shaded range is incorrect in the AMIP case, because the wrong simulated cloud-type was compared 
against the observations. Correction of this error does not change the overall effect of the AMIP filtering, because model variants that failed on 
this metric also failed on other metrics. 
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c. Filtering of parameter space using five-year climate simulations 

The five year23 atmospheric simulations were similar in design to the Atmospheric Model Intercomparison 
(AMIP) experiment (Gates et al., 1999), using time-evolving SSTs and sea-ice extents prescribed from 
high-resolution HadISST2 analyses of observations (Titchner and Rayner, 2014). We refer to these as AMIP 
experiments, noting that we used a different and shorter simulation period (2005-2009) to the standard 
AMIP protocol. This allowed us to consider a recent period and increase the size of the PPE available for 
assessment. Contemporaneous24 greenhouse gas concentrations and aerosol emissions were taken from 
CMIP5 datasets. 

The AMIP PPE consisted of 557 members. These included the 442 variants that passed the TAMIP filtering, 
plus 115 variants added to augment the pool of potential coupled PPE members. The first 100 of these 
were predicted to perform well based on emulator results. The final 15 members were added to increase 
the sampling diversity of climate change forcing and response, by including more candidates with weaker 
climate feedbacks and aerosol forcing than the bulk of the ensemble (see sub-section (d)). The 15 GC3.05-
PPE members selected for Strand 2 used 13 atmosphere variants taken from the original 442 members, 
plus two from the additional 115 AMIP members. 

The 557 members were filtered in two steps. The first involved quantitative assessment using nMSE values 
(Fig 3.3, lower panel), carried out with a similar approach to the TAMIP evaluation. The same variables were 
assessed, based on 5-year mean error fields in the AMIP case. A measure of aerosol performance (optical 
depth at wavelength 550nm) was also included. For all variables bar aerosol optical depth, values of nMSE 
were calculated separately for each season of the year (as well as for different regions in the case of single-
level spatial fields). Uncertainty in member-specific MSE values was estimated by running a 32-member 
ensemble of 5-year integrations using the standard model variant, distinguished by alternative realisations 
of internal variability created by the stochastic parameterisation outputs. 

In the AMIP case, the basic hard threshold (see above) was reduced from 4.5 to 3.725. In similar calculations 
applied to CMIP5 models, Karmalkar et al. (2018) found nMSE values ranging from ~2-10 between the best 
and worst performers, thus our choice provides a performance threshold typical of the spread of outcomes 
in CMIP5. 

Model crashes ruled out 39 AMIP members, and the quantitative filtering removed a further 469 members, 
demonstrating the importance of assessing the credibility of multiannual climate averages in addition to 
performance in short-range weather forecasts. Variables in all categories played a significant role in 
determining the selection, with cloud errors contributing to a greater degree than at the TAMIP stage. 

23  Ideally, longer simulations would have been preferred, in order to achieve better sampling of the effects of internal atmospheric variability in the 
AMIP runs. This was prevented by limitations in HPC resources. However, we found (as reported in section 3.4b) that parallel AMIP simulations at 
N216 and N96 atmosphere resolution gave consistent results for model biases, suggesting that the five-year simulations were long enough to 
give a reasonable estimate of climatological errors in the 25 members selected for use in coupled simulations.  

24  A small error was found in the specification of time-varying CO2 concentrations, which were shifted by 6 months compared to reality. However, 
the resulting error in radiative forcing was very small.

25  The TAMIP value was set at a more tolerant level to avoid excessive restriction of diversity prior to consideration of model performance in 
extended climate simulations.
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The 49 remaining members were then screened, to identify members showing unrealistic characteristics in 
selected aspects of UK and European climate. While the diagnostics used were all susceptible to 
quantitative analysis, a visual inspection by experts was selected as the best method of picking out 
member-specific biases that might undermine the credibility of simulated climate impacts. This qualitative 
assessment considered 5-year averages of surface air temperature, precipitation and 850hPa winds in 
winter (December to February, DJF) and summer (June to August, JJA), and frequency distributions of daily 
latitudinal positions of an eddy-driven jet index (Woollings et al., 2010). This was constructed from the 
maximum zonal wind speed at 850hPa. 

Eight ensemble members were eliminated because their prevailing south-westerly winds over the UK were 
much too weak in winter. These members also failed to replicate the three preferred (northern, central and 
southern) locations of the North Atlantic winter jet found in observations (Woollings et al., op. cit.). Six 
members (four of the eight discussed above, plus two more) also simulated a substantial winter cold bias in 
surface air temperature over Northern Europe. In these members, biases in UK average temperature 
amounted to 1-2°C26. The two additional members were rejected on this basis, bringing the total excluded 
to ten.

d. Filtering to maximise diversity of PPE 

As explained above, the purpose of the diversity filtering was to provide as broad a range of climate 
storylines as possible, subject to the constraint of plausibility. The need for this step arose from 
considerations of HPC capacity (a maximum of 25 coupled ensemble members was feasible), plus 
recognition that restricting ensemble size would help facilitate impacts studies by limiting the data 
processing requirements for users.

Three short, idealised climate change experiments, based largely on standard CMIP5 experiment protocols, 
were run for the diversity analysis. These consisted of:

• A two-year simulation to estimate the effective radiative forcing (ERF)27 due to anthropogenic aerosol 
emissions between 2005-9 and 1860, measured as the change in planetary radiation balance at the top 
of the atmosphere (TOA) relative to the AMIP experiment. This was calculated by re-running the AMIP 
PPE (which prescribed aerosol emissions from both natural and anthropogenic sources) using 1860 
aerosol emissions (which consisted only of the natural component). Both simulations used the same 
SSTs, sea-ice extents and greenhouse gas concentrations. 

• A two-year simulation to estimate the ERF due to a quadrupling of CO2 concentration relative to the 
AMIP experiment, holding SST, sea-ice, other greenhouse gas concentrations and aerosol emissions fixed.

26  A stricter tolerance level for UK and European temperature biases was used at this stage, than during the subsequent filtering of coupled 
simulations in section 3.3f. This is because use of observed SSTs in the North Atlantic ocean (and elsewhere) in the AMIP simulations removed a 
major potential source of terrestrial surface air temperature biases. 

27  Radiative forcing (RF) measures the immediate change in radiative balance of the earth in Wm-2, due to a change in an external driver of climate 
change such as CO2, aerosol composition or a volcanic eruption. Effective radiative forcing (ERF) denotes the change in RF following rapid 
adjustments to the resulting warming or cooling of the atmosphere (for example changes in atmospheric temperatures and cloud properties), 
that occur on time scales of a few days to about a year. The definition excludes responses on longer time scales driven by changes to ocean 
temperatures and sea-ice.   
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• A five-year simulation replicating the AMIP simulation, but with a prescribed 4°C globally-averaged 
increase in SSTs, imposed as a global pattern typical of coupled ocean-atmosphere climate change 
simulations (e.g. Webb and Lock, 2013). This experiment provides a useful guide to the strengths of 
large-scale climate feedbacks expected in response to changes in greenhouse gases (Ringer et al., 2014). 
However, the estimates are approximate, and likely to be biased, because the nature of the forcing is 
different, and sea-ice extents (being prescribed) are unable to respond to the simulated warming.

Diversity was assessed using a combination of climate change and historical performance metrics. The 
climate change metrics consisted of two sets of nine variables from the idealised simulations described 
above, representing global and regional changes respectively. The global-average diagnostics were total 
aerosol ERF plus its radiation and cloud components, CO2 ERF, and total feedback strength plus its clear-sky 
and all-sky shortwave and longwave components. The regional diagnostics were derived from surface air 
temperature and precipitation responses in DJF and JJA, chosen from a subset of the Giorgi and Francisco 
(2000) regions in which the ranges of response were significantly broader than uncertainty due to internal 
variability. The latter was estimated by running 32-member stochastic ensembles using the standard model 
variant. Nine of these regional responses were chosen, using a dimensional reduction technique (Principal 
Variables, Cumming and Wooff, 2007) that finds the subset of quasi-independent variables that explains 
most variation in the full set. The same technique was used to identify a further nine metrics measuring 
historical performance, drawn from the quantitative assessment variables of Fig. 3.3. 

This set of metrics provided a 27-dimensional space of model characteristics, which was then used to 
identify the most diverse set of 25 members from the 39 candidates. We used an algorithm based on 
Karmalkar et al. (2018) in which the standardised Euclidean distance between successive pairs of members 
was maximised, starting from the standard member. Figure 3.4 shows the ranges of the resulting selection 
for global mean values of aerosol and CO2 ERF and climate feedback strength. The short lengths of the 
simulations limits the precision of results for specific PPE members. However, uncertainty due to internal 
variability is considerably smaller than the spread in aerosol forcing and climate feedback found across the 
25 selected members (Fig. 3.4).

Figure 3.4. Scatter plots showing global average values of effective radiative forcing (Wm-2) due to anthropogenic aerosol emissions (for 2005-9 
relative to 1860, left panel) and an assumed quadrupling of CO2 concentration (right panel), estimated from short, idealised climate change 
experiments (see text). These are plotted against estimates of the global climate feedback parameter (Wm-2K-1), for the 495 perturbed GC3.05 
atmosphere model variants for which it was possible to run all four of the required AMIP simulations. Grey dots show members rejected via the 
quantitative analysis of Fig. 3.3, and red dots members rejected by the subsequent qualitative evaluation (see text). The blue dots show the 39 
members surviving performance-based filtering. The darker blue dots indicate the 25 selected as potential coupled model variants, including the 
standard member (starred). These maximise diversity in a set of 27 metrics described in the text, which include the three global climate change 
diagnostics shown here. Dashed lines show uncertainty (best estimate plus and minus two standard deviations) due to internal climate variability. 
This is derived from an ensemble of 32 simulations using the standard ensemble member, distinguished by different realisations of stochastic 
parameterisation outputs (see text).
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For these variables, the 25 members capture much of the range of the full AMIP ensemble, although 
members featuring a combination of relatively weak aerosol forcing and feedback strength (in the context 
of the GC3.05 parameter space) were not represented. These were excluded by the evaluation of 
climatological performance described above. For CO2 forcing, the 25 members explore a range of 
approximately 8.0-8.5 Wm-2, because members with higher values were removed by the performance-
based filtering. Across the 25 members, the range for anthropogenic aerosol forcing is approximately -1.0 to 
-2.0 Wm-2. The 5-95% probability range used in Strand 1 is –0.1 to -1.9 Wm-2, derived from AR5. GC3.05-
PPE thus contains a number of members with a strong estimated forcing compared to the bulk of the AR5 
distribution. This is discussed further in section 3.4.  

e.  Design of GC3.05 coupled ocean-atmosphere PPE experiments 

Here, we summarise the design of an initial PPE of 25 GC3.05 transient climate change simulations. These 
were run from 1900-2100 under historical changes in natural and anthropogenic radiative forcing till 2005, 
switching to the RCP8.5 scenario to 2100. Filtering of these simulations based on historical performance is 
described in sub-section (f) below. A full description of the experiments is provided by Yamazaki et al (2018). 

Calibration

The transient simulations were preceded by calibration and spin-up phases. The purposes of these were to 
bring the ocean model towards an equilibrium state consistent with exchanges of heat, water and 
momentum simulated across the atmosphere-ocean interface, and initialise the transient simulations with 
realistic spatial distributions of SST and sea-ice. Given the importance of SST biases for the credibility of 
regional projections of climate variability (Scaife et al., 2011) and change (He and Soden, 2016), we decided 
to apply flux adjustments to surface heat and water fluxes, as in earlier HadCM3-based PPE experiments 
contributing to UKCP09 (Collins et al., 2011). 

The calibration phase involved only the standard PPE variant (STD). Since the subsequent transient 
simulations required initial conditions typical of the beginning of the 20th century, we used constant pre-
industrial values for greenhouse gas concentrations and aerosol emissions taken from standard CMIP5 data 
(https://cmip.llnl.gov/cmip5/forcing.html). As observational coverage of sub-surface temperatures and 
salinities was sparse around 1900, the simulation was started from an ocean state derived from 
temperature and salinity observations for 2004-8 (Ingleby and Huddleston, 2007). During this simulation, 
sea surface temperatures and salinities were continuously and linearly relaxed towards a seasonal cycle28 of 
prescribed spatial fields representing observed conditions typical of late 19th and early 20th centuries 
(Rayner et al., 2003; Good et al., 2013), while sub-surface ocean conditions adjusted towards the applied 
trace gas, aerosol and surface forcing.

28  A seasonal cycle of prescribed sea surface temperatures and salinities was applied, in order to facilitate the subsequent calculation of seasonally-
varying flux adjustments that would limit the development of biases in these variables on a seasonal basis.
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Following experimentation with alternative choices (Yamazaki et al., 2018), a relaxation time scale of 4 
months (for a 50 metre ocean mixed layer) was chosen for both temperature and salinity. The relaxation 
was applied in all marine regions apart from the Arctic Ocean. This set-up was found to maintain stability in 
the AMOC, whereas a full global application of the relaxation led to a rapid and unrealistic weakening. The 
calibration integration was stopped after 115 years, once surface ocean-atmosphere fluxes and the 
relaxation terms had reached a quasi-equilibrium. The relaxation terms were averaged over the last 30 
years to provide prescribed flux adjustment fields. These were applied to the ocean surface layer (in 
addition to heat and water exchanges simulated by the model interactively) in subsequent phases of the 
experiment. The flux adjustments counter the development of biases in long-term averages of SST and 
surface salinity, while allowing unconstrained internal variability to occur in the simulations. The flux 
adjustment fields covered the entire global ocean apart from the Arctic29, and varied with location and 
season, but not from year to year. The main benefit of applying flux adjustments is that they reduce the 
potential for biases in SST to affect projected regional changes (He and Soden, 2016), with the caveat that 
the flux adjustments can also affect aspects of the ocean circulation that are sensitive to variability in 
surface energy or buoyancy forcing, such as the AMOC (Collins et al., 2006). Also, holding the flux 
adjustments constant from year to year involves the key assumption that the sources of bias that they are 
intended to counter are invariant under climate change. 

Spin-up

The spin-up phase initially involved a 68 year simulation of STD, started using the end point of its calibration 
simulation. External forcing agents were specified as in the calibration phase, and STD was run with flux 
adjustments applied. Following this, STD plus the 24 perturbed members were run from the end point of the 
first spin-up phase (using the same external forcing), for periods ranging from 65-83 years30. For the perturbed 
members, offline estimates of the required flux adjustments were produced, as HPC limitations precluded 
running a separate calibration simulation for each model variant. For the heat flux adjustment, this was done 
by adding a constant offset to the spatial pattern obtained for STD. The offset consisted of the difference 
between global mean net TOA radiation in the AMIP simulations of the relevant member, and STD. This 
approach reflects evidence from earlier models that regional patterns of heat flux adjustment are, to leading 
order, determined by ocean model properties (resolution, circulation and SST errors in regions of high spatial 
gradients), while biases in atmosphere-ocean fluxes play an important role at broader scales (Roberts et al., 
1997). For the fresh water flux adjustment, all members used the STD fields without application of offsets. 

During the spin-up period, the climatological state of the upper ocean adjusted from the starting conditions. 
Potential drivers of these adjustments included non-linear effects of variability in SST and surface salinity 
(all members), ongoing trends in deeper ocean layers (all members) and the approximate nature of the 
applied flux adjustments (all members except STD). 

Regional surface salinity values (in perturbed members as well as STD) typically remained within 1psu of 
the constraining observations used in the calibration step, apart from in the Arctic. Yamazaki et al (2018) 
will provide further discussion of the impact of simulated surface freshwater fluxes on variations between 
ensemble members in salinity biases, and the strength of AMOC (see Fig. 3.5 and sub-section (f) for 
discussion of simulated AMOC values). Regional biases in SST (typically less than ±2°C, but with significant 
exceptions in some ensemble members) are also discussed in sub-section (f).

29 In the case of fresh water, flux adjustments were not applied at coastal river outflow points either.

30 The lengths varied because some members ran slower than others, due to restarts caused by numerical instabilities.
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By the end of the spin-up, key indicators such as AMOC, sea-ice extents in both hemispheres, SST, surface 
salinity and surface heat and water fluxes had reached approximate equilibrium, thus providing suitable 
initial conditions for the transient simulations. Inevitably, however, the deep ocean was not in equilibrium (in 
common with multi-model ensemble experiments, e.g. SenGupta et al., 2012). This is a consequence of the 
millennial time scales associated with adjustments below about 2km (Yang and Zhu, 2011). The STD 
spin-up was run on for a further 190 years, beyond the point of switching to the historical phase. This 
provided an indication of the potential for climate drift arising from incomplete equilibration (Sen Gupta et 
al., 2013). The results showed a warming of about 0.2°C in GMST during the first 40 years, and little change 
subsequently. This warming occurs largely over the Southern Ocean. For parts of the world that are 
reasonably well observed (which excludes the Southern Ocean, Arctic and Antarctic regions), the warming 
is confined to the first 20 years. This warming has only a modest influence on the simulated historical 
changes in GMST against observations (Fig. 3.12, discussed in section 3.4), and is small compared with 
projected future changes (see section 3.5). Control simulations are not yet available for the other 14 
GC3.05-PPE members, so we cannot assess the drift in those.   

Specification of climate forcing agents

The historical phase31 of the transient simulations ran from 1900-2005, using CMIP5 time series of 
observed changes in well-mixed greenhouse gases, ozone, solar radiation, major volcanic eruptions and 
natural and anthropogenic aerosol precursors. In the case of sulphur dioxide, PPE members sampled 
uncertainty in the observed emissions, using a scaling factor (ranging from 0.5 to 1.5 – see Fig. 3.2) that 
constituted one of the perturbed parameters in GLOMAP-mode (Carslaw et al., 2013).  

Time-dependent changes in fractional coverage of land vegetation types were prescribed32, according to 
the harmonised land-use reconstructions used in CMIP5 (Hurtt et al., 2011). Following a similar approach to 
that taken in HadGEM2-AO (Baek et al., 2013), land use change is represented by mapping anomalies in 
total crop and pasture from Hurtt el al. (2011) to changes in the combined coverage due to C3 and C4 grass 
plant functional types (PFTs). The anomalies were applied to the reference present day land cover map by 
clearing or expanding the combined coverage of trees and shrubs in relevant regions. The ratios of coverage 
were maintained between C3 and C4 grasses, and between broadleaf trees, needleleaf trees and shrubs. 
Coverage of urban, soil and land ice classifications was kept unchanged.

After 2005, the applied forcing followed the RCP8.5 scenario. In the case of future sulphur dioxide 
emissions, the member-specific scaling factors applied during the historical phase (see above) were also 
applied to the RCP8.5 values, in order to avoid creating spurious trends in aerosol forcing following 2005. 
Volcanic forcing was prescribed from an observed estimate to 2000 (Sato et al. 1993, updated). 
Subsequently, it followed a profile similar to that of Jones et. al (2011), ramping down to a low level to 
2020, and then recovering to the average level used in the calibration and spin-up simulations by 2040. 
Total solar irradiance was specified using the Lean et al (2009) data to 2008 and then a fixed 12-year cycle 
to 2100, obtained by continuously repeating the observations for 1996-2008.  

31  After the spin-up simulations, an error was found in the soil hydraulics scheme. The movement of water through the soil is modelled using the van 
Genuchten (1980) equations, whereas parameter values that determine the hydraulic conductivity for different soil types had been determined 
using a different set of equations (Brooks and Corey, 1964), leading to insufficient vertical transfer of soil moisture. This error was corrected for 
the transient simulations. The effects of the change were tested. It led to changes in the detailed patterns of runoff over land, but no significant 
impact on the ocean surface freshwater budget at basin scales.  

32  The GC3.0 configuration includes a scheme that constrains the grid-box average snow-free albedo to replicate an observed climatology. This 
scheme was switched off in GC3.05, in order to allow simulated surface short-wave radiation to respond to the specified changes in land-use.  
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While GC3.05 is driven by prescribed concentrations of CO2, we specify a range of alternative pathways in 
the PPE, in order to account for uncertainties in carbon cycle feedbacks (see section 1.4). The selection of 
these, and the method for assigning them to PPE members, is described in section 3.3g below. 

f.  Filtering of GC3.05-PPE using historical performance 

The final filtering stage involved assessment of the 25 GC3.05 simulations during the period 1900-2005. 
Two members were dropped due to frequent occurrences of numerical instabilities in the atmosphere 
component, which made one integration impractical to continue and the other impossible to complete in 
time. Remaining members were assessed against selected characteristics of 20th century climate, focusing 
initially on AMOC (a key driver of climate and its variability in the North Atlantic and Europe), and regional 
SST biases worldwide. Three simulations showed a substantial spin-down of AMOC (Fig. 3.5), leading to 
values at or below 8 Sv by 1950. These values were clearly inconsistent with recent observed values in the 
range 13-20 Sv (Smeed et al., 2018, also shown in Fig. 3.5). In these members, this was accompanied by 
large negative biases of 5-6 ºC in North Atlantic SSTs (Fig. 3.6), substantially worse than in other PPE 
members and the CMIP5-13 simulations. These three PPE simulations were excluded. 

Figure 3.5. Annual simulated values from 1900-2100 of the strength in the Atlantic Meridional Overturning Circulation (AMOC), measured as net 
northward transport of water in the Atlantic Ocean at 26°N, in Sverdrups (106m3s-1). The yellow line shows values from STD, grey lines showing 
time series from the other 14 members of GC3.05-PPE that passed two rounds of screening of the historical stage of the coupled ocean-
atmosphere simulations, prior to the switch to RCP8.5 forcing in 2005. Red lines show three of the five members excluded during the first screening 
step. This was due to an unrealistically weak circulation of <5Sv, suggesting a near-collapse of the AMOC inconsistent with recent observations 
(black line, from the National Environmental Research Council RAPID programme, Smeed et al., 2018). Light blue lines show five further PPE 
members excluded during the second screening step, three of which show AMOC values clearly below 10Sv during the period 1981-2000. These 
were excluded in conjunction with assessment of other key indicators relevant to the simulation of UK climate. Dark blue lines show results from 
seven of the 13 CMIP5 models included in Strand 2, for which AMOC values were available.  
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The remaining 20 members provided SST simulations competitive with the level of skill found in CMIP5-13 
(Fig. 3.6), and were accordingly run on to 2100. However, it was decided subsequently to carry out 
additional assessment of the historical part of the GC3.05-PPE simulations, with a more specific focus on 
identifying levels of bias that might compromise their credibility for use in UK impacts assessments. This 
process led to the exclusion of a further five members, and is described below.

Figure 3.6. Biases in area-averaged annual sea surface temperature (SST) for 1981-2000, relative to observed values from HadISST1 (Rayner et al., 
2003). “N. Atlantic” denotes 45-70°N, 75°W-30°E; “Southern” 30-90°S; “Trop. Pacific” 15°S-15°N, 105°E-75°W. Red dots show potential 
members of GC3.05-PPE excluded in the initial screening of the historical simulations, in which SST biases were an important aspect of the 
assessment criteria. Black circles show the final set of 15 GC3.05-PPE members, with light blue circles denoting the five members excluded during 
the second screening step (in which SST biases were not an explicit criterion). Dark blue circles show biases from the CMIP5-13 models.

The second assessment reconsidered AMOC, plus five additional variables: trends in average northern 
hemisphere surface air temperature during 1900-2012 and biases in winter and summer climatological 
averages of surface air temperature and precipitation for Europe during 1981-2000. Instances of poor 
performance were assessed by comparison with observations and the envelope of performance in CMIP5-
13, identifying a PPE member as seriously biased if its simulation of the relevant metric was clearly inferior 
to the worst-performing CMIP5 members. In the case of AMOC, estimates were only available for seven 
members of CMIP5-13, so we used 10Sv as a threshold for an unrealistically weak circulation during the 
late 20th century. This was the minimum value found in a larger set of CMIP5 models by (Heuzé, 2017), 
based on overturning measured at 30ºN.
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Six of the PPE members showed a historical cooling trend of 0.3-0.6 ºC per century in northern hemisphere 
surface air temperature, probably driven mainly by a strong negative aerosol forcing (Fig. 3.4 and discussion 
in section 3.3d). However, observations showed a significant warming trend amounting to 0.7 ºC per 
century, while other PPE and CMIP5-13 members showed warming trends of varying magnitude. The six 
cooling simulations were therefore assessed as seriously biased for this metric. For AMOC, three PPE 
members (in addition to those rejected during the initial assessment) showed an average strength over 
1981-2000 clearly below 10Sv (Fig. 3.5), and were assessed as seriously biased. For European climatology, 
no serious biases in PPE members were found for precipitation, or for surface air temperature in summer. In 
winter, three members simulated an average cold bias (over the whole European land mass) worse than 
-4.2 ºC, the largest found in CMIP5-13. These members, which produced regional cold biases exceeding 
-10 ºC over parts of northern Europe, were assessed as seriously biased.

The three criteria discussed above are inter-dependent to a degree. In particular, a hemispheric cooling and 
a weak AMOC both contributed directly to a cold bias over Europe. However, several different process 
drivers are likely to be responsible for the three types of bias. As noted above, strong aerosol forcing was 
probably a key driver in those members showing hemispheric cooling during the second half of the 20th 
century. However, aerosol forcing can also strengthen rather than weaken the AMOC (Menary et al., 2013). 
In the PPE, four of the six members showing the cooling trend do not simulate strengthening of the AMOC 
in response to aerosol forcing, suggesting competing influences on AMOC. Regarding the European cold 
bias, insufficient radiative heating from the longwave effects of clouds (a feature common to most of the 
PPE members) was an additional contributory factor. Another influence was perturbations to nsigma, a 
gravity wave drag parameter that significantly affects the strength of average mid-latitude westerly winds 
(see Table D.1), and hence drives variations in the magnitude of the cold bias between different PPE 
members.

It was decided to exclude those members recording serious biases for at least two of the three criteria 
discussed above, in order to avoid losing members that may suffer from only a minority of the relevant 
process errors. The excluded members consisted of one that failed all three criteria, two that failed the 
AMOC and hemispheric cooling checks, and two failing on European cold bias and hemispheric cooling. One 
of the six members failing on hemispheric cooling was retained, because it was assessed as acceptable on 
the other criteria. This left 15 members to constitute the GC3.05-PPE projections. These were added to 
CMIP5-13 to form a combined set of 28 projections for UKCP18. A more general evaluation of these 
simulations is provided in section 3.4. 
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g.  Specification of future CO2 pathways for GC3.05-PPE members  

As explained in section 1.4, the GC3.05-PPE simulations use a range of future CO2 pathways, consistent 
with uncertainties in how carbon cycle feedbacks convert emissions in the RCP8.5 scenario into 
atmospheric concentrations. The standard RCP8.5 concentration time series provides one. A further 72 
pathways were available for selection, provided by emissions-driven earth system model outputs. These 
consisted of the 57 ESPPE simulations from Strand 1, and results from 15 CMIP5 models, 12 of which were 
also used in Strand 1 (section 2.2). Pathways were chosen by applying an observational test to the model 
results (Booth et al., 2017, updated), based on regressed linear trends during 1969-2014. 

For each earth system model simulation, this was done by calibrating the simple climate model (SCM) of 
Strand 1 to replicate its transient changes in CO2, and then running the SCM using alternative assumptions 
for fossil fuel and land use emissions (as in section 2.2, Stage 2d). Any model for which the spread of trends 
failed to encompass the observed value was rejected, leaving 31 simulated future pathways. Annual time 
series from these were smoothed using a Butterworth filter with a 30-year cut-off, and blended with the 
observed value at 2005. Adding the standard RCP8.5 concentration time series provided 32 plausible 
pathways. 

A subset of these were then picked to drive GC3.05 ensemble members that survived the performance-
based filtering of section 3.3f. The selection of CO2 pathways was done after the first of the two filtering 
steps (which reduced the pool of potential GC3.05 variants from 25 to 20). The standard RCP8.5 profile 
was assigned to STD, and 19 additional pathways were selected. This was done by identifying 15 GC3.05 
parameters that made the largest contributions to the spread in CO2 forcing, aerosol forcing and climate 
feedback strength, estimated from the idealised climate change simulations of Fig. 3.4 (Rostron et al., 
2018). The CO2 pathways were assigned on the basis that member-by-member variations between CO2 
and the 15 parameters should be as independent as possible33. This choice was made to avoid building in 
strong accidental relationships between physical climate change drivers and carbon cycle feedbacks34. 

33  This was achieved by sampling the assignment of CO2 profiles to GC3.05 PPE members one million times, and identifying the sample that 
maximised the determinant of the 16-dimensional correlation matrix of the 15 parameters and the set of CO2 outcomes at year 2100.

34  Extension of the GC3.05 PPE experiments to include carbon cycle perturbations in the UKESM1 model framework (see section 1.3) would be 
required to provide physical justification for such relationships.
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Figure 3.7 (left panel) shows the range of CO2 pathways in the 15 members (including STD) that passed the 
second filtering step in section 3.3f above). The right panel shows the associated concentrations in the year 
2099, compared against the posterior distribution obtained from Strand 1. The latter was derived using the 
same set of earth system model simulations and a similar observational constraint on historical CO2 
concentration, but accounted for the additional constraints and modelling evidence described in section 
235. The range of 857-1256 parts per million (ppm) essentially covers the full range of the Strand 1 
probability distribution (a 1-99% range of 896-1268 ppm), with six pathways above the median (1039 
ppm) and nine below. This shows reasonable consistency between the pathways and the pdf. The standard 
RCP8.5 concentration of 926 ppm lies near the low end of both distributions, indicating that the single 
pathway used in concentration-driven CMIP5 simulations represents a scenario of relatively weak carbon 
cycle feedback.

Figure 3.7. Posterior probability distribution (grey curve, right panel) from Strand 1, for atmospheric CO2 concentration (parts per million) in 2099, 
under carbon emissions prescribed by the RCP8.5 scenario. Green curve shows the corresponding prior distribution, which can be compared with 
the grey curve to see the impact on the latter of applying the Strand 1 observational constraints (section 2.2, Stage 2). Orange circles show 
corresponding concentrations from the CO2 pathways used to drive 14 of the 15 GC3.05-PPE members included in the set of 28 Strand 2 
projections. The red circle denotes the standard pathway used in concentration-driven RCP8.5 simulations. This pathway is used in the CMIP5-13 
projections included in Strand 2, as well as the GC3.05-PPE member with unperturbed parameter settings (STD). Left panel shows annual CO2 
values in the GC3.05-PPE members, in comparison with the time-dependent evolution of the Strand 1 probability distribution. The white line is the 
median of the latter, with grey shading showing the range between the 5% and 95% probability levels, which are plotted as black lines. 

35  It was not possible to use the probabilistic projections of CO2 from Strand 1 to provide the pathways for the GC3.05 PPE, because the 
development timelines for Strand 1 and 2 ran in parallel. 
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h. Choice of CMIP5 models to provide additional projections  

Of the 42 CMIP5 models used to provide concentration-driven simulations under the RCP8.5 scenario, 
eleven were not considered, due to insufficient availability of daily data for a core set of impacts-relevant 
variables (precipitation, and diurnal mean, maximum and minimum surface air temperature). The remaining 
31 models were screened using a combination of global and regional performance criteria. Those passing 
the screening stage were clustered into groups of models sharing similar error characteristics, and Strand 2 
members were then chosen by picking the best-performing model(s) in each group. McSweeney et al. 
(2018a) describe the selection procedure in detail, with a brief summary given below.

The global and regional performance criteria were drawn mainly from published literature, supplemented by 
additional diagnostics provided by McSweeney at al (op. cit.). Many of the available metrics were also used 
in the design of GC3.05-PPE. The global assessment considered variability in global and zonal averages of 
surface temperature, and worldwide patterns of SST bias. The regional assessment considered AMOC, SST 
errors in the North Atlantic, biases in climatological averages of 850hPa winds over the North Atlantic and 
Europe, and biases in surface air temperature over the UK and Europe. Errors in selected aspects of 
intraseasonal variability were also assessed, including track densities for North Atlantic storms (from 
McSweeney et al., 2015), blocking frequencies in the northern hemisphere (Christensen et al., 2013) and 
frequencies of weather types diagnosed from daily mean sea-level pressure fields (Perez et al., 2014). 

Models were excluded if:

1. One or more of the above variables was assessed as being so poorly simulated (for example, an absence 
of a clear prevailing south-westerly flow over the UK) that relevant future changes in regional climate 
could not usefully be diagnosed for impacts assessments.

2. Two or more aspects were assessed as possessing significant biases (for example a substantial bias in 
SSTs in the North Atlantic, or over a large remote region such as the Southern Ocean, or a failure to 
replicate observed zonal maxima in storm track density).

Three models were screened out using the first of the above thresholds, failing circulation-based criteria for 
Europe. Six more failed on the second threshold. The remaining 22 models were clustered into groups 
showing a maximum degree of commonality in their simulation errors. This exercise used the results of 
Sanderson et al. (2015a,b), who constructed a matrix of pairwise inter-model distances using a multivariate 
metric. This was developed from seasonal climatology errors in global spatial fields of surface temperature, 
precipitation, outgoing shortwave and longwave radiation at the top of the atmosphere, and latitude-height 
distributions of zonally averaged atmospheric temperature and relative humidity. 

Sanderson et al. found that pairs of models with similar biases in these emergent properties tend also to 
share components, confirming their metric as a useful way of identifying common structural assumptions. 
Picking models from each group ensures that a diversity of structural choices was sampled. Ten groups 
were found that contained at least one model that passed the screening. Two models were picked from 
two groups containing four eligible models, and one from the others. In groups requiring a choice, the best-
performing models were chosen. One eligible model (EC-EARTH) was not included in the Sanderson et al. 
near-neighbour analysis. This was included in the 13 models forming the final selection for Strand 2 (see 
Table 3.1). 
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Table 3.1. The 13 CMIP5 models selected to contribute simulations of historical and future climate to Strand 2, using simulations driven by 
prescribed future CO2 concentrations under the RCP8.5 scenario.

Modelling group Group acronym Model designation

Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC CMCC-CM

Beijing Climate Centre, China Meteorological 
Administration

BCC BCC-CSM1.1

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2

Commonwealth Scientific and Industrial Research 
Organization (CSIRO) and Bureau of Meteorology (BOM), 
Australia

CSIRO-BOM ACCESS1-3

Community Earth System Model Contributors NSF-DOE-NCAR CESM1-BGC

Centre National de Recherches Météorologiques / Centre 
Européen de Recherche et Formation Avancée en Calcul 
Scientifique

CNRM-CERFACS CNRM-CM5

EC-EARTH consortium ICHEM EC-EARTH

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2G

Met Office Hadley Centre MOHC HadGEM2-ES

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-MR

Max-Planck-Institut für Meteorologie MPI-M MPI-ESM-MR

Meteorological Research Institute MRI MRI-CGCM3

National Center for Atmospheric Research NCAR CCSM4

While diversity in historical simulation errors was used as an explicit criterion in the selection of CMIP5 
models, diversity in projected future changes was not. This was because further reductions in ensemble size 
would risk reducing the influence of the CMIP5 ensemble relative to the 15 GC3.05 members, which would 
be difficult to justify in the absence of a clear objective basis for allowing either GC3.05-PPE or the multi-
model ensemble to dominate the combined set of Strand 2 projections. Compared to the 31 CMIP5 models 
considered in the selection process, McSweeney et al (2018a) found that CMIP5-13 captured almost the 
full range of changes in GMST. For the UK region, CMIP5-13 also captured much of the full CMIP5 range of 
seasonal mean changes in temperature and precipitation. We note, however, that the exclusion of the 
poorest models does impact the range of regional projections by discounting the member with the lowest 
warming for the UK (INMCM4), and those with the largest temperature and precipitation increases (MIROC-
ESM and MIROC-ESM-CHEM).
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3.4. Evaluation of the strand 2 simulations

a.  Global performance 

Figure 3.8a-d shows global patterns of bias in surface air temperature and precipitation in DJF and JJA for 
1981-2000, relative to analyses of observations from ERA-Interim and the Global Precipitation Climatology 
Project (GPCP) (Table E.2). Median biases are shown to provide estimates of the systematic component of 
model error in the relevant ensemble, along with those of the best- and worst-performing members. Root-
mean-square error (RMSE) and global mean bias statistics are also provided, for all members.

 In DJF, median values of GC3.05-PPE show a significant cold bias over most of the northern hemisphere 
continental land mass (Fig. 3.8a), despite removal of members showing the worst cold biases over Europe 
(section 3.3f). All GC3.05-PPE members share this error, but the magnitude varies substantially across the 
ensemble (Fig. 3.8a). Contributing factors to the variation in bias include longwave radiative heating 
(insufficient in most members due to a negative bias in simulated cloud extents) and the strength of the 
average mid-latitude westerly winds, as well as aerosol forcing and AMOC strength discussed previously. 
These biases are likely to enhance future surface temperature changes in some of these regions, by 
increasing surface albedo feedbacks (see Fig. 3.22 and discussion in section 3.5).

The CMIP5-13 median for DJF also shows a cold bias in many northern hemisphere regions (Fig. 3.8b). In 
general, it is less pronounced than in GC3.05-PPE, with the exception of south-east Asia, Mexico and South-
Western US. In JJA, the perturbed parameter and multi-model ensembles both show a median warm bias 
over central parts of North America, South-Eastern Europe and parts of Central Asia. Over the oceans, 
median biases in CMIP5-13 are often somewhat larger than in GC3.05-PPE. This is likely to be due, at least 
in part, to the use in the latter of flux adjustments, and should not be taken as an indicator that GC3.05-
PPE necessarily simulates better than CMIP5-13 the processes giving rise to regional values of SST.
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Figure 3.8a. Twenty-year mean biases in surface air temperature (°C) simulated by the 15 members of GC3.05-PPE. Errors for DJF and JJA are 
calculated relative to ERA-Interim reanalyses of observations, for 1981-2000. Bottom panels show values of root-mean-square error (RMSE, left) 
and global average bias (right), calculated from the worldwide patterns. Orange dots show GC3.05-PPE members, blue dots depicting 
corresponding values for CMIP5-13 models (shown in Fig. 3.8b). STD is shown in red. Top row shows ensemble median biases for DJF (left) and JJA 
(right), second and third rows showing biases in the ensemble members with the lowest and highest RMSE values, respectively. 

www.metoffice.gov.uk


 Source: Met Office © Crown Copyright 2018www.metoffice.gov.uk Pg 59 of 191

Figure 3.8b. As Figure 3.8a, for CMIP5-13 models. Relevant global average bias and RMSE statistics are shown in the bottom row of Fig.3.8a.
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Figure 3.8c. As Figure 3.8a, for twenty-year mean biases in precipitation relative to GPCP observations (mm/day), simulated by the 15 GC3.05-PPE 
simulations. 
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Figure 3.8d. As Figure 3.8b, for twenty-year mean biases in precipitation relative to GPCP observations (mm/day), simulated by the CMIP5-13 
models. 
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In the Southern Ocean a majority of GC3.05-PPE members simulate a warm bias in SST (Fig. 3.6), as do 
most CMIP5-13 members. This bias is typical of CMIP5 models in general (Meijers, 2014), and is related to 
errors in the atmosphere-ocean net heat flux (Hyder et al., 2018). In most GC3.05-PPE members the 
average heat flux adjustment is negative in the Southern Ocean, acting to reduce the warm bias (Williams 
et al., 2018). The presence of residual warm biases in most GC3.05-PPE members may reflect non-linear 
effects of variability in SST on average surface heat fluxes. This is because SST variability was restricted in 
the calibration simulation used to calculate the flux adjustments (section 3.3e), but not in the transient 
simulations. In Antarctic circumpolar waters, median warm biases in surface air temperature are present in 
both ensembles. Reductions in sea-ice extent occur in all GC3.05-PPE members during 1900-2005, 
contributing to the bias in surface air temperature alongside increases in SST. Median biases in surface air 
temperature over the North Atlantic are restricted by the exclusion of simulations showing substantial cold 
biases (Fig. 3.6 and section 3.3f), and thus compare well with those in CMIP5-13.

The regional errors discussed above contribute to biases in global average surface air temperature, shown in 
Fig. 3.8a (bottom right panel) for each season and the annual mean. Ranges of bias in the global average are 
broadly similar in both ensembles, amounting typically to ~1.5°C. The ranges invariably encompass the 
observations, although all but one member of each ensemble shows a negative bias in DJF, due to the 
aforementioned cold biases in winter over the northern hemisphere continents.

Both ensembles share median biases associated with excessive off-equatorial precipitation in the tropical 
east Pacific Ocean, and south of the equator in the tropical Atlantic Ocean (Fig 3.8c,d), although the 
Atlantic bias is less pronounced in GC3.05-PPE. Other common biases include excessive precipitation in the 
western equatorial Indian Ocean, and too little in the south Asian summer monsoon. The GC3.05-PPE 
median shows too little precipitation over central and southern Europe in JJA, while CMIP5-13 has too little 
over north-east Brazil in both seasons.

Overall, RMSE values show a similar range of scores across perturbed parameter and multi-model ensemble 
members for surface air temperature (Fig. 3.8a). The identity of the worst performing GC3.05-PPE member 
is different in DJF and JJA. These show a widespread cold and warm bias, respectively. EC-EARTH has the 
largest RMSE values for both seasons in CMIP5-13, driven by a general cold bias in tropical and sub-tropical 
regions. For precipitation, several GC3.05-PPE members score better than any CMIP5-13 model in boreal 
winter and spring, while the range of scores is similar in boreal autumn. The GC3.05-PPE shows a somewhat 
wider range of scores in JJA, contributing both the best- and worst- performing members of the combined 
Strand 2 set. In GC3.05-PPE, the patterns of precipitation bias are similar in the best- and worst-performing 
members, being distinguished largely by different amplitudes of error (Fig 3.8c). Bias patterns in the best 
and worst CMIP5-13 members show somewhat greater variety (Fig. 3.8d), though most of the major 
features of the median bias pattern remain common to both. 
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Figure 3.9. Normalised root-mean-squared (r.m.s) errors in global, annual spatial fields of a variety of climate variables from the 28 Strand 2 
simulations, averaged over 1981-2000. Members of CMIP5-13 are named (see Table 3.1) and members of GC3.05-PPE are referred to by their 
numerical run identifiers. The STD member is 0000. The variable acronyms are listed in Table E.1, numbers representing atmospheric pressure 
levels. Verifying observational datasets (see Table E.2) are CERES (for rsut and rlut), ERA-Interim (cresw, crelw, cre, tas, ta200, hur200, ua200, 
va200, hur850, ua850, va850, za500) and HadSLP2 (psl). The observational climatologies cover 1981-2000 apart from CERES, for which 
2001-2005 is used because data for the full verification period do not exist. The scores are normalised by the r.m.s. error for the best-performing 
simulation for a given variable, which therefore possesses a value of 1.0. For some variables, more than one simulation has a value of 1.0, since 
values are recorded to one decimal place. The plot is presented as a “heatmap”, in which simulations with the highest normalised errors, and 
therefore the worst performance, are shown as the darkest shades of purple. Some entries are missing for EC-EARTH, due to unavailability of data.

In Figure 3.9 we provide a broader statistical picture of global model performance across the combined set 
of 28 Strand 2 simulations. This is derived from a set of variables similar to those used in the filtering of the 
GC3.05 parameter space in section 3.3. The evaluation is based on RMSE values for annual, global spatial 
fields for climatological averages for 1981-2000. We consider surface air temperature, precipitation, 
sea-level pressure, outgoing shortwave and longwave radiation at the top of the atmosphere, total, 
shortwave and longwave cloud radiative effect, 500hPa geopotential height, and atmospheric temperature, 
relative humidity and zonal and meridional wind components at the 850hPa and 200hPa pressure levels. 
The RMSE values are normalised by that of the best-performing simulation for the relevant variable, which 
therefore receives a normalised score of 1.0. High values indicate relatively poor performance, denoted by 
darker shading in the matrix of values.
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In general, different Strand 2 members provide the best levels of performance for different variables, and no 
single member stands out as clearly superior to the other simulations. The worst scores for individual 
variables (values of normalised RMSE exceeding 3.0) belong to CMIP5-13 members, with the exception of 
one score exceeding 3.0 in a GC3.05-PPE member for the 500hPa geopotential height field. Several CMIP5-
13 models also show poor scores for this variable, as well as for upper tropospheric temperature. For 
circulation variables, GC3.05-PPE members perform well in comparison to CMIP5-13 simulations. This is 
also the case for reflected shortwave radiation and total cloud radiative effect. However, the GC3.05-PPE 
scores for the longwave component of cloud radiative effect are typically worse in GC3.05-PPE: Nine 
members exceed a value of 1.6, compared to only one CMIP5-13 member. This is due to a widespread 
negative bias, present in most of the GC3.05-PPE members. These underestimates are generally offset by 
positive biases in the shortwave component, explaining the smaller errors seen in total cloud radiative 
effect. The ranges of scores for surface air temperature and precipitation show substantial overlap between 
the two ensembles, as also shown in Figs. 3.8a,c.  

Figure 3.10. Circles show standard deviations (hPa) of linearly detrended annual values of the winter North Atlantic Oscillation index of Hurrell 
(1995), calculated over 1900-2005. Values are shown for the 15 GC3.05-PPE members (orange, with STD in red), twelve of the CMIP5-13 
members (blue, excluding EC-EARTH as data for this model was only available from 1950), and observations (black, from the HadSLP2 dataset, 
Table E.2). The whiskers show 5th and 95th percentiles of the distribution of standard deviations obtained by calculating separate values for all 
consecutive 20 year periods between 1900 and 2005. This provides an estimate of variations in the strength of interannual NAO variability during 
each time series.
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The NAO is key driver of interannual variability in wind, temperature and precipitation over Europe in winter. 
Figure 3.10 compares simulated and observed values of the NAO index (Hurrell, 1995) against observations. 
Circles give the standard deviation of annual values over 1900-2005, and whiskers show the 5th-95th 
percentile spread of standard deviations from alternative 20-year periods within each time series. This 
spread measures the extent to which the strength of the NAO on the interannual time scale36 varies during 
the 20th century. All of the Strand 2 simulations overestimate the long-term average amplitude of NAO. The 
degree of overlap between the uncertainty ranges for the simulated and observed values is substantial for 
some Strand 2 members, partly because the ranges are generally larger in the simulations than in the 
observations. However, one GC3.05-PPE member and two CMIP5-13 members show no overlap, and are 
therefore significantly biased in their simulations of NAO.

In section 3.4b we show that intraseasonal variability of weather types related to the NAO compare quite 
well with observations (see Fig. 3.19 and related discussion). Therefore, the effects of biases in simulated 
characteristics of the NAO are likely to vary according to the time scales of interest in different impacts 
applications: Biases can be quite different on intraseasonal, interannual or interdecadal time scales, and will 
need to be evaluated on a case-by-case basis.  

A similar analysis was carried out for the Atlantic Multidecadal Oscillation (AMO) index (Trenberth and Shea, 
2006). The AMO is a cycle of multidecadal variability in North Atlantic SSTs that influences temperature 
and precipitation anomalies in many parts of the northern hemisphere. In its warm phase, it drives wet 
summers over northern Europe (including the UK), and hot, dry summers over southern Europe (Sutton and 
Dong, 2012). A majority of simulations simulate a long-term average AMO amplitude close to the observed 
value. However, six CMIP5-13 members simulate excessive AMO variability, and in one GC3.05-PPE 
member the variability is too weak.

36  While the spread metric in Fig. 3.10 shows uncertainties in the interannual variability of the NAO, it does not measure variability in the phase of 
the NAO on multidecadal time scales. 
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Figure 3.11. As Figure 3.10, for values of the Niño 3.4 Index (°C), a standard measure of the strength of El Niño events defined as the average SST 
anomaly for the region 5°N-5°S, 120-170°W (Trenberth, 1997). In this case, monthly anomalies of Niño 3.4 were linearly detrended, to provide 
12x105 values from which the standard deviation (circles) of each full time series was calculated. The 5th and 95th percentile whiskers show the 
range of standard deviations obtained by pooling the 240 monthly anomalies in each consecutive 20 year period between 1900 and 2005.

The strength of El Niño events is assessed in Fig. 3.11, using the standard deviation of monthly SST 
anomalies in the Niño 3.4 region of the equatorial Pacific Ocean (Trenberth, 1997). For the majority of 
simulations, the average amplitude for 1900-2005 lies within the distribution of observed amplitudes found 
for alternative 20-year periods in the historical record. However, for seven simulations this is not the case. 
CCSM4, CanESM2, CNRM-CM5 and three GC3.05-PPE members simulate a long-term amplitude that is 
too strong, while in MRI-CGCM3 it is too weak.

Figure 3.12 compares the observed record of annual variability and change in GMST against the Strand 2 
simulations, from 1900-2017. The model values are constructed to match as closely as possible the 
observed dataset (HadCRUT4, see Table E.2). This is done by blending SSTs and land surface air 
temperatures, and applying a time-varying mask to reflect the changing coverage of observations37. 
Estimates of simulated warming since about 1980 are typically reduced by ~0.2°C in such blended and 
masked estimates, compared to GMST values derived from a simple global average of surface air 
temperature values (Richardson et al., 2016).

37  The model data is regridded to the HadCRUT4 grid, using SST to regrid to ocean points, and 1.5m temperature to regrid to land points. Then, SST 
values are set to missing where sea ice is greater than 10%; for HadCRUT4, this was done using the sea ice from HadISST1 (see Table E.2) 
regridded to the HadCRUT4 grid. To match the HadCRUT4 coverage month by month, model values are set to missing at grid points where there 
are no observed values. Then a monthly climatology for Dec 1960 to Nov 1990 is estimated at each grid point, requiring at least 20 of the 30 
years to be present, otherwise the climatological value is set to missing. Monthly anomalies relative to 1961-90 are estimated by removing the 
relevant monthly climatology. Anomalies are set to missing in areas where there is no climatological value, which includes most of the Arctic, 
Southern Ocean, and Antarctica.  Seasonal means are calculated when at least two of the three months are present, and then all four seasonal 
means must be non-missing to make an annual mean. In Figure 3.12, each anomaly time series is re-centred by removing the average for the 
baseline period of 1901-50.
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Interannual variability in individual GC3.05-PPE and CMIP5-13 simulations (shown for the GC3.05-PPE 
members in Fig. 3.12) is qualitatively similar to observations. Also plotted in Fig. 3.12 is the control 
simulation for STD, obtained by extending its spin-up integration (see section 3.3e). This simulation (the 
magenta line labelled CTL_STD, blended and masked as described above37) provided an additional 
illustration of internal variability, and also of potential climate drift, which may explain the warming of 
~0.2°C seen in CTL_STD during the first 20 years (see section 3.3e).

After 1920, the longer-term changes in observations show a slight warming, followed by a period of slight 
cooling from ~1950-1980 and then a marked warming trend in recent decades. This was punctuated by a 
pause between 1998 and 2014, termed the “warming hiatus” (e.g. Trenberth, 2015). Periods of temporary 
cooling following major volcanic eruptions (notably Agung in 1963, El Chichon in 1981 and Mt Pinatubo in 
1991) are also evident. IPCC AR5 concluded that it is certain that global mean surface temperature has 
increased since the late 19th century, and extremely likely38 that human activities caused more than half of 
the warming between 1951 and 2010 (Stocker et al., 2013). 

All but one of the model simulations produce a significant warming by the end of the historical period. The 
exception is a GC3.05-PPE member that simulated an unrealistic cooling trend in northern hemisphere 
surface air temperature, but was retained because it did not fail any of the other screening criteria (section 
3.3f). By the 2010s, most GC3.05-PPE members simulate a warming similar to that of STD, and close to the 
observed warming. During the period 1960-2000 most GC3.05-PPE members simulate long-term average 
values (not shown) that are within the CMIP5-13 range, but at the lower end. These values are cooler than 
the baseline period (1901-1950 in Fig. 3.12) and in contrast to observations. This is likely to be due mainly 
to the effects of relatively strong cooling due to anthropogenic aerosol forcing, compared to the range given 
by AR5 (section 3.3d). 

38  Uncertainties in AR5 were assessed using likelihood statements based on probability ranges derived from statistical analysis and expert 
judgement (Stocker et al., 2013). Extremely likely, very likely and likely correspond to probabilities of at least 95%, 90% and 66%, respectively.
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Figure 3.12. Historical annual average anomalies relative to 1901-1950 of masked and blended global mean surface temperature from 
observations (HadCRUT4, black), and the Strand 2 simulations. Blue shading shows the range of values from 12 of the CMIP5-13 models (EC-
EARTH is omitted as data was not available prior to 1950). Values from the 15 GC3.05-PPE simulations are shown individually in red (STD) and 
orange (other members). The purple curve (STD_CTL) shows the control simulation of STD31, created by extending its spin-up simulation as 
described in section 3.3e. This shows a warming of ~0.2°C between 1900 and 1920, suggesting that climate drift may be at least partly 
responsible for the warming seen in STD during this period. Control simulations for other GC3.05-PPE simulations are not available. Observed global 
mean values are constructed from monthly values of SST over oceans, and surface air temperature over land, with time-varying gaps in data 
coverage. Model values are constructed to match the observed product as closely as possible37. 

The global average aerosol forcing (in climate models and observations alike), and its impact on historical 
changes in GMST, is the net result of multiple species, processes and interactions. Therefore, it should not be 
assumed that a simulation that matches the observed GMST record relatively well will necessarily 
represent specific aerosol processes better than a simulation which contains a larger bias in GMST. For 
example, Malavelle et al. (2017) used a large recent volcanic eruption in Iceland (Holuhraun, 2014-15) to 
study the ability of climate models to simulate aerosol effects on cloud properties. One of these 
experiments used GLOMAP-mode with standard parameter settings, embedded in a development version 
of GA7 (Walters et al., 2017), the atmospheric component of GC3.0. This model was therefore similar to 
STD in its atmosphere and aerosol configuration, and gave a realistic simulation of the radiative effects of 
aerosol-cloud interactions following the eruption. In contrast, the cloud impacts were substantially 
overestimated in a parallel experiment in which GLOMAP-mode was replaced by the simpler aerosol 
module included in HadGEM2-AO.    
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Despite the cautions explained above, the extent to which climate models replicate observed changes in 
GMST (and associated large-scale patterns of surface temperature) is a relevant test of their credibility as 
tools for projecting future changes. For example, we include such changes as one of a set of formal 
observational constraints in the probabilistic projections of Strand 1. However, the extent to which biases in 
historical changes are linked to errors in future responses is limited by several sources of uncertainty. These 
include:

• Historical forcing, particularly related to aerosols (e.g. Aldrin et al., 2012).

• The efficacy39 of different forcing agents in driving a surface temperature response: Shindell (2014) 
showed that aerosol and ozone changes are more effective than CO2 in driving a surface temperature 
response, implying that future changes in the relative importance of these agents may limit the 
usefulness of historical changes as a guide to the future. 

• Temporal dependence in the strength of climate feedbacks related to patterns of SST change, which 
may differ in the future from those observed since the 19th century (Gregory and Andrews, 2016).

• The role of ocean heat uptake in delaying the full response to previous changes in forcing  
(e.g. Appendix B).

• The role of internal variability in the observed record (Olson et al., 2013), allied to challenges in 
disentangling natural and anthropogenically-forced contributions to variability on multidecadal time 
scales (e.g. Booth et al., 2012). For example, if the warming hiatus was mainly due to internal variability, 
then we would expect the observations to show less warming than most of the simulations during the 
relevant period, and indeed the Strand 2 runs warm faster during 1998-2014.

In GC3.05-PPE, the simulated cooling between 1930-50 and 1970-90 is found to be uncorrelated with 
projected future warming trends beyond 2050. This is because the model parameters that control the 
strength of the historical cooling (which belong to the aerosol component) are not important drivers of the 
long-term future warming. This is not surprising, since greenhouse gas concentrations in the RCP8.5 
scenario increase steadily during the 21st century (e.g. Fig. 3.7), whereas emissions of aerosol precursors 
reduce substantially40. Therefore, the historical aerosol-driven biases in Fig. 3.12 may not be informative 
about the credibility of projected future changes on the centennial time scale. For example, the strong 
aerosol cooling may have masked the response to greenhouse gas forcing during the 20th century, but such 
masking would reduce substantially during the 21st century, as aerosol emissions are assumed to reduce in 
the RCP8.5 scenario.

However, the mid-20th century cooling may be more informative regarding near-term future GMST changes, 
than it is about longer-term levels of warming. Assuming that the historical aerosol forcing in GC3.05-PPE is 
too strong in most members, it also follows that the effects of future reductions in aerosol forcing, which 
may be expected to enhance projected warming trends during the next few decades (Raes and Seinfeld, 
2009), are likely to be overestimated.

39  Efficacy is a measure of how effectively radiative forcing from a given driver changes the equilibrium global mean surface temperature, compared 
to an equivalent radiative forcing from CO2 that has an efficacy of 1.

40  For example, anthropogenic sulphur dioxide emissions in the RCP8.5 scenario reduce from 114 Teragrams (Tg) per year in 2005, to 52 TgSO2/yr 
by 2050 and 26 TgSO2/yr by 2100.
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Overall, the assessment of large-scale characteristics presented above provides support for use of the 
Strand 2 simulations in impacts assessments. However, the presence of member-specific biases in aspects 
of regional climatology, or simulations of historical climate change, underlines the importance of considering 
bias correction strategies (Fung, 2018). In such approaches, statistical postprocessing techniques such as 
simple adjustments of climate averages or quantile-mapping of daily or seasonal distributions (e.g. Piani et 
al., 2010) can be calibrated using differences between simulations and observations of historical climate, 
and then applied to future projections. However, it is important to select an appropriate technique on an 
application-specific basis, and consider carefully its impact and limitations. Use of bias corrections cannot 
remove a lack of credibility that may be associated with large model errors, and is only recommended when 
relevant earth system phenomena are captured reasonably well by the chosen set of climate models or 
model variants. Such phenomena might include the location of and variability in large scale circulation 
features affecting the region of interest, spatiotemporal characteristics of associated regional responses in 
variables such as precipitation and surface temperature, and sufficient resolution of local climate change 
feedbacks at the spatial scale of the relevant application (Maraun et al., 2017).

b.  Regional performance for UK and Europe 

Figures 3.13a and b show ensemble-mean biases for European surface air temperature and precipitation, 
during 1981-2000. Verifying observations are taken from E-OBS datasets (Table E.2). There is a widespread 
cold bias for GC3.05-PPE in winter (Fig. 3.13a), the largest errors (of -5 to -10ºC) occurring mainly over 
Scandinavia, with values in the range 0 to -3 ºC typical over Southern, Western and Central Europe. These 
errors are the regional manifestation of the general cold bias found over northern hemisphere continents in 
DJF. Drivers of the ensemble-mean bias include the strong aerosol forcing and negative biases in long-wave 
cloud radiative forcing found in most GC3.05-PPE members (Fig. 3.8 and related discussion). CMIP5-13 also 
shows an ensemble-mean cold bias over Scandinavia. However, it is considerably smaller than that of 
GC3.05-PPE, and CMIP5-13 shows a modest warm bias over most of Central, Southern and Eastern 
Europe. In DJF, European RMSE values for most GC3.05-PPE members (not shown in Fig. 3.13a) are above 
the range for CMIP5-13 members. However, this is not the case in other seasons. In summer, both Strand 2 
ensembles show warm biases in the range 2-3ºC over parts of South-East Europe, extending northward to 
the Baltic States in CMIP5-13. A cold bias over Sweden and Finland is also common to both ensembles, 
however regional biases are smaller than ±2ºC in most locations. 

Ensemble-mean precipitation errors reveal widespread wet biases in both Strand 2 ensembles in winter 
(Fig. 3.13b). The largest errors exceed 100% of the observed 1981-2000 value, errors of this magnitude 
being more prevalent in CMIP5-13 than in GC3.05-PPE. Wet biases exceed 40% in many regions, and are 
therefore comparable to, or larger than, typical changes expected during the 21st century (e.g. Jacob et al., 
2014). 
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Figure 3.13a. Ensemble-mean biases in climatological averages of surface air temperature (ºC) over Europe, for 1981-2000, in winter (left) and 
summer (right), for the Strand 2 and 3 simulations. CMIP5-13 multi-model ensemble (top row), GC3.05-PPE (middle row), RCM-PPE (bottom row). 
Observed values are taken from the E-OBS dataset (Table E.2).
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Figure 3.13b. As Fig. 3.13a, for precipitation biases, expressed as a percentage of the observed value.

Another consideration is that rain gauge observations underestimate the true level of observed 
precipitation due to undercatch associated with multiple factors, including the fraction of precipitation 
falling as snow, wind speeds and the exposure of the gauge. Biases vary with season and location, and are 
largest in winter, and at high elevations (e.g. Frei et al., 2003). Some authors (Kotlarski et al., 2014; Rajczak 
and Schär, 2017) increase observed values by 20% to estimate the effects of undercatch. We do not apply 
such adjustments in this report. However, we note that measurement biases provide an important caveat 
to our estimates of systematic biases in simulated precipitation (Figs. 3.13b, 3.14b, 3.15, and 4.1-4.6), and 
represent an additional source of uncertainty in the context of bias correction methods. For example, the 
GPCP dataset (used for global evaluation in Fig. 3.8c,d) shows larger precipitation values than E-OBS over 
Europe, apart from in high elevation regions. Over parts of Northern and Eastern Europe, the differences 
between the two verifying datasets in winter (typically ~40%) are large enough to change the sign of the 
diagnosed biases, which are dry relative to GPCP in Fig. 3.8c, but wet relative to E-OBS in Fig. 3.13b.  

www.metoffice.gov.uk


 Source: Met Office © Crown Copyright 2018www.metoffice.gov.uk Pg 73 of 191

In Fig. 3.13b dry biases are limited in extent, but occur in some western coastal regions in CMIP5-13, and in 
islands and some coastal fringes of the Mediterranean Sea (both Strand 2 ensembles). In summer, CMIP5-
13 shows large wet biases (100% or greater) over the Iberian Peninsula, Southern Italy, the Balkans, Greece 
and Turkey. Several CMIP5-13 models show substantial wet biases over the Iberian Peninsula, so the 
ensemble-mean bias is not due to the influence of outliers. Note, however, that since summer precipitation 
levels are typically low in these regions (e.g. below 0.5mm/day in Southern Spain and Portugal, in E-OBS), 
the large percentage biases do not represent especially large errors in absolute precipitation amounts. 

The GPCP dataset shows 30-50% more summer rainfall than E-OBS in this region, underlining again the 
verification uncertainties discussed above. GC3.05-PPE produces a dry bias of varying magnitude over 
most of Central, Southern and Eastern Europe, reaching 60-80% in South-Eastern parts of the domain. 
Both ensembles simulate a wet bias over much of Scandinavia, the largest values (>40%) occurring over the 
Norwegian mountains. 

The errors discussed above, particularly the larger cold and wet biases found in winter, motivates 
consideration of bias-correction techniques (Fung, 2018). This would apply particularly in applications 
sensitive to absolute levels of future surface temperature or precipitation. However, use of bias correction 
methods is subject to development of understanding of the sources of model error, particularly in regions 
where these are large (see Maraun et al. (2017) and discussion in section 3.4a). In practice, decisions on 
whether or how to perform bias corrections will be application-specific, and it may also be important to 
consider whether a subset of the Strand 2 projections may need to be excluded from some studies, given 
that biases in particular variables vary between the different simulations.
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Figure 3.14a shows ensemble-mean biases in the standard deviation of seasonal average surface air 
temperature during 1981-2000, a basic measure of interannual variability. During this period, the CMIP5-13 
error pattern reveals smaller than observed variability over most of Europe in winter, the largest errors of 
1.0ºC or more occurring over Scandinavia. In this region GC3.05-PPE also simulates less variability than is 
seen in observations, although biases are smaller than in CMIP5-13. The negative biases over Northern 
Europe occur despite a systematic overestimation in both ensembles of the strength of the NAO (Fig. 3.10), 
suggesting that other aspects of circulation variability or thermodynamic processes may play important 
roles in the bias. In summer, ensemble-mean biases show greater than observed variability in most regions, 
in both GC3.05-PPE and CMIP5-13. The GC3.05-PPE results show larger biases (0.6 ºC or more) over much 
of Central Europe, while CMIP5-13 has larger biases over Northern Europe and Spain. 

Figure 3.14a. Ensemble-mean biases in the interannual variability of surface air temperature (ºC) over Europe during 1981-2000, in winter (left) 
and summer (right), for the Strand 2 and 3 simulations. Here, interannual variability is defined as the standard deviation of seasonal averages. 
CMIP5-13 multi-model ensemble (top row), GC3.05-PPE (middle row), RCM-PPE (bottom row). Observed variability is calculated from the E-OBS 
dataset.
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Biases in interannual variability of precipitation, expressed as a percentage of observed variability, are 
shown in Fig. 3.14b. The CMIP5-13 ensemble mean underestimates observed variability by 40% in some 
coastal regions of Western Europe (despite the strong NAO variability noted above), including parts of 
Ireland and Scotland. Here, biases in GC3.05-PPE are smaller, however both ensembles show excessive 
variability across much of Central and Eastern Europe. In summer, ensemble-mean variability in CMIP5-13 is 
40% or more too small over much of North-Western Europe, whereas GC3.05-PPE shows a balance of 
positive and negative regional biases. Both ensembles share a positive bias over Germany, while biases over 
the Iberian Peninsula are positive in CMIP5-13 and negative in GC3.05-PPE. The errors in variability shown 
in Figs. 3.14a,b imply that bias correction techniques that account for errors in climate variability (e.g. Ho et 
al., 2012), as well as the climatological mean state, may be appropriate in some applications (see Fung, 
2018). 

Figure 3.14b. As Fig. 3.14a, for biases in the interannual variability of precipitation, expressed as a percentage of the observed value.
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Seasonal cycles of UK average surface air temperature and precipitation are shown in Figure 3.15 (left 
panels). While most GC3.05-PPE members show a cold bias in winter, none exceeds -2ºC, despite the 
larger biases seen in Northern Europe. During summer, biases in GC3.05-PPE members are relatively small, 
and are distributed around the two observed estimates provided (from E-OBS and the National Climate 
Information Centre (NCIC, Perry et al., 2009)). One CMIP5-13 model (CMCC-CM) shows a larger winter cold 
bias than any GC3.05-PPE member, and also shows the largest cool bias during summer and autumn. In 
most months of the year the largest warm biases, typically ~2 ºC, also come from CMIP5-13 members. 

Figure 3.15. Left panels show seasonal cycles of UK average surface air temperature (ºC, top) and precipitation (mm/day, bottom) for 1981-2000. 
Right panels show UK averages of local values of interannual variability (defined as the standard deviation of seasonal averages during 1981-2000), 
for surface air temperature (top) and precipitation (bottom). Members of CMIP5-13 and GC3.05-PPE are shown in blue and orange respectively, 
with STD in red. Observations from the National Climate Information Centre (NCIC) and E-OBS datasets (Table E.2) are shown as dashed and solid 

black lines, respectively. All datasets were regridded to the GC3.05 (~60km) grid, prior to calculation of these diagnostics.
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Average precipitation is slightly higher in the NCIC dataset compared with E-OBS, the largest differences 
(approaching 0.5 mm/day) occurring in winter. While the differences provide an estimate of observational 
uncertainty, the NCIC values are likely to be more reliable. This is because they are based on a much denser 
network of UK stations (approximately 3000) compared to the 138 used in E-OBS, which gives lower values 
in high-elevation regions, particularly in south-west England, Wales, the Lake District and North-East 
Scotland (Hofstra et al., 2009). The spread of GC3.05-PPE values encompasses NCIC in all months except 
September and October, in which all members show a dry bias (typical values ~ -1 mm/day). Although most 
members show a wet bias relative to E-OBS, this is not the case relative to NCIC. During extended winter 
(October-March), one subset of five CMIP5-13 models shows positive biases, while a second subset of six 
members shows significant dry biases. In summer, one CMIP5-13 model (BCC-CSM1.1) shows a substantial 
dry bias. 

Seasonal cycles of interannual variability are shown in the right panels of Fig. 3.15. These are UK averages of 
local values on the ~60km grid of GC3.05, to which all data was regridded prior to calculation of the 
diagnostics. Both Strand 2 ensembles show biases distributed around the observations for temperature 
variability, although several CMIP5-13 models show negative biases of 0.5ºC or more during extended 
winter. For precipitation, both ensembles simulate too little variability, especially in comparison to NCIC 
which gives slightly higher values than E-OBS. However, biases are typically smaller in GC3.05-PPE 
members. Errors in CMIP5-13 members often exceed 0.5 mm/day, with the exception of May-July. 

In addition to surface temperature and precipitation, the credibility of simulated hydrological characteristics 
of the land surface is an important consideration for climate impact assessments, particularly in relation to 
drought and agriculture. As an example, Figure 3.16 (lower left panel) shows annual cycles of soil moisture 
in the GC3.05-PPE simulations41. We consider soil moisture in the top 1m of soil, as this determines the 
level of water stress for vegetation with shallow roots (such as grass), whereas vegetation with deeper roots 
(such as trees) is rarely substantially water-stressed in the UK. Maximum soil moisture values occur in 
February or March, following accumulation of water during autumn and winter when precipitation exceeds 
evaporation. Minima occur in August or September, following depletion during spring and summer due to 
reduced precipitation and higher evaporation. Members of GC3.05-PPE show a range of values (typically 
~0.15m for any given month), with a high degree of persistence through the annual cycle: members with 
relatively high or low soil moisture in winter also have relatively high or low values in summer. Biases in 
surface air temperature also tend to persist through the year (Fig. 3.15), however there is no clear 
relationship between these and the variations in soil moisture. Other potential sources of the cross-
ensemble differences in soil moisture include variations in surface water fluxes, and impacts of parameter 
perturbations in the land surface component of GC3.05 (Table D.1). 

41  Corresponding results are not shown for CMIP5-13 simulations, as equivalent soil moisture diagnostics are difficult to calculate because different 
climate models represent the vertical distribution of soil moisture in different ways. Observational estimates are not given, because: (a) datasets 
made from in-situ measurements do not possess sufficiently dense spatial coverage; (b) remote sensing methods are only able to provide an 
estimate of surface (skin) soil moisture (Seneviratne et al. 2010), whereas depth-integrated values including the root-zone are needed to assess 
levels of water accessible to plants.  
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Figure 3.16. Annual cycles of spatial averages of the soil moisture stress factor in the top 1m of soil, for England (top left) and Scotland (centre 
left). Results are climatological averages over 1981-2000, shown for members of GC3.05-PPE with STD in red. This factor is a diagnostic (β) in the 
land surface component of GC3.05 (see Best et al., 2011). β=1 indicates soil moisture at or above a critical value at which no restriction is placed on 
transpiration from vegetated surfaces; β<1 indicates limitations in moisture availability that result in reductions in evaporation from both vegetated 
and bare soil surfaces; β=0 indicates root-zone soil moisture at or below a wilting point at which there is no water available to sustain plants. 
Bottom left panel shows member-specific annual cycles for England of average soil moisture (m) contained in the top 1m of soil. The map shows 
the ensemble-mean stress factor during September, at the driest point in the annual cycle.   

The top and centre left panels in Fig. 3.16 show seasonal cycles of a soil moisture stress factor (β, see Best 
et al., 2011), for England and Scotland. In the GC3.05 land surface scheme, this measures the degree of 
restriction placed on evapotranspiration from vegetated surfaces, as soil moisture drops below a prescribed 
critical value corresponding to β=1. In Scotland, average monthly values never fall below 0.9, indicating no 
significant water stress. In England, average values remain at 0.8 or higher throughout the annual cycle in 
some ensemble members, also indicative of limited water stress. However, other members simulate higher 
levels of stress (β in the range 0.5-0.8) during the summer months, demonstrating a degree of moisture 
restriction during April-September. 

By the end of summer, most parts of the UK experience some level of plant stress in the GC3.05 
simulations (Fig. 3.16, right panel). The only exceptions are North-Western Scotland and parts of Northern 
Ireland. The lowest levels of water availability are found in South-East England, although the ensemble-
mean climatological values shown in Fig. 3.16 remain well above zero, the level at which no moisture is 
available to plants. Lower values of β (occasionally close to zero) do occur in individual seasons during the 
1981-2000 period of the GC3.05-PPE simulations. These correspond, for example, to occasional summers 
in the observed climate during which grass turns brown and dies in parts of the South of England. 
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Figure 3.17. Density of winter storm tracks in the North Atlantic/Europe sector averaged over 1981-2000. Shading denotes intervals of two tracks 
per 106km2 per month, with values of 8, 12 and 16 contoured. These extra-tropical cyclone tracks are diagnosed from 6 hourly fields of relative 
vorticity at 850hPa using the methodology of Hodges et al. (2011), who provided the results from ERA-Interim shown in the top panel. Middle and 
lower panels show ensemble-mean values for GC3.05-PPE and ten of the CMIP5-13 members for which the required data was available. CMIP5 
track data was provided by Zappa et al. (2013).

Extra-tropical cyclones are a key weather phenomenon that bring high winds, precipitation extremes and 
tidal surges to the UK. Fig. 3.17 compares the winter storm track density in observations against ensemble 
averages from GC3.05-PPE and ten members of CMIP5-13, noting that the required data (6 hourly values 
of relative vorticity at 850hPa) were not available for the other three models. The GC3.05-PPE ensemble-
mean verifies quite well in general. In the core of the North Atlantic storm track, the locations of the 
regional maxima in track density to the south of Greenland, and over Nova Scotia and Newfoundland, are 
captured. The ensemble-mean intensities are underestimated somewhat, especially in the latter case, and 
the number of storms in the southern fork of the track are underestimated to the west of the UK, although 
not over the UK itself. The extension of the southern fork across the Baltic Sea and into Southern 
Scandinavia is represented, although the region of enhanced storm densities is located further west than in 
observations. The location, strength and shape characteristics of the Mediterranean storm track are also 
simulated quite accurately. 
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The CMIP5 ensemble mean also captures the main core of the North Atlantic track. The maximum south of 
Greenland is weaker than in observations or GC3.05-PPE, and the observed extension to the north-east of 
Iceland is missing. However, the maximum over Nova Scotia and Newfoundland, and the southern fork, is 
captured quite well, with more storms to the south of Iceland than in GC3.05-PPE. However, the number of 
storms tracking across the UK and into Europe is overestimated. The position and orientation of the 
Mediterranean track is also replicated in the CMIP5 ensemble mean, but its intensity is underestimated. 
Seasonal RMSE statistics (Fig. 3.18) invariably show a larger spread of errors for the ten CMIP5-13 members 
in comparison to GC3.05-PPE members. Several CMIP5 members score worse than any GC3.05-PPE 
member, in each of the four seasons. One model (BCC-CSM1.1) shows RMSE values considerably higher 
than the other simulations in winter, spring and autumn. This is because the storm track is shifted south, 
and is too zonal, with too many storms moving across the UK and western Europe. Errors in most of the 
other CMIP5 members are qualitatively similar, but the size of the bias in BCC-CSM1.1 is larger.

Figure 3.18. Root-mean square errors in simulations of average storm track density for 1981-2000, for winter, spring, summer and autumn. These 
are calculated as in Fig. 3.17, for the North Atlantic domain of 30-75ºN, 50ºW-5ºE. Blue and orange dots show ten members of CMIP5-13 and 14 
GC3.05 members respectively, with STD in red. Units are tracks per 106km2 per month. 

Intra-seasonal variability can also be evaluated through assessment of weather types (WTs) that capture 
characteristic circulation patterns associated with different wind flows, or phenomena such as intense low 
pressure systems or blocking anticyclones. Neal et al. (2016) identify a set of eight WTs for the North 
Atlantic/Europe sector, based on a classification scheme developed using historical mean sea-level pressure 
(MSLP) data. Figure 3.19 (top panels) show the two leading types (WT1 and WT2), which correspond to the 
negative and positive phases of the NAO. WT1 is associated with a high pressure anomaly over Iceland, and 
a reduction in the strength of the westerly flow or reversal to easterly flow conditions. WT2 provides 
enhanced westerlies associated with a strengthened meridional pressure gradient. During 1900-1999, the 
observed daily circulation during winter is closest to WT1 on 22% of days, and WT2 on 21% of days. There 
is substantial interannual variability in both cases (Fig 3.19, lower panels), the number of observed days 
varying between zero (or close to zero for WT2) and ~60%.
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Figure 3.19. Upper panels show observed anomalies (hPa) in mean sea-level pressure (MSLP) relating to daily weather types (WT) 1 and 2 of the 
eight-pattern classification of Neal et al (2016). The observed patterns are generated from the EMULATE (EMSLP) dataset (Ansell et al., 2006), 
based on daily fields from 1900-99. The anomalies are calculated relative to a long-term annual mean climatology from 1850-2003. WT1 and 2 
correspond respectively to the negative and positive phases of the NAO. Lower panels show the percentage of days during December to February 
assigned to WT1 (left) and WT2 (right) during 1900-2100 in members of GC3.05-PPE (orange), and during 1951-2100 in nine members of 
CMIP5-13 (blue) for which daily weather typing is available. The thicker, darker lines show ensemble-mean values. Black line shows observed 
historical values from EMSLP.

The lower panels of Fig. 3.19 also show time series of occurrence rates from the Strand 2 simulations, from 
1900-2100 in the case of GC3.05-PPE members, and from 1951-2100 for CMIP5-13 (noting that weather 
typing data was only available for nine members of the latter, and was not available prior to 1951). During 
the historical period, the long-term average rates from each ensemble lie close to observations42, and the 
values for individual seasons explore similar ranges to those found in the real world. The model time series 
show a few examples where simulated occurrences exceed the maximum observed value. However, this is 
not surprising, given the availability of a larger sample of seasonal values obtained by pooling multiple 
simulations. These results show that the intraseasonal variability in NAO-related circulation patterns 
corresponds quite well with observations. However, the long-term average of interannual variability in the 
NAO index is lower in observations than in the Strand 2 simulations, with the bias varying from member to 
member (see Fig 3.10 and discussion in section 3.4a). The future projections of WT1 and WT2 frequencies 
are discussed in section 5.1.

42 Ensemble-mean values for GC3.05-PPE are 24.2% for WT1 and 21.0% for WT2.
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3.5. Future global changes in the strand 2 projections

Figure 3.20 shows annual anomalies in GMST, simulated by GC3.05-PPE and CMIP5-13 members for the 
RCP8.5 scenario. These are compared with the probabilistic projections (see also Fig. 2.4a and discussion in 
section 2.3) in order to provide context, and illustrate how the Strand 1 and 2 products depend on their 
underlying modelling systems and methodologies.

The projections consist of full global averages of surface air temperature from 1900-2100. This contrasts 
with Fig. 3.12, which shows a blended SST and land air temperature product for the historical period, 
masked for consistency with the HadCRUT4 dataset. The observations in Fig. 3.20 are from an adjusted 
version (Cowtan and Way 2014, updated), in which regions of missing SST and air temperature data are 
filled in, using a kriging technique based on covariances derived from HadCRUT4 data. In comparison to 
HadCRUT4 this dataset gives slightly warmer estimates of global temperature beyond 2005, due mainly to 
filling of coverage gaps in the Arctic Ocean. It is more consistent with the projected values in Fig. 3.20, with 
the caveat that the Cowtan and Way dataset uses SSTs over open ocean regions, whereas the projection 
outputs use marine air temperatures. The use in Fig. 3.20 of the standard UKCP18 baseline (1981-2000) 
masks the cool bias found in the historical response of the GC3.05-PPE during this period (section 3.4a). 
This is seen more clearly in Fig. 3.12, in which a 1901-1950 baseline is used. In Fig. 3.20, the effects of this 
cooling appear as a warm shift in the GC3.05-PPE anomalies during 1900 to ~1960, compared to 
observations. During 1930-60, the CMIP5-13 ensemble mean shows a slight cool bias. Between 2000 and 
2017 the observations generally lie below the ensemble-means of both GC3.05-PPE and CMIP5-13. 

Figure 3.20. Historical and future changes in annual GMST from 1990-2100, relative to 1981-2000, from Strands 1 and 2 of UKCP18. Future 
changes are based on the RCP8.5 emissions scenario, applied in the projections beyond 2005. The median of the probabilistic projections is the 
white line, and shades of grey show the 5, 10, 25, 75, 90 and 95% probability levels. Orange lines (with STD in red) show members of GC3.05-PPE, 
and blue lines show CMIP5-13 projections. The black curve shows observations from Cowtan and Way (2014, updated). The model projections 
consist of full global averages of surface air temperature. The observations are derived from HadCRUT4, using a kriging technique to fill in missing 
SST values, and surface air temperature values over land and sea-ice. This improves consistency between the observed and modelled estimates, 
subject to the caveat that the observations use SSTs rather than marine air temperatures over the open oceans. Note: In Fig. 3.12 modelled GMST 
values are constructed differently, by blending and masking SST and surface air temperature in order to facilitate verification against the 
unmodified HadCRUT4 dataset. 
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This may reflect the warming hiatus, to which climate variability on decadal time scales is likely to have 
made a significant contribution (e.g. Dai et al., 2015). In GC3.05-PPE, another contribution may arise from 
warming due to the reduction in global sulphur dioxide emissions after 1980, given the strong aerosol 
forcing simulated in the ensemble (sections 3.3d and 3.4a). However, the observations remain fairly close to 
the median of the probabilistic projections during this period. Overall, the observations lie within the 
uncertainty ranges of the Strand 1 probability distributions, GC3.05-PPE and CMIP5-13 throughout the 
historical period. 

The Strand 1 projections provide a range of future outcomes with steadily increasing uncertainty. This leads 
to a median warming exceeding 4°C by the 2090s, accompanied by a 10-90% range of approximately 
3-5.5°C during this decade. The combined set of Strand 2 projections samples the upper 75% of the Strand 
1 range throughout the 21st century. Beyond 2050, GC3.05-PPE consistently shows three or four outcomes 
above the 95% probability level of the Strand 1 projections, although these do not exceed the 99% 
probability level (not shown in Fig. 3.20). The ranges of change explored by GC3.05-PPE (orange lines) and 
CMIP5-13 (blue lines) show a clear and increasing separation through the future period, with most of the 
GC3.05-PPE members lying above the envelope of CMIP5-13 outcomes beyond 2050. CMIP5-13 shows a 
broader range of changes than GC3.05-PPE, but their combined range of outcomes is substantially wider 
than that of either ensemble in isolation.

However, only a few Strand 2 simulations, all from CMIP5-13, provide future outcomes below the median of 
the Strand 1 projections. After 2060, no Strand 2 simulation consistently populates the lowest 10% of the 
Strand 1 distribution. This demonstrates that Strand 2, despite possessing substantial diversity in GMST 
projections, does not capture all plausible outcomes for future GMST. For some international impacts 
assessments, it may be important to consider the benefits of outcomes consistent with lower levels of 
global warming than those provided in Strand 2. Strand 1 can be used to inform such studies, for example 
by use of scaling methods to consider regional temperature changes below the lower end of the Strand 2 
envelope. 

For the RCP8.5 scenario, AR5 assessed a 5-95% probability range13 of 2.6-4.8°C for warming of GMST for 
2081-2100 relative to 1986-2005 (Table 2.2). This was derived from CMIP5 simulations using the standard 
RCP8.5 CO2 concentration pathway (red dot in Fig. 3.7), by assuming a Gaussian distribution of responses 
(Collins et al., 2013). The corresponding 5-95% probability range from Strand 1 is 2.6-5.5°C (Table 2.2), 
based on emissions-driven projections accounting for uncertainties in carbon cycle feedbacks. As noted in 
section 2.3, the upper limit in emissions-driven RCP8.5 projections derived from UKCP09 was reduced by 
0.5°C when they were repeated as concentration-driven projections using the standard RCP8.5 pathway 
(Humphrey and Murphy, 2016). In Strand 2, the (CMIP5-13) projection with the smallest warming gives a 
response of 2.7°C for 2081-2100 relative to 1986-2005, while the largest warming of 5.9°C is provided by 
one of the GC3.05-PPE projections. In the latter simulation, the prescribed CO2 concentration reaches 1123 
ppm by 2100, compared with 931ppm in the standard concentration pathway. 

The GC3.05-PPE projections of future GMST are distributed around a high level of ensemble-mean warming 
that lies close to the 90% probability level of Strand 1. The range of CO2 profiles used to drive GC3.05-PPE 
members lies mainly above the standard RCP8.5 pathway (Fig 3.7). This is one factor that contributes to 
the higher level of ensemble-mean warming in GC3.05-PPE relative to CMIP5-13. The spread of outcomes 
in GC3.05-PPE reaches ~2°C by 2100, but is smaller, as noted above, than the spread in CMIP5-13 changes. 
The CMIP5-13 spread is driven entirely by uncertainty in physical climate feedbacks and ocean heat 
uptake, since the simulations all use the standard RCP8.5 CO2 concentration profile (section 1.4). In 
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GC3.05-PPE, the range of CO2 pathways contributes about 60%43 to the variance of warming rates 
between 2050 and 2100, suggesting that the spread in global climate feedbacks sampled in the ensemble 
may be relatively narrow.

The sensitivity of GMST to changes in greenhouse gas forcing in a climate model is typically characterised 
by the equilibrium climate sensitivity (ECS) and the transient climate response (TCR). ECS is defined as the 
equilibrium response to a doubling of atmospheric CO2 concentration, and is usually estimated from an 
idealised simulation in which CO2 is either doubled or quadrupled, and then run for 150 years (e.g. Andrews 
et al., 2012). TCR is defined as the change in GMST at the time of doubling in a simulation in which CO2 
increases by 1% per year. At the time of production of this report, the idealised simulations required to 
calculate ECS and TCR for GC3.05-PPE members are not available. In AR5, IPCC assessed ECS to have a 
likely38 range of 1.5-4.5°C (Collins et al., 2013), and also judged that there is a small probability (of up to 
10%) that ECS exceeds 6°C.  The levels of 21st century warming simulated for the RCP8.5 scenario suggest 
that most of the GC3.05-PPE members are likely to possess ECS values above 4.5°C. 

Figure 3.21. Changes in cloud radiative effect per unit change in global mean surface temperature (nCRE, in Wm-2K-1), in the Strand 2 simulations. 
Top row shows ensemble mean changes from GC3.05-PPE (left) and CMIP5-13 (right), excluding EC-EARTH. Bottom row shows the standard 
deviation of the changes across ensemble members. Values are calculated by linearly regressing local annual changes in CRE against GMST in each 
member of the relevant ensemble, from 1990-2100. This provides an estimate of total cloud feedback in response to the applied time-dependent 
changes in radiative forcing, including the effects of both rapid adjustments to changes in forcing from year to year, and longer-term feedbacks 
accounting for slower responses to accumulated changes in forcing. The former arises from climate system components with relatively little 
thermal inertia (atmosphere and land surface), while the latter accounts for changes in the oceans and sea-ice on decadal and longer time scales27. 

43  This estimate is derived from the squared correlation across GC3.05-PPE members between the logarithm of the prescribed CO2 concentration 
in 2100 (used because the relationship between concentration and radiative forcing is logarithmic) and the linear trend in simulated warming of 
GMST between 2050 and 2100.
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Differences in ECS between models arise from differences in their simulations of contributions to global 
climate feedback arising from changes in water vapour, the temperature lapse rate in the atmosphere, 
cloud and surface albedo (e.g. Bony et al., 2006). Uncertainty in cloud feedbacks provides the largest 
contribution to the spread of global feedbacks, in both PPEs (e.g. Webb et al., 2006) and multi-model 
ensembles (e.g. Vial et al., 2013). Figure 3.21 (upper left panel) shows the ensemble-mean change in annual 
cloud radiative effect in GC3.05-PPE, calculated per unit rise in GMST. This metric, hereafter nCRE, provides 
an estimate44 of total cloud feedback in response to the changes in radiative forcing during 1900-2100. It 
incorporates contributions from both rapid adjustments of the land surface and atmosphere on a time scale 
of ~1 year (e.g. Andrews and Ringer, 2014), and slower feedbacks accounting for the response of SSTs and 
sea-ice extents. The pattern shows strong positive changes in many parts of the world, in particular over 
many non-polar oceanic regions. This includes tropical regions subject to persistent low level clouds in the 
North and South Pacific and South Atlantic oceans, and also many mid-latitude regions in both 
hemispheres. The global average change in nCRE in GC3.05-PPE is 0.30 Wm-2K-1, compared to -0.17 
Wm-2K-1 in CMIP5-13, in which the ensemble-mean pattern shows much less evidence of strong positive 
regional feedbacks (Fig 3.21, top right). 

The lower panels of Fig. 3.21 show regional standard deviations of nCRE across members of each ensemble. 
In most regions the spread in GC3.05-PPE is substantially smaller than in CMIP5-13. The same applies to 
the standard deviation in globally-averaged nCRE, which amounts to 0.06 Wm-2K-1 in GC3.05-PPE cf 0.33 
Wm-2K-1 in CMIP5-13. These results suggest that cloud feedbacks play an important role in explaining the 
consistently high levels of global warming found in GC3.05-PPE, compared with the lower ensemble 
average, and broader range, found in CMIP5-13. 

Figure 3.22 shows changes in clear-sky shortwave radiative heating at the top of the atmosphere per unit 
rise in GMST, hereafter nSWCS, presented in the same format as Fig. 3.21. The patterns of ensemble-mean 
change (upper panels) show large positive values at high latitudes over the oceans, due to reductions in 
surface albedo arising from projected decreases in sea-ice extents. There are also relatively large values 
over the northern hemisphere continents at middle and high latitudes. These are probably due mainly to 
reductions in snow cover during winter and spring. Over much of Central and Northern Europe, Kazakhstan, 
Western Russia, Canada and northern parts of the US, the strength of regional nSWCS changes in GC3.05-
PPE is larger than in CMIP5-13. In these regions, the winter cold bias in GC3.05-PPE (Fig. 3.8a) is likely to be 
an important driver of its stronger albedo feedback (Hall and Qu, 2006). In the global average, however, the 
ensemble-mean strength of nSWCS is slightly smaller in GC3.05-PPE than in CMIP5-13 (0.66 cf 0.82 
Wm-2K-1), showing that this component of climate feedback does not play a role in explaining the higher 
GMST responses in GC3.05-PPE. 

44  The normalised changes in cloud radiative effect (Fig. 3.21) and clear-sky shortwave radiation (Fig. 3.22) provide good indications of the strength 
of feedbacks in response to changes in greenhouse gases due to cloud and surface albedo respectively. However, they should not be interpreted 
as precise estimates of these feedbacks, because the results are derived from RCP scenario simulations that are not designed to isolate the 
effects of feedbacks from other contributors to the changes in radiative fluxes. These include the effects of changes in greenhouse gas forcing, 
and effects of forcing due to aerosols and changes in land use. Nevertheless, these additional contributions are expected to be relatively small, 
because the greenhouse gas forcing manifests itself mainly in the clear-sky longwave component of the earth’s radiation budget (e.g. Gregory 
and Webb, 2008), and changes in anthropogenic forcing during the 21st century are dominated by greenhouse gases.    
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Figure 3.22. Changes in short-wave radiative heating at the top of the atmosphere under clear-sky conditions, in the Strand 2 simulations. Changes 
are given in normalised form (nSWCS), expressed per unit change in global mean surface temperature (Wm-2K-1). Top row shows ensemble mean 
changes from GC3.05-PPE (left) and CMIP5-13 (right), excluding EC-EARTH. Bottom row shows the standard deviation of the changes across 
ensemble members. Values of nSWCS are calculated by linearly regressing local annual changes in SWCS against GMST in each member of the 
relevant ensemble, from 1990-2100.  

The spread of nSWCS changes (Fig. 3.22, lower panels) is larger in CMIP5-13 than in GC3.05-PPE in most 
terrestrial regions, as well as over regions of sea ice. In some regions, such to the south west and south east 
of the Kamchatka Peninsula, the spread in CMIP5-13 may be enhanced by the presence of a wider range of 
historical biases in sea-ice cover compared to GC3.05-PPE. In the latter, biases are restricted by use of flux 
adjustments (see section 3.4e). Over land, many of the local spread maxima in CMIP5-13 occur in regions 
of high orography, probably related to the use of different horizontal grid spacings in different models. 
Different implementations of land use changes may also contribute to the spread of terrestrial nSWCS 
values in CMIP5-13 (Prestele et al., 2017). The spread in globally averaged values is 0.29 Wm-2K-1 in CMIP5-
13, compared with 0.07 Wm-2K-1 in GC3.05-PPE. 
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Figure 3.23a. Regional changes in surface air temperature for 2061-2080 relative to 1981-2000, normalised by corresponding changes in the 
global average (°C per °C). Results are shown for various worldwide regions defined by Giorgi and Francisco (2000), for JJA (top), DJF (middle) and 
annual mean (bottom), for the Strand 2 projections. Members of GC3.05-PPE are shown in orange (with STD in red); CMIP5-13 members in blue. 
ENA = Eastern North America; WNA = Western North America; MED = Mediterranean Basin; WAF = Western Africa; SAF = Southern Africa; EAF = 
Eastern Africa; NAS = North Asia; AUS = Australia; AMZ = Amazon Basin; SEA = South-East Asia; CNA = Central North America; SAS = South Asia; 
EAS = East Asia; NEU = Northern Europe; SSA = Southern South America. 

In Figure 3.23a we show changes in surface air temperature for 2061-2080 with respect to 1981-2000 for 
each of the 28 Strand 2 projections, normalised by the corresponding change in GMST. These normalised 
changes are given for a set of the terrestrial regions of Giorgi and Francisco (2000), and provide a simple 
measure of spatial patterns of response (e.g. Fig.12.10 and discussion in Collins et al., 2013) and their 
associated uncertainties. The ranges of change arise from the combined effects of modelling uncertainties 
and internal climate variability on the 20-year time scale. The spread of normalised surface air temperature 
changes in GC3.05-PPE is narrower than that of CMIP5-13 in some cases, and similar in others. There are 
no examples where the spread in GC3.05-PPE significantly exceeds that of CMIP5-13. In some regions, 
combining both ensembles allows sampling of a slightly wider range of normalised responses than is 
provided by CMIP5-13 alone, including in North and East Asia, Central North America and Amazonia. This 
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could be important, for example, in studies of regional impacts associated with specific levels of global 
warming (e.g. Clark et al., 2010; Gohar et al., 2018). In such applications, further evaluation of how well the 
individual Strand 2 projections represent regional drivers of changes in temperature, precipitation and other 
key variables will be an important precursor to using the results for impacts assessments. 

Figure 3.23b. As Fig. 3.23a for normalised changes in precipitation (% per °C of warming in global mean surface air temperature).

Corresponding results for normalised precipitation changes are shown in Fig. 3.23b. The spread of changes 
in GC3.05-PPE is typically smaller than in CMIP5-13. However, comparable ranges are found in some cases, 
including South East Asia in JJA and the annual mean for South Asia and East Africa. In the latter examples, 
combining both ensembles significantly enhances the overall spread of normalised changes. Comparing the 
GC3.05-PPE and CMIP5-13 ranges is also helpful in confirming the status of outlying members. Over East 
Africa, for example, one GC3.05-PPE member (in DJF) and one CMIP5-13 member (in JJA) simulates an 
increase in normalised precipitation much larger than any of the other 27 projections. All GC3.05-PPE 
members simulate drying in summer precipitation over Northern Europe, whereas some CMIP5-13 
members project an increase. This is also the case for the UK (see section 5.1).    
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For a set of 24 countries, Murphy et al. (2014) performed a similar analysis to that of Figs. 3.23a,b, in their 
case comparing the ESPPE used in Strand 1 against emissions-driven CMIP5 earth system model 
simulations. They found several examples (notably for northern hemisphere countries in JJA) in which the 
spread in normalised surface air temperature from the ESPPE exceeded that in the multi-model ensemble, 
and more cases where combining the two ensembles led to a substantial increase in the overall range of 
surface air temperature or precipitation outcomes. This underlines that the diversity properties of a PPE, 
and how they relate to a corresponding multi-model ensemble, are conditional upon the climate model 
chosen for perturbation (see also Yokohata et al., 2010; Sanderson, 2011). 

It is not possible to provide robust estimates of the (potentially member-specific) contribution from internal 
variability to the uncertainty ranges of Fig. 3.23a,b, in the absence of multiple simulations for each GC3.05-
PPE or CMIP5-13 member (e.g. Deser et al., 2012). Hawkins and Sutton (2009, 2011) show that model 
uncertainty typically provides the larger source of spread for multidecadal lead times, while the role of 
internal variability becomes more important at time scales of a few decades ahead, particularly for 
precipitation. 

For a given scenario of future emissions, uncertainties in projected regional changes are generally influenced 
strongly by uncertainties in both the GMST response (Mauritzen et al., 2017) and the normalised patterns of 
change (e.g. Murphy et al., 2014). This understanding also underpins the standard pattern-scaling approach 
used to emulate responses to alternative emissions scenarios, in which stationarity in the normalised 
pattern is assumed (e.g. Tebaldi and Arblaster, 2014). However, regional changes can also be influenced by a 
number of additional factors, not accounted for in this simple paradigm. These include differing responses 
to different forcing agents (Shiogama et al., 2013), and non-linearity in regional responses to different levels 
of radiative forcing (Chadwick and Good, 2013) or GMST response (Herger et al., 2015). The basic response 
characteristics of Fig 3.20 and 3.23a,b should not, therefore, be interpreted as a complete explanation of 
the time-dependent regional changes simulated by the Strand 2 members.  

Figure 3.24a. Projected anomalies in surface air temperature (°C) relative to 1981-2000, from the Strand 2 simulations. GC3.05-PPE members 
shown in orange (with STD in red), and CMIP5-13 members in blue. Results are shown for the annual growing seasons of wheat, maize, rice and 
soybean in their major production regions, from 1900-2100. 
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As an example of transient regional changes, Figures 3.24a,b show time series of surface air temperature 
and precipitation for growing seasons in major food production regions. These relate to wheat, maize and 
rice (which account for 60% of global food energy intake), and soybean, which is a valuable source of 
protein and animal feed. The Strand 2 simulations could hypothetically be used to obtain information on the 
changing risks of drought events with potential to cause major reduction in yield, and hence risks to food 
security. For maize, for example, summers in which average temperature exceeds 23°C and precipitation is 
lower than 250mm are associated with major reductions in yield (Kent et al., 2017). For the US Corn Belt, 
the GC3.05-PPE projections suggest a clear increase in risk of breaching both thresholds in future, while 
CMIP5-13 shows more uncertainty in the sign of the precipitation response, with more modest increases in 
surface air temperature than in GC3.05-PPE. In all regions, the post-2050 surface air temperature changes 
in GC3.05-PPE explore outcomes beyond the upper end of the CMIP5-13 range, due in particular to the 
influence of large projected changes in GMST (Fig. 3.20). For precipitation there is a greater degree of 
overlap, although in the North American and European regions GC3.05-PPE explores stronger reductions in 
summer precipitation than are found in CMIP5-13. In North-East China, GC3.05-PPE explores positive and 
negative precipitation anomalies beyond the ranges of CMIP5-13, by the end of the 21st century. Note that 
in a practical application of this type, it would be important to consider carefully how to bias correct the 
model output for use in crop projections, given especially the importance of thresholds in the calculations 
(Hawkins et al., 2013).

Figure 3.24b. As Fig. 3.24a, for annual changes in growing season precipitation (%)

The representation of future outcomes within the combined Strand 2 range is often somewhat uneven. This 
is due to its construction from two distinct climate model ensembles, with different uncertainty properties. 
Users should not interpret probabilistically the numbers of outcomes in different sub-ranges of the overall 
envelope of responses. This is because Strand 2 is designed to support a limited set of plausible storylines 
(section 1.3), rather than a comprehensive survey of possible changes.
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Nevertheless, the dataset provides a rich sample of outcomes under the RCP8.5 scenario, to which 
GC3.05-PPE contributes plausible pathways not available by considering CMIP5 simulations in isolation. It 
therefore provides a new opportunity for investigation of international climate impacts, and inward risks to 
the UK. For example, the GC3.05-PPE runs may be particularly useful for stress-testing impacts sensitive to 
high levels of future warming (see also discussion in section 5.2). In specific regional applications remote to 
the UK and Europe, it will be important to consider further screening of Strand 2 members, beyond that of 
section 3.3f. This will be necessary to check the credibility of the 28 simulations for impacts assessments in 
different parts of the world.   

4.  Strand 3: a new perturbed parameter ensemble of  
regional climate model simulations from 1980 - 2080

4.1. Overview 

Dynamical downscaling using RCMs has formed an important component of UK climate projections since 
the UKCIP02 scenarios (Hulme et al., 2002). Experience from worldwide research shows that RCMs add 
value to simulations from global climate models, by better resolving physiographic features such as 
mountains, land-sea contrast, urban effects and inland water bodies, and also mesoscale circulations and 
storms (Rummukainen, 2016). Regional models can also provide improvements at larger scales that might 
be considered well resolved by the driving GCM (Sørland et al., 2018). For the UK, RCMs simulate spatial 
detail in climatological distributions of surface air temperature and precipitation with considerable skill (e.g. 
Jones et al., 1995). They can also improve the representation of distributions of daily surface air 
temperature and precipitation (Massey et al., 2015), and provide credible simulations of extreme regional 
rainfall events on 1-10 day time scales (Fowler et al., 2005). Many regional climate model simulations 
(including those described below) are driven by global climate model output using a one-way nesting 
technique, with a domain small enough to ensure that the large-scale circulation remains fairly close to that 
of the driving model. The RCM therefore inherits biases from the global simulation (e.g. Noguer et al., 1998), 
and is subject to the same limitations in relation to the representation of large-scale driving phenomena 
(section 3.4).   

Strand 3 provides a new ensemble of twelve RCM simulations for the period 1980-2080. This is a PPE of 
RCM variants (RCM-PPE), configured at 12km horizontal resolution and driven by twelve of the fifteen 
GC3.05-PPE simulations of section 3. It addresses requirements for a flexible dataset for impacts 
assessments using contemporary UK modelling capabilities (user drivers 2 and 5 of section 1.3). In 
particular, Strand 3 supports applications requiring detailed impacts information at local to sub-national 
scales, especially those likely to benefit from the addition of skilful downscaling information to global model 
output from GC3.05-PPE.

In such applications, RCM-PPE provides a new resource for augmenting and updating studies based on the 
HadRM3-PPE ensemble included in the suite of UKCP09 simulations (Murphy et al., 2009). Those 25km 
projections were used in many UK impacts studies, including assessments of drought (Burke et al., 2010), 
river flows (Prudhomme et al., 2012), water availability (Sanderson et al., 2012), flood frequency (Kay and 
Jones, 2012), and effects on the electricity and rail networks (McColl et al., 2012; Palin et al., 2013).
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UKCP09 users were encouraged to compare the spread of projected changes against the broader sampling 
of uncertainties contained in the probabilistic projections (Sexton et al., 2010). The idea was that 
stakeholders requiring datasets with full spatial and temporal coherence could use the RCM simulations to 
analyse impacts, and the probability distributions to understand their limitations. This might extend to 
application of scaling techniques to consider potential outcomes outside the range of the RCM ensemble. 
Such exercises can also be carried out using UKCP18 data, through use of Strand 1 results to provide 
context for the Strand 3 projections (see section 5.2).

In addition, UKCP18 users have the option of deriving impacts from the spatially coherent global model 
projections of Strand 2. Here, a key judgement will involve the relative benefits of downscaling information, 
versus the opportunity to consider a more diverse set of projections that combines perturbed parameter 
and multi-model ensembles. In practice, the choice is likely to be application-dependent. Combining the 
Strand 2 and 3 information may often provide more comprehensive advice than considering either in 
isolation. For example, if a user wishes to consider an event like the winter floods of 2013-14 (Huntingford 
et al., 2014), the set of Strand 2 projections could inform changing risks of driving circulation patterns such 
as the NAO, and resulting UK-wide precipitation anomalies. The Strand 3 PPE could then provide input data 
for hydrological modelling of catchment-scale river flows and flood risks, for similar events selected from 
the projections.   

While Strand 3 does not include a multi-model RCM ensemble alongside the PPE, users can, if they wish, 
consider augmenting the UKCP18 results with information from the EuroCordex coordinated downscaling 
experiment (Jacob et al., 2014). EuroCordex includes a multi-model ensemble of 12km RCM simulations 
from 1951-2100, driven by CMIP5 global models under the RCP8.5 scenario (see http://www.euro-cordex.
net/) and using the same European domain as RCM-PPE. These simulations provide an option to add 
sampling of structural modelling choices in assessment of regional downscaling uncertainties, alongside the 
parametric uncertainties considered in RCM-PPE. EuroCordex simulations are also available for the RCP2.6 
and 4.5 scenarios.

 Strand 3 will subsequently be augmented by an ensemble of 2.2km simulations for the UK (see section 
1.3). This will provide advice on changes at kilometre-scale resolution and for sub-daily rainfall extremes, 
providing important new information for applications such as urban planning and flash flooding. 

4.2. The 12km regional climate model

The RCM is a limited area configuration of the GC3.05 atmosphere model. It uses the EuroCordex latitude-
longitude grid with 0.11° resolution and a rotated pole set at 39.25°N, 198°E. This gives a quasi-uniform 
grid spacing of 12km over the European domain. The RCM uses a 4 min. timestep and has 63 levels (with an 
upper lid at ~40km), rather than the 85 levels of GC3.05 (upper lid ~80km). It is driven at its lateral 
boundaries in a one-way nesting approach, using time series of surface pressure, wind, temperature and 
moisture values archived every 3 hours from the relevant GC3.05-PPE member, and applied to the RCM 
across a 10-point relaxation zone. Inside this, orographic heights on the global and regional model grids are 
blended across a further three points. The RCM therefore adjusts to the surface and lateral boundary 
forcing across a 13-point external rim, which is removed in the European figures shown in section 4.4. In its 
internal domain, the RCM simulation evolves freely, and responds to surface orography specified at its 
native grid scale. 

www.metoffice.gov.uk
http://www.euro-cordex.net/
http://www.euro-cordex.net/


 Source: Met Office © Crown Copyright 2018www.metoffice.gov.uk Pg 93 of 191

Prescribed daily fields of SST and sea-ice cover are also supplied from the driving global simulation. For 
some inland water bodies resolved on the RCM grid (for example some high-elevation lakes), it was not 
possible to provide credible characteristics by interpolation from the coarser global model fields. Therefore, 
the RCM land-sea mask was edited to keep only lakes for which the nearest GC3.05 sea point was 
expected to give a better representation of surface temperature than would be achieved by excluding the 
lake point. Swedish lakes were set as land points on the assumption that most of them would normally be 
frozen in winter, whereas nearby GC3.05 sea points may not be. However, the Finnish lakes are included, as 
well as the large Russian lakes (Onega and Ladoga) and the Bosporus. The latter are important for 
simulation of surface heat and moisture fluxes in Eastern Europe, especially during summer.

The representations of atmospheric dynamics and the parameterisations of land and atmospheric 
processes are identical in the RCM and global simulations, with the exception of the treatment of aerosols 
(see below). Parameter perturbations applied in each driving GC3.05-PPE member are mirrored in its RCM 
counterpart. This is done to ensure that the RCM scenarios are as consistent as possible with the global 
simulations at large regional scales (further discussion in section 4.4).  

It was decided not to include the GLOMAP-mode aerosol scheme as an interactive component of the RCM, 
due both to its computational expense and a lack of previous experience of how the scheme performs in 
climate simulations at resolutions higher than N216. However, aerosol radiation and cloud effects simulated 
by the relevant GC3.05 member were approximately replicated in each RCM simulation. This was achieved 
by saving monthly spatial fields of shortwave and longwave optical properties (absorption, extinction, 
scattering and asymmetry) and cloud droplet number concentration, and then prescribing these as a time 
series in the RCM simulation for use in its calculation of time-varying radiative forcing. In a global model, 
Stevens et al. (2017) showed that this approach replicates quite well the aerosol forcing found in interactive 
simulations, and tests using GC3.05 supported this conclusion.

4.3. Design of regional projections

The 12 pairs of GC3.05 and RCM variants were selected in two steps, in conjunction with those used to 
reduce the original set of 25 GC3.05 candidates down to 20 and then 15 members, based on historical 
performance (section 3.3f).

Initially, 16 GC3.05 driving members were selected from the 20 that survived the first filtering step, 
motivated by availability of HPC resources. STD was chosen, plus the four members with the weakest and 
strongest estimates of global aerosol forcing and climate feedback strength (section 3.3d). From the 
remaining 15 members, one was excluded due to poor simulation of SSTs. An additional 11 members were 
then picked from the surviving 14 candidates, by successively dropping members on the basis that the 
retained model variants should maximise the spread of sampled parameter values in the 47-dimensional 
space of Fig 3.2.

The initial 16-member RCM ensemble included four members driven by GC3.05 variants dropped in the 
second filtering step of section 3.3f, following further assessment of European climatology, AMOC strength 
and historical trends in northern hemisphere surface temperature. These were subsequently excluded from 
RCM-PPE, leaving 12 members to form the Strand 3 contribution to UKCP18.   
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The RCM simulations were run in three slightly overlapping time slices (1979-2021, 2019-2061, 2059-
2080), in order to expedite completion of the simulations. Initial conditions for atmospheric state variables 
were taken from the corresponding points of the driving GC3.05 simulations, and initial soil moisture values 
were taken from an ancillary dataset of soil properties derived from observations (see Table 2 in Walters et 
al., 2017). The first two years of each RCM time slice were used as a spin-up period, to allow fine-scale 
circulations and land surface properties (particularly soil moisture in the root zone) to reach approximate 
equilibrium. This was achieved, with no evidence of residual drift in soil moisture after this point. The two 
spin-up years were discarded, and continuous time series for 1980-2080 were created by combining the 
remainder of the data, with switchover dates of 1 December 2020 and 1 December 2060. This ensures 
that all meteorological seasons in the dataset are taken from one simulation only.    

Changes in greenhouse gas forcing follow those in the driving GC3.05 simulations45. After 2005, each RCM 
simulation follows the member-specific CO2 concentration pathway prescribed in its driving model 
projection (section 3.3g). Changes in aerosol optical and cloud properties through 1980-2080 are 
prescribed from the driving simulations, as described in section 4.2. Past and future changes in land use 
were represented by prescribing a time-varying component due to anthropogenic disturbance (Hurtt et al., 
2011), which was used to modify the observed present-day distribution of land cover types. As in the global 
simulations (section 3.3e), this was done by modifying the combined coverage of C3 and C4 grasses 
relative to the combined coverage of trees and shrubs. 

An additional simulation was produced using the RCM variant with standard parameter settings (RCM-STD), 
in order to facilitate understanding of model biases. This simulation, hereafter ERAI-RCM-STD, was run from 
1981-200146, using lateral boundary forcing taken from ERA-Interim reanalyses rather than GC3.05 STD. 
Sea surface temperatures and sea-ice extents were also prescribed from analyses of observations 
(Reynolds et al., 2002). Aerosol properties were prescribed as described in section 4.2, but using a standard 
historical forcing dataset developed for CMIP6 (Stevens et al., 2017) rather than output from STD. Below, 
results from this simulation are compared with those of RCM-STD. This simulation allows the downscaling 
properties of the RCM to be assessed relatively cleanly, in a simulation driven by a reconstruction of the 
large-scale atmospheric circulation close to observations. Establishing the downscaling skill under such 
conditions is an important precondition for use of the RCM in climate change impacts studies. Through 
comparison with the RCM-STD simulation driven by the STD member of GC3.05-PPE, biases in the latter 
can also be partitioned approximately into a component inherited from the driving global model and a 
component arising from regional errors in the RCM. 

45  During production of the first two time slices, it was discovered that the CMIP5 time series of ozone forcing data had been implemented with a 
one-year shift compared to the correct values. This was corrected in 1990 and 2031 respectively, with the result that the periods 1980-1989 
and 2020-2030 contain the time-shift error. Tests show that the offset leads to an error in total anthropogenic forcing of less than 0.5% during 
these periods. Hence it was judged unnecessary to repeat the relevant periods of the RCM simulations. 

46  In section 4.4, the 20-year climatology of the reanalysis-driven simulation for 1982-2001 is compared with 20-year mean values for 1981-2000 
of observations, and the GC3.05-driven simulation. This period is offset by one year from the standard baseline period, because the Reynolds high 
resolution SST dataset did not cover 1981. However, the offset is not expected to make a significant contribution to differences between the 
reanalysis-driven simulation and the other datasets.  
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4.4. Evaluation of regional simulations for 1981-2000

We assess here the performance of selected aspects of RCM-PPE during the 1981-2000 baseline period. 
Further information is provided by Tucker et al. (2018).

In Figures 4.1a-d we use RCM-STD to demonstrate the impacts of higher resolution on simulations of 
climatological average surface air temperature and precipitation. The top row of each figure shows absolute 
values in ERAI-RCM-STD, RCM-STD, STD (referred to here as GCM-STD for clarity), and NCIC observations. 
The bottom row shows biases relative to observations in the two regional model simulations at their native 
12km resolution (left and centre left). Also shown is the difference between RCM-STD at 12km resolution 
and a version smoothed to the 60km resolution of the driving model, to show the influence of local detail 
simulated at scales unresolved by the latter. The bottom right panel shows differences between the 
smoothed RCM-STD climatology and that of GCM-STD, in order to assess the impact of higher resolution on 
scales resolved in the global model.

Figure 4.1a. Impact of dynamical downscaling on the climatological average of winter surface air temperature (°C) during 1981-2000, in the 
RCM-STD member of RCM-PPE, the Strand 3 perturbed parameter ensemble of 12km regional climate model simulations. Top left panel shows 
values from a simulation driven by reanalyses of observations, ERAI-RCM-STD46. The RCM-STD panel shows results from a 12km simulation driven 
by GCM-STD (centre right), the unperturbed member of the GC3.05-PPE global model ensemble with corresponding parameter settings. Verifying 
observations from NCIC (regridded to the RCM 12km grid) are shown in the top right panel. The bottom row shows biases in the ERAI-RCM-STD 
and RCM-STD simulations (left and centre left). The centre right panel shows differences between the RCM field at 12km resolution, and a version 
smoothed to the ~60km horizontal resolution of GCM-STD. This isolates spatial features simulated by the RCM at scales finer than the global 
model grid. The bottom right panel shows differences between the smoothed RCM field and GCM-STD, to show the impact of downscaling at the 
finest scale resolved by the driving model. 
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In both seasons, all the simulations capture the main spatial contrasts in the observed surface air 
temperature patterns (Figs. 4.1a,b), showing the coolest temperatures in the Scottish Highlands and the 
warmest in Southern England and East Anglia. In winter, RCM-STD is too warm in the south and too cool in 
Scotland (Fig. 4.1a). The southern bias is weaker in ERAI-RCM-STD, suggesting that this is partly inherited 
from the driving model in RCM-STD. However, the northern bias is present in both regional simulations, 
indicating that it probably arises from the simulation of regional physical processes. The effects of 
downscaling, at both 12km and 60km scales, reflect to a large extent straightforward lapse-rate effects 
associated with better resolution of orography.

Figure 4.1b. As Fig. 4.1a, for effects of downscaling on summer air temperature during 1981-2000 in RCM-STD.

In summer (Fig. 4.1b), the impact of downscaling at the 12km scale again shows clear orographic effects. 
However, the difference (at 60km scale) from GCM-STD shows a general cooling in the regional model, 
associated with increased cloud cover. This increase is also found in other seasons. In test simulations in 
which the RCM is run at 60km resolution, cloud cover is similar to values found in the global model, 
confirming that the increase at 12km is an effect of enhanced resolution. Relative to observations, the 
summer cool bias found in RCM-STD is reduced, and in some regions reversed, in ERAI-RCM-STD.
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Figure 4.1c. As Fig. 4.1a, for effects of downscaling on winter precipitation during 1981-2000 in RCM-STD. Absolute precipitation values (top row) 
are shown in mm/day, while errors or differences (bottom row) are shown as percentage deviations from observations (left and centre left), the 
RCM-STD simulation smoothed to 60km scale (centre right) or the GCM-STD global simulation (right). 

The climatological distributions of winter precipitation in both RCM simulations show clear benefits relative 
to GCM-STD, in capturing spatial details of the observed distribution. The patterns and intensities of areas 
of high precipitation in South West England, the Welsh mountains, the Lake District, South West Scotland 
and the Cairngorms are all represented with substantial skill, although there is a modest dry bias over much 
of North West Scotland. The climatological patterns are very similar in RCM-STD and ERAI-RCM-STD, 
indicating that biases in the driving model are not large enough to degrade significantly this aspect of 
downscaling performance. The fine-scale component of the RCM-STD pattern (Fig. 4.1c, bottom row, 
centre right) shows enhanced precipitation on the windward upslopes of mountains, demonstrating the 
effects of improved resolution of orography. In most parts of the UK there is, however, a broader-scale wet 
bias in RCM-STD. Some of this is inherited from the driving model, as the bias is less pronounced in ERAI-
RCM-STD. In addition, precipitation is somewhat higher in RCM-STD than in GCM-STD (Fig. 4.1c, bottom 
right), consistent with the intensification of the hydrological cycle typically seen in regional models 
compared with coarser resolution driving simulations (e.g. Jones et al., 1995).
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Figure 4.1d. As Fig. 4.1c, for effects of downscaling on summer precipitation during 1981-2000 in RCM-STD.

In summer, ERAI-RCM-STD shows generally good agreement with observed precipitation, with modest wet 
biases over parts of Northern England and Scotland (Fig. 4.1d). The RCM-STD simulation shows larger wet 
biases of typically 20-50% in these regions, inherited in part from GCM-STD (compare red and black curves 
in Fig. 4.4, bottom left panel). 

We extend the assessment of precipitation in RCM-STD to consider biases in the fraction of wet days 
(Figure 4.2), and the average wet-day intensity (Figure 4.3). Here, wet days are defined as those in which 
accumulated precipitation exceeds 1mm.

The highest wet-day fractions are located in Northern Ireland, Scotland, the Lake District, Wales and South-
West England, mostly over high terrain. Values are higher in winter than in summer (Fig 4.2, top left cf 
bottom left panels), and exceed 0.7 over North-West Scotland in winter. The wet-day fractions in RCM-STD 
are mostly higher than observed, especially in winter, during which the largest biases (of 30-50%) occur in 
East Anglia, the East Midlands and parts of South East England. In winter, the driving GCM-STD model also 
simulates fractions that are generally larger than observed. However, its biases are typically somewhat 
smaller than those of RCM-STD, consistent with the corresponding biases in average precipitation (Fig. 
4.1c). In summer, wet-day fractions in GCM-STD are lower than in RCM-STD. The GCM-STD values show 
negative biases relative to observations over much of Southern England and Wales, and positive biases over 
Scotland.
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Figure 4.2. Biases in the simulation of the frequency of wet days during 1981-00 for winter (top row) and summer (bottom row). Here, a wet day is 
defined as a daily precipitation accumulation exceeding 1mm. Left panels show NCIC values from observations regridded onto the 12km RCM grid. 
Centre left and centre right panels show biases, expressed as a percentage of the observed value, in the simulations of GCM-STD and RCM-STD 
respectively. For GCM-STD, the biases are calculated relative to NCIC values regridded to its ~60km grid. Rightmost panels show biases from the 
reanalysis-driven simulation ERAI-RCM-STD. These can be compared with the RCM-STD biases to see the impacts in the latter of errors inherited 
from the driving model simulation (GCM-STD). 

The reanalysis-driven ERAI-RCM-STD simulation gives predominantly positive biases in wet-day fraction, 
demonstrating that errors in the regional representation of hydrological cycle processes contribute to the 
biases found in RCM-STD. However, the positive biases are typically larger in RCM-STD than in ERAI-RCM-
STD, indicating also a role for errors inherited from the driving model.

In RCM-STD, simulated values of mean wet-day intensity are too low in some high-elevation regions, 
particularly over the Welsh and Scottish mountains in winter (Fig. 4.3). There are also negative biases over 
much of Eastern and Southern England in summer. The patterns of bias are generally similar between 
RCM-STD and ERAI-RCM-STD, suggesting that the errors are to a substantial degree inherent to the 
regional model. Nevertheless, the negative biases over high ground are generally smaller in RCM-STD than 
in GCM-STD, probably due to better resolution of orographic effects in the regional model.
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Figure 4.3. As Fig. 4.2, for biases in the simulation of the average intensity of wet-day precipitation. Wet days are identified as those with daily 
precipitation accumulations exceeding 1mm. The NCIC observations (left panels) are shown in mm/day, and simulation biases (other panels) are 
shown as percentages of the observed value. 

The widespread positive bias in the fraction of wet days, shown for RCM-STD in Fig. 4.2, is present in RCM-
PPE as a whole. The NCIC observations for 1981-2000 give average fractions over the UK of 0.47 in winter, 
and 0.37 in summer. In comparison, the ensemble-mean values from RCM-PPE are 0.58 and 0.44 
respectively. Simulating too many wet days is a common error in climate models (e.g. Sun et al., 2006), and 
most of the multi-model RCM simulations in EuroCordex also simulate excessive wet day frequencies over 
the British Isles (Rajczak and Schär, 2017). 

For Europe, Figures 3.13a,b show winter and summer ensemble-mean biases in RCM-PPE for surface air 
temperature and precipitation. The pattern of cold winter bias found in the driving global simulations is largely 
replicated in RCM-PPE, but the magnitude of the bias is smaller in most regions. This is likely to be due, at least 
in part, to the aforementioned increase in cloud cover in the regional simulations. The pattern of summer errors 
is again similar to GC3.05-PPE, with slightly smaller warm biases in RCM-PPE over South-Eastern Europe. 

Increased precipitation in the regional model (discussed above) leads to a widespread increase in the 
ensemble-mean winter wet bias in RCM-PPE, compared with GC3.05-PPE (Fig 3.13b). Biases exceeding 
100% occur in some coastal and high elevation regions, notably in parts of Southern Europe including Italy, 
Croatia, Greece, and the Carpathian mountains. Note, however, that the verifying E-OBS dataset (Table E.2) 
is likely (in common with all datasets derived from rain gauge measurements) to underestimate observed 
precipitation due to undercatch (see section 3.4b). In high elevation regions, an additional source of 
underestimation in E-OBS arises from an insufficient density of observing stations (Hofstra et al., 2009). In 
summer, the general increase in precipitation in the regional model leads to the wet bias over Scandinavia 
being slightly larger in RCM-PPE than in GC3.05-PPE, while the dry biases over much of Central and 
Southern Europe are smaller, or in some regions (e.g. Spain and Southern Italy) reversed in sign.
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In winter, RCM-PPE shows a pattern of bias in interannual variability of surface air temperature similar to 
that of GC3.05-PPE (Fig. 3.14a). There is too little variability over Scandinavia and too much over South-
Eastern Europe (the latter bias is somewhat smaller in RCM-PPE). The general similarity in the patterns 
reflects the strong control exerted by the driving model on the large-scale atmospheric circulation in the 
RCM. In summer, interannual variability is too large in RCM-PPE in most European regions (Fig. 3.14a). The 
biases are slightly larger in the global ensemble over the Scandinavian mountains and slightly larger in the 
regional model ensemble over much of Central and South-Eastern Europe (maximum values 0.6-0.8°C). 
The latter bias is a persistent problem in climate models, and is likely due to errors in local soil moisture 
feedbacks.  Previous studies have argued that this overestimation of interannual variability in warm summer 
months could have implications for the reliability of climate change projections (e.g. Sørland et al 2018). 
Over the UK, where there is a strong maritime influence, the biases for 1981-2000 are lower. 

As for surface air temperature, RCM-PPE shows regional patterns of bias in interannual precipitation 
variability that are closely related to those in the global simulations (Fig. 3.14b). The regional model 
ensemble generally simulates slightly higher variability than GC3.05-PPE over Eastern and Southern Europe, 
exacerbating the positive bias found in the driving simulations in winter, but reducing the negative biases 
over the Baltic States and the Balkans in summer.

Figure 4.4. Left panels show seasonal cycles of UK average surface air temperature (ºC, top) and precipitation (mm/day, bottom) for 1981-2000. 
Right panels show UK averages of local values of interannual variability (defined as the standard deviation of seasonal averages during 1981-2000) 
for surface air temperature (top) and precipitation (bottom). Members of RCM-PPE are shown in pink, with RCM-STD in purple. The orange line 
shows the median, and the orange shading the range, of values from the 15-member ensemble of GC3.05-PPE simulations (see also Fig. 3.15). 
Twelve of these drove the RCM-PPE simulations. One of the driving global simulations, GCM-STD, is shown in red. Observations from the National 
Climate Information Centre (NCIC) and E-OBS (Table E.2) are shown as dashed and solid black lines, respectively. All datasets were regridded to the 
GC3.05 (~60km) grid, prior to calculation of these diagnostics.
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Figure 4.4 shows seasonal cycles of UK-average surface air temperature and precipitation for individual 
RCM-PPE members, compared against observations from NCIC and E-OBS. The range of results from 
GC3.05-PPE is shown in orange shading for comparison (STD is plotted in red, and other individual members 
of GC3.05-PPE are shown in Fig. 3.15). The ranges of surface air temperature in the two ensembles are 
generally similar, with a slight cool shift in the envelope of values in RCM-PPE during spring and summer. 
The RCM-PPE range encompasses observations in all months apart from April and May. The distribution of 
RCM-PPE precipitation values is shifted higher than its GC3.05-PPE counterpart, throughout the annual 
cycle. This is due to the general increase in the regional model discussed above. Observed precipitation lies 
below (or at the low end of) the RCM-PPE range in most months, the exceptions being August to October. 
This is true even for the higher estimates in the NCIC dataset, which is based on a much denser station 
network than E-OBS (section 3.4b).

In RCM-PPE, the spread of monthly values for interannual variability in surface air temperature (Fig. 4.4, top 
right) follows closely that of GC3.05-PPE, and encompasses the observed values in all months except June 
(in which the simulated values are all too high). The main observed seasonal variations (highest values in 
December to February, lower values from late spring to early autumn) are captured in the simulations, apart 
from an anomalously high value in July in one member of GC3.05-PPE (Fig. 3.15) and its corresponding 
RCM-PPE member.

Over the UK, the ensemble average of interannual variability in precipitation is somewhat higher in RCM-
PPE than in GC3.05-PPE (Fig. 3.14b). Therefore the range of values for simulated variability found across 
RCM-PPE members (while overlapping substantially with the GC3.05-PPE range) is shifted higher (Fig. 4.4, 
bottom right). This improves the correspondence with observations (particularly the NCIC dataset).

In general, good agreement is seen between RCM-PPE and GC3.05-PPE in relation to large-scale 
climatological averages of surface air temperature and precipitation, and their interannual variability. This is 
consistent with the aim of our one-way nesting approach (section 4.1), that the RCM should not diverge 
strongly from its driving global model simulation at large scales. It is on finer spatial scales (e.g. Fig. 4.1) and 
shorter time scales (discussed below) that we may expect the RCM to differ more substantially from the 
driving model, and where the higher resolution may offer added value. 

The simulation of cold daily extremes in winter is assessed in Fig. 4.5a (top row). The metric used is the 1st 
percentile of daily winter values of diurnally averaged surface air temperature. This is shown for 
observations in the left panel, and can be interpreted approximately as a typical coldest day in an individual 
winter. Values range from -1 to -5°C across much of Southern England, to -9 to -11°C in some high-
elevation regions of Northern Scotland. Cold biases exceeding 3°C are present in the GC3.05-PPE 
ensemble-mean over much of Northern England and Scotland (centre left panel), with warm biases in some 
coastal grid boxes, including across Southern England. Corresponding biases in RCM-PPE show a detailed 
spatial pattern at native 12km resolution (right panel), but are generally improved relative to the driving 
simulations. This can be seen by comparing the GC3.05-PPE biases against those found when the regional 
model results are smoothed to the same spatial resolution (centre right panel). The cold biases in the global 
model in high-elevation regions, and the coastal warm biases, are both reduced in the regional simulations.
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Figure 4.5a. Observed and simulated daily temperature extremes in winter (top row) and summer (bottom row). Left panels show the 1st percentile 
of diurnal average temperature in winter (cold days), and the 99th percentile in summer (hot days), found in the NCIC observed dataset during 
1981-2000. Percentiles were calculated empirically, by ranking the simulated daily values. Centre left panels show biases in the ensemble-average 
simulated values for the corresponding metrics, from the 15-member GC3.05-PPE of Strand 2. Centre right panels show ensemble-average biases 
from the 12-member RCM-PPE of Strand 3 simulations, following smoothing to the ~60km horizontal resolution of the driving GC3.05-PPE 
simulations. Rightmost panels show the RCM-PPE ensemble average biases, at full 12km resolution. The NCIC data was regridded to the relevant 
12km or 60km model grid, in each case.

In summer, we consider the 99th percentile of diurnal mean surface air temperature values (which 
corresponds approximately to a typical hottest day in an individual season), as a metric of summer heat 
extremes. The ensemble-mean values in RCM-PPE are generally cooler than in GCM3.05-PPE, leading to 
reduced warm biases over parts of the Midlands and Southern England, but larger cool biases over much of 
Northern England and Scotland. The distribution of RCM-PPE biases at 12km resolution (bottom right panel 
in Fig. 4.5a) shows positive values over Birmingham and London. In the RCM urban effects are represented 
in a simple way, as one of nine “tiles” used to represent sub-grid scale heterogeneity in land surface 
characteristics (Best et al., 2011). The forthcoming 2.2km simulations will include a more sophisticated 
urban scheme using two tiles to represent roof and street canyon facets, with surface parameters 
determined from the morphology and materials properties of relevant cities (Porson et al., 2010). 
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Figure 4.5b. As Fig. 4.5a, for precipitation extremes, defined here as the 99th percentile of daily accumulated values during 1981-2000. The 
percentile values are calculated from all daily accumulations, including dry as well as wet days.

Precipitation extremes are evaluated as the 99th percentile of daily values in Fig. 4.5b, for winter (top row) 
and summer (bottom row). These are all-day percentiles calculated by considering dry and wet days 
together. The highest observed values (in excess of 30mm, see left panels) are found in high-elevation 
regions on the western side of Great Britain. In winter, the RCM-PPE values are generally higher than those 
of GC3.05-PPE. This shows that the general increase in precipitation in the regional model affects extreme 
wet events as well as the climatological average. This increase leads to substantial reductions in the dry 
bias found in GC3.05-PPE over the Welsh mountains, the Lake District and Northern Scotland. However, 
RCM-PPE overestimates the intensity of observed heavy events over Eastern and Southern England, to a 
greater degree than GC3.05-PPE. In summer, average regional biases at the 60km scale are generally 
smaller than ± 20% in both ensembles. At the 12km scale, RCM-PPE produces biases exceeding ± 30% in 
some locations (note, for example, the winter dry bias over parts of the North-West Highlands in Scotland). 
However, the local biases are generally below 30%, which indicates significant skill in replicating the 
complex distributions seen in observations.
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Figure 4.6. Fractional contribution of daily precipitation events within 20 intensity bins to total accumulated UK precipitation in summer (left) and 
winter (right), during 1981-2000. The contributions were diagnosed by assigning each day from every UK grid point to the relevant bin, and 
multiplying the number of counts in each bin by the average intensity. Dry days are assigned to the lowest bin. Top panels show results for each of 
the 12 members of RCM-PPE (pink, with RCM-STD in purple), plus the reanalysis-driven simulation ERAI-RCM-STD (grey) and NCIC observations 
(black). These results are calculated from data fields on the native 12km grid of the RCM. Middle row shows corresponding differences between the 
RCM simulations and observations. Bottom row shows differences between the 15 members of GC3.05-PPE and observations (orange, with 
GCM-STD in red). For the bottom row, the NCIC observations were regridded to the 60km GC3.05 grid, prior to calculating the diagnostics. The bin 
boundaries (mm/day) are: 0.05, 0.16, 0.18, 0.27, 0.41, 0.62, 0.95, 1.45, 2.2, 3.4, 5.1, 7.8, 11.9, 18.1, 27.5, 42.0, 63.9, 97.4, 148.4, 500.0. 

Figure 4.6 evaluates the shape of the distribution of daily precipitation events, for winter (right panels) and 
summer (left). The curves are constructed from all days at all UK grid points during 1981-2000, showing 
the fractional contribution from 20 intensity bins to total UK precipitation within that period. Dry days are 
assigned to the lightest intensity bin. The top row shows observations and regional model simulations at 
12km scale, and the middle row shows the same RCM results as differences from observations. The ERAI-
RCM-STD simulation replicates the observed distributions quite well, although the relative47 contribution 
from extreme events of 40mm or more is overestimated in winter, and that from events in the range 10-
30mm is underestimated in summer. In winter, some members of RCM-PPE overestimate the number of 
10-20mm events at the expense of heavier accumulations, while in summer most members overestimate 
the number of events of 40mm or more. Since these biases in heavy summer events are not present in 
ERAI-RCM-STD, it is likely that errors in the driving model boundary conditions are at least partly 
responsible for these. The regional impacts of parameter perturbations are another potential factor, 
particularly in explaining the spread in biases between alternative RCM-PPE members.

47 As the statistic in Fig. 4.6 is a normalised metric, biases in average precipitation do not affect the distribution of values.
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The bottom row in Fig. 4.6 shows differences between the GC3.05-PPE simulations and observations at the 
60km scale. When smoothed to this scale, the RCM-PPE distributions (not shown) reveal error 
characteristics similar to those found at 12km resolution (middle row). The global model substantially 
underestimates the fractional contribution from events above 20mm in winter. This is captured better in 
RCM-PPE, albeit with a spread of member-specific biases distributed around the observed values. In 
summer, the global and regional model ensembles both tend to overestimate events over 30mm at the 
expense of lighter daily accumulations. 

Figure 4.7.  Examples of heavy precipitation events simulated by RCM-STD. Left panels shows monthly average precipitation (mm/day) and sea 
level pressure contours (hPa) for October 2000 from NCIC and ERA-Interim observations (top), and from the ERAI-RCM-STD simulation driven by 
ERA-Interim lateral boundary conditions (bottom). Right panels show daily sea level pressure and precipitation fields for 24 September 1995 from 
the RCM-STD simulation (bottom), and the driving GCM-STD global simulation (top). This was the day on which RCM-STD simulated the highest 
value of precipitation in an individual 12km grid box, during the 1981-2000 period.  

In Figure 4.7 we show two specific examples of heavy precipitation events simulated by the regional model. 
The first relates to the floods of autumn 2000, which arose from the passage of a series of intense synoptic 
storms over the UK that led to insured losses exceeding £1 billion (Pall et al., 2011). The top-left panel 
shows the observed monthly averages of precipitation and circulation for October 2000, revealing high 
precipitation totals exceeding 8mm/day over most of the high ground on the western side of Great Britain, 
and also the South Downs. The ERAI-RCM-STD simulation, driven by the observed circulation, replicated 
the main features of the observed precipitation pattern well (Fig. 4.7, bottom-left panel). However, the 
maximum levels were underestimated, with areas exceeding 8mm/day absent from the South Downs, and 
confined to smaller areas than observed in South West England, Wales, the Lake District and Scotland.
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The right panels in Fig. 4.7 show an example of extreme daily precipitation, from RCM-STD. The driving 
GCM-STD model simulated two frontal systems on the relevant day, one situated over the South Western 
approaches, and the other extending from North East to South West over Scotland. The regional model 
replicates the low pressure system inherited from the driving model (centred off the coast of North East 
Scotland) and simulates the aforementioned frontal systems with greater spatial detail, showing more 
sharply-defined bands of precipitation maxima. The front over Scotland yielded the highest local 
precipitation event during the 1981-2000 simulation of RCM-STD.         

In summary, RCM-PPE provides significant added value to the simulation of regional variations in UK 
precipitation, especially in coastal areas and regions of high orography. Improvements are seen in both the 
climatological average and the representation of extreme heavy events. Benefits from enhanced resolution 
are also seen in the regional model simulations of surface air temperature, particularly in the replication of 
extreme winter cold days as well as in spatial patterns of long-term averages. In general, the regional 
ensemble simulates more precipitation compared with its driving global simulations, along with more 
extensive cloud cover. The latter contributes to the simulation of slightly cooler UK surface temperatures 
during spring and summer, compared with GC3.05-PPE. The global and regional simulations show similar 
spatial and seasonal characteristics in their simulations of interannual variability, for both surface air 
temperature and precipitation. Over the UK, however, RCM-PPE produces higher variability for precipitation, 
which improves the correspondence with observations.       

4.5. Future changes in the strand 3 projections

In this section, we provide a few examples of projected changes in the Strand 3 simulations for 2061-2080 
relative to 1981-2000, comparing with changes for the same period in GC3.05-PPE. A broader comparison 
between Strands 1-3 is provided in section 5.

For winter surface air temperature, Figure 4.8a shows the second lowest, central and second highest 
responses obtained by ranking locally the changes in the 12 member ensemble, at the native 12km 
resolution of the RCM. Use of the second lowest and second highest responses characterises the range of 
responses within the ensemble, while reducing the influence of any outliers. The central response is taken 
as that of the 7th ranked member. In general, different simulations will contribute the low, central or high 
responses in different regions, so the maps do not represent any specific model projection. The changes 
range from 1-3°C at the low end (dependent on location) to 3-4°C at the upper end. The UK average 
changes are 1.9°C, 3.1°C and 3.4°C for the low, central and high responses respectively. The gap between 
the central and high changes is narrower than in Strands 1 and 2 (see Fig. 5.4a and discussion in section 
5.1). This is because the other Strands contain information from multi-model simulations alongside 
perturbed parameter ensemble results, leading to a broader range of responses (sections 3.5 and 5.1).
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Figure 4.8a. Impact of dynamical downscaling on the range of changes in winter surface air temperature (°C) for 2061-2080 relative to 1981-2000, 
in the RCM-PPE projections. Top row shows the second lowest, central and second highest responses obtained by ranking the changes in the 12 
member ensemble locally, at the native 12km resolution of the RCM. Use of the second lowest and second highest responses reduces the influence 
of any outliers on the diagnosed ranges of change. The central response is taken as that of the 7th ranked member. In general, different simulations 
will contribute the low, central or high responses in different regions. Middle row shows differences between the top row, and the corresponding 
responses obtained when the relevant RCM-PPE members are smoothed to the ~60km horizontal resolution of the driving global simulations. This 
isolates spatial features simulated by the RCM at scales finer than the global model grid. The bottom row shows differences between the second 
lowest, central and second highest smoothed RCM-PPE responses and those of the 12 driving members of GC3.05-PPE, labelled here as GCM-PPE. 
This shows the impact of downscaling on the range of changes obtained at the finest scale resolved by the driving model. 

The bottom panels in Fig. 4.8a show differences48 between the low, central and high responses of RCM-PPE 
(when smoothed to the 60km global model grid) and those of the 12 driving simulations. Comparing 
against these, rather than the range given by the full 15 members of GC3.05-PPE, allows us to isolate 
cleanly the impact of downscaling at the 60km scale. The results show a modest cool shift in the 
distribution of changes, the largest values (of 0.4-0.5°C) occurring over parts of Scotland. Averaged over 
the UK, the low, central and high changes are 0.23°C, 0.14°C and 0.17°C cooler in RCM-PPE. The middle 
panels show the differences in the low, central and high responses in RCM-PPE at 12km resolution, 
compared to those at 60km resolution. This reveals the effects of downscaling at native regional model 
resolution, which are small for these climatological average changes in winter surface air temperature.

48  These are differences between the 2nd lowest, central and 2nd highest changes in each ensemble, rather than 2nd lowest, central and 2nd highest 
values of the twelve differences between each RCM-PPE member and its driving simulation.
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Figure 4.8b. As Fig 4.8a, for changes in summer surface air temperature for 2061-2080 relative to 1981-2000.

This is also the case for summer surface air temperature (Fig. 4.8b, middle row). However, at the global 
model grid scale the low-end changes are cooler by 0.1-0.4 °C in RCM-PPE, the largest differences 
occurring mostly in Southern England. At the upper end of the range, the impacts of downscaling vary in 
sign, with slightly higher warming in RCM-PPE (maximum differences 0-4.-0.5°C) at a number of coastal 
grid boxes in England and Wales. However, these effects are generally modest compared with the overall 
ranges of change in RCM-PPE (top panels). Typically, the difference in warming between the low and high 
outcomes amounts to ~1.5°C. The largest changes occur in Central and Southern England, in common with 
Strands 1 and 2 (see Fig. 5.4b). 
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Figure 4.8c. As Fig 4.8a, for changes in winter precipitation (%) for 2061-2080 relative to 1981-2000.

For winter precipitation (Fig. 4.8c, top row), increases of uncertain magnitude are projected in most regions, 
although the low-end changes show the possibility of reductions exceeding 10% over parts of Northern 
Scotland. The influence of local (sub-60km) scales on the lower and upper limits of the RCM-PPE ranges 
show a variety of values, approaching ±10% in specific locations. At the global model scale, the high-end 
changes in RCM-PPE are smaller (typically by 4-10%) in East Anglia, Southern England and in the lee of the 
Welsh mountains, with higher values in Northern Scotland. Along the Buchan coast, the low end of the 
range is also drier, leading to a significant increase in the range of responses compared to the driving 
simulations. Central changes are generally similar, the UK averages amounting to 17% in both the 12 driving 
global projections and RCM-PPE.

The RCM-PPE simulations show little future change in the occurrence of wet winter days. The increases in 
average precipitation arise mainly from increases in average wet-day intensity, which typically range from 
10-40%, dependent on ensemble member and location. Similar results are found in the 15-member multi-
model ensemble of 12km EuroCordex simulations, which consists of a partly-filled matrix of combinations 
of six RCMs and five driving CMIP5 models (Rajczak and Schär, 2017).  
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Figure 4.8d. As Fig 4.8a, for changes in summer precipitation (%) for 2061-2080 relative to 1981-2000.

Changes in summer precipitation (Fig. 4.8d) reveal a consistent drying response in RCM-PPE in most regions. 
The only exceptions are some coastal areas of Northern Scotland, where the high responses shows the 
potential for some small increases. The UK average reductions are 41% (low), 26% (central) and 18% (high). 
Rajczak and Schär (2017) find a smaller level of drying in the EuroCordex ensemble mentioned above. In 
this, spatial average changes for the British Isles49 revealed that three simulations gave a small increase 
(maximum value 10%), and twelve of the fifteen simulations simulated a drying. However, the largest 
reduction was only 28%, similar to the median result from Strand 3. 

49  The Rajczak and Schär results provide an approximate but not precise comparison with those of Fig. 4.8d. Their results are for average 
precipitation changes over the whole British Isles (including the Republic of Ireland), and consider the period 2070-2099 relative to 1981-2010. 
The average changes quoted from Strand 3 are for the UK, and consider 2061-2080 relative to 1981-2000.
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In RCM-PPE, changes in average wet-day intensity range from reductions of ~20% to increases of a similar 
magnitude. In contrast, there is a strong signal for reductions in the fraction of wet days. These typically 
vary between 10% and 50% across ensemble members and regions of the UK, with the largest reductions 
occurring in Southern England and Wales. Most of the EuroCordex simulations show an increase in average 
wet-day intensity and a reduction in wet-day fraction in summer. The ensemble average increase in wet-
day intensity over the British Isles is 5.2% (Rajczak and Schär, 2017), compared with an ensemble average 
reduction of 3.3% over the UK in RCM-PPE. For wet-day fraction, only two of the fifteen EuroCordex 
members project changes for the British Isles that are larger than the ensemble-mean reduction of 26% (in 
the UK average) that is found in RCM-PPE.

In summer, the local contributions to the RCM-PPE ranges of change in average precipitation amount 
typically to a few percent (Fig. 4.8d), with broader uncertainties in the 60km-scale changes. In the low-end 
responses, the RCM-PPE results show slightly smaller decreases in precipitation than their driving model 
counterparts over Southern England and South Wales, however the downscaled changes still show 
reductions exceeding 40% in these regions. The effects of downscaling also ameliorate the drying in the 
central outcomes by a few percent, over much of England and Wales. 

Figure 4.9a. Second lowest, central and second highest projected changes in surface air temperature (°C) on cold winter days in RCM-PPE, for 
2061-2080 relative to 1981-2000. Cold winter days are defined as in Fig 4.5a. Top row shows the ranges of response given by ranking locally the 
responses of the 12 members of GC3.05-PPE that drove members of RCM-PPE, with the central projection defined as the 7th ranked response. In 
general, different simulations will contribute the low, central or high responses in different regions. Middle row shows corresponding ranges from 
RCM-PPE itself, following regridding of RCM results to the GC3.05 60km grid. Bottom row shows changes from RCM-PPE at its native 12km 
resolution, revealing local detail at scales unresolved by GC3.05.
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Projected changes in surface air temperature values associated with cold winter days are presented in 
Figure 4.9a, for 2061-2080 relative to 1981-2000. These results employ the same metric of cold extremes 
evaluated against observations in Fig. 4.5a. They represent a future change in the intensity of a typical 
coldest day in winter, compared with the baseline period. The top row shows low, central and high changes 
from the 12 driving GC3.05-PPE projections, compared against those from RCM-PPE (at the 60km scale) in 
the middle row. 

In GC3.05-PPE, the central warming for cold winter days is substantial over Northern England and Scotland, 
reaching up to 9°C in places. The high-end changes (which often exceed 10°C in these regions) are smaller 
in RCM-PPE. The UK averages of the high-end warming are 7.3°C (GC3.05-PPE) and 6.6°C (RCM-PPE). 
However, these differences, while important, are relatively small compared with the substantial uncertainty 
ranges across either ensemble. In RCM-PPE, for example, the UK average of the low-end change is 3.9°C. 
The bottom row of panels in Fig. 4.9a shows RCM-PPE changes at 12km resolution, revealing a more 
detailed spatial pattern that shows many of the largest increases occurring in high-elevation locales, in 
common with other studies (e.g. Kotlarski et al., 2015).

Figure 4.9b. As Fig. 4.9a, for low, central and high local projections of change in hot summer days, defined as in Fig. 4.5a.
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Changes in the intensity of hot summer days (Fig. 4.9b) show increases everywhere, with broad uncertainty 
ranges. The UK average changes in RCM-PPE are 3.8°C, 5.9°C and 6.8°C for the low, central and high 
outcomes. For this variable, the additional spatial detail in the changes at 12km resolution (bottom row) 
reveals slightly smaller high-end changes in eastern coastal regions. Changes in GC3.05-PPE (top row) are 
larger at the low end of the uncertainty range of the smoothed 60km-scale changes in RCM-PPE, middle 
row), especially over Northern England and Scotland. The high-end changes are also slightly higher over 
parts of Wales and Southern England. 

Figure 4.10a. As Fig. 4.9a, for low, central and high local projections of change in precipitation (%) on extremely wet winter days, defined as in Fig. 4.5b. 
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Figure 4.10b. As Fig. 4.10a, for low, central and high local projections of change in precipitation on extremely wet summer days, defined as in Fig. 4.5b. 

Figures 4.10a,b show changes in the intensity of extreme wet days in winter and summer, based on the 
metric of Fig. 4.5b. In winter, the changes in RCM-PPE and GC3.05-PPE are quite similar. The central 
changes show increases exceeding 20% over most of England and Wales, with generally smaller values in 
Northern Ireland and most of Scotland. Low-end changes range from reductions in parts of Northern 
Ireland and Scotland, to increases exceeding 10% in parts of England and Wales. High-end increases 
exceed 30% in most parts of the UK, and exceed 50% locally in the 12km-scale RCM-PPE results. The 
projected increases in extreme winter precipitation are larger than corresponding changes in the 
climatological average (Fig. 4.10a cf 4.8c). The UK average of the central changes in RCM-PPE is 20%, for 
example, compared with 17% for 20-year mean precipitation. This implies a change in the shape of the 
distribution of daily events, shown in Fig. 4.11 below. 

In summer (Fig 4.10b), the ranges of change in extreme wet day intensity span both increases and 
decreases. Average UK changes in RCM-PPE are -21.8% (low), -6.6% (central) and 8.0% (high). In Southern 
England and South Wales, decreases (in the central and low-end changes) are typically larger in GC3.05-
PPE than in RCM-PPE. In Scotland, increases in the central change are more widespread in GC3.05-PPE, 
and the intensity of increases at the high end is generally larger. 
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Figure 4.11 As Fig. 4.6, for future changes in the fractional contribution to total UK precipitation from each bin, for 2061-2080 relative to 
1981-2000.

Projected changes in the frequency of wet days are typically smaller than 10% in winter, whereas 
substantial decreases are predicted by both GC3.05-PPE and RCM-PPE in summer, with central changes 
(not shown) amounting to more than 30% in Southern England. In Figure 4.11, we show (for the UK as a 
whole) how the distribution of regional daily precipitation events changes, relative to the baseline 
distributions of Fig. 4.6. In both seasons, the global and regional model projections show an increase in the 
fractional contribution of heavy events, at the expense of lighter daily accumulations50. The switch from 
reductions to increases occurs at ~20mm in winter and in the range 20-50mm in summer. 

50 The only exception is that the fractional contribution from the lightest summer events increases slightly. 
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The changes are quite consistent between GC3.05-PPE and RCM-PPE, and the characteristics of the 
regional model changes do not depend significantly on whether they are calculated on its native grid, or 
following smoothing to the global model grid. Since these distributions use daily data from all UK locations, 
they cannot be related to specific regional changes in extreme intensities (e.g. Fig. 4.10a,b). Nevertheless, 
the general shift to heavier events is consistent between ensemble members and the two seasons. The 
results are also qualitatively consistent with other regional climate model projections for Europe (e.g. 
Beniston et al., 2007). 

Overall, the results of Figs. 4.8-4.11 demonstrate (as expected) a high degree of consistency between 
national-scale responses in the GC3.05-PPE and RCM-PPE projections. This applies both to changes in 
long-term averages of surface air temperature and precipitation, and to changes in extreme events. The 
enhanced spatial resolution in the regional simulations adds detail to the patterns of change at their native 
12km scale. It also leads to modifications to the projected changes at larger scales resolved by the driving 
global projections. Taken together, these results provide support for the use of Strand 3 in stakeholder 
applications requiring detailed regional information (see section 4.1). This includes applications involving 
development of case studies or narratives, in which local consistency with larger scale circulation, 
temperature or precipitation changes is particularly important.  

5. Projections of future variability and change for the UK 
In this section we present projected changes for the UK under RCP8.5 emissions, comparing results from 
each Strand. The main focus is placed on surface air temperature and precipitation. A limited selection of 
results is shown in section 5.1, in order to highlight some key features of the projections, including 
differences between the ranges of future change produced by the three Strands. Additional results are 
provided in Lowe et al. (2018). In section 5.2, we provide some general guidelines on how to interpret and 
use the results, in the light of the different constructions and purposes of Strands 1-3. 

5.1. Comparison of projections from strands 1-3

Figure 5.1 shows changes expressed per unit rise in GMST for England and Scotland. These are calculated 
by regressing winter and summer anomalies in surface air temperature and precipitation against annual 
GMST changes during the 21st century. The results provide a basic measure of uncertainties in spatial 
patterns of climate change, independent of uncertainty in the time evolution of GMST (see also the 
international normalised changes of Fig 3.23, and associated discussion in section 3.5). The ranges of values 
reflect the effects of both modelling uncertainties and internal variability. They contribute to the spread of 
time-dependent UK changes discussed later, and are particularly relevant to studies of impacts and risks 
associated with specific global warming targets (e.g. Clark et al., 2010).

The Strand 1 probability distributions provide the broadest uncertainty ranges, in all cases. For surface air 
temperature, the Strand 2 and 3 results all lie within the 10-90% range of the probabilistic projections. For 
precipitation in England, three CMIP5-13 members exceed the 90% probability level of Strand 1 in summer, 
and one in winter. In the winter case, the relevant CMIP5-13 member gives a much higher response 
(approaching 15% per °C) than other Strand 2 projections. For precipitation in Scotland, two RCM-PPE 
members and one CMIP5-13 member give small negative normalised responses in winter, below the 10% 
probability level of Strand 1. Also, most of the Strand 2 and 3 projections lie below the median response from 
Strand 1. In summer, all the Strand 2 and 3 simulations lie within the 10-90% probability range of Strand 1.
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In winter, there is a substantial degree of overlap between the GC3.05-PPE and CMIP5-13 ensembles of 
Strand 2, with CMIP5-13 showing a wider spread. However, this is due mainly to extension of the range by 
one ensemble member, particularly in the case of precipitation. In summer, the GC3.05-PPE and CMIP5-13 
ranges of normalised response show offsets not apparent in winter. Consequently, the range of the 
combined set of 28 projections is always larger than the range of either constituent ensemble in isolation. 
For surface air temperature in Scotland, GC3.05-PPE samples outcomes mainly above the median Strand 1 
value, whereas CMIP5-13 outcomes are distributed more evenly above and below the Strand 1 median. 
Three CMIP5-13 members simulate an increasing trend in average English summer precipitation, whereas 
consistent summer drying signals are found in GC3.05-PPE members and HadCM3-based PPEs (Murphy et 
al., 2014; Sexton et al., 2016). The Strand 1 distributions in Fig. 5.1 reflect the combination of these results 
with the (typically) weaker drying signals, or modest increases, found in CMIP5 earth system models. 

Figure 5.1. Projections of normalised changes during the 21st century under RCP8.5 emissions for surface air temperature (left panels, °C per °C) 
and precipitation (right panels, % per °C), expressed per unit increase in GMST. Changes for DJF (lower panels) and JJA (upper panels) are expressed 
relative to a 1981-2000 baseline, and are calculated by linearly regressing seasonal changes for England and Scotland against annual changes in 
GMST. Boxes and whiskers denote the 5, 10, 25, 50, 75, 90 and 95% probability levels of the Strand 1 probabilistic projections. Orange dots (with 
STD in red) denote members of GC3.05-PPE, and blue dots show those of CMIP5-13 (Strand 2). Pink dots show members of RCM-PPE, with 
RCM-STD in purple (Strand 3). The regressions are derived from 1980-2100 data for Strands 1 and 2, and 1980-2080 for Strand 3, as the 
RCM-PPE simulations were not extended to 2100. 
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The HadCM3- and GC3.05-based PPEs were both developed from UK climate models. Their land surface 
components are structurally similar, however the two models contain many structural differences, including 
their representations of atmospheric dynamics, large-scale cloud and boundary layer processes (Walters et 
al., 2017). The overall ranges of response seen in Strands 1 and 2 for GMST (Fig.3.20), and patterns of 
response (Fig. 5.1), are therefore a consequence of combining three quasi-independent lines of modelling 
evidence, namely: HadCM3-based PPEs (Strand 1), GC3.05-PPE (Strand 2) and CMIP5 multi-model 
ensembles (Strands 1 and 2, via emissions- and concentration-driven experiments respectively).

Ranges of normalised change from Strand 3 are generally similar to those in the driving GC3.05-PPE 
simulations. This is not surprising, as impacts of high resolution downscaling are likely to be greater at local 
scales than in the national averages of Fig. 5.1. A few differences are apparent: For example, RCM-STD 
produces a small negative change in Scottish winter precipitation per unit rise in GMST, whereas its driving 
global projection (STD) simulates a small increase. However, much of this contrast arises from the final 20 
years of the STD simulation (2081-2100), as it is only during this period that a consistent increase in 
Scottish winter precipitation emerges. This period is not included in the RCM simulations, which stop at 
2080 (section 4.3).  

Projected changes for 2061-2080 relative to 1981-2000 are shown in Figure 5.2, for England and Scotland. 
The changes in Fig. 5.2 are influenced by projected responses in GMST, as well as by the normalised regional 
responses of Fig. 5.1. In the Strand 2 projections, the ranges of winter changes given by GC3.05-PPE and 
CMIP5-13 (Fig. 5.2, lower panels) show considerable overlap. The combined set of projections lie within the 
5-95% probability range of the Strand 1 projections, for both regions and both variables. For winter surface air 
temperature, no Strand 2 projections lie below the 10% probability level of the Strand 1 distribution for either 
Scotland or England. These results reflect the broader sampling in Strand 1 of low-end responses in both the 
normalised response (Fig. 5.1), and in GMST changes (Fig. 3.20). For winter precipitation, the Strand 2 
projections sample the range of Strand 1 outcomes quite well, with the exception that only one Strand 2 
simulation lies above the 75% probability level of Strand 1 changes for Scotland.  

The set of Strand 2 projections give summer surface air temperature outcomes covering the top three 
quartiles of the Strand 1 probability distributions for Scotland, and the 10-90% probability range for England 
(Fig. 5.2, upper left panel). The GC3.05-PPE projections lie almost entirely (for Scotland), or mostly (for 
England) above the 25% probability level, due to the combined influences of the high levels of GMST response 
(Fig. 3.20) and relatively strong normalised regional responses (Fig. 5.1). Several GC3.05-PPE members lie 
above the 90% probability level for both countries. Most of the CMIP5-13 projections give smaller levels of 
summer warming than any of the GC3.05-PPE members. However, as in winter, none lie below the 10% 
probability level for either Scotland or England.  

In summer, precipitation changes from Strand 1 show broad distributions (Fig 5.2, upper right panel), with 
5-95% probability ranges encompassing a small increase to a ~60% reduction for England, and an increase of 
~15% to a reduction of ~40% for Scotland. For England, the set of Strand 2 projections gives a wide spread of 
changes that covers almost fully the 5-95% range from Strand 1, and also includes one projection lying above 
the wet end of this range. There is little overlap between the GC3.05-PPE changes and those of CMIP5-13, 
which mostly sample responses below and above the median of Strand 1 respectively. In this case, the 
combination of the two ensembles substantially broadens the range of projected changes available from 
Strand 2.  For Scotland, there is more overlap between the GC3.05-PPE and CMIP5-13 ensembles, although 
only CMIP5-13 provides examples of projections lying in the upper quartile of the Strand 1 distribution, and all 
of the Strand 2 projections in the lower quartile arise from GC3.05-PPE.
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Figure 5.2. Projected changes for 2061-2080 relative to 1981-2000 for Scotland and England in DJF (lower panels) and JJA (upper panels), under 
RCP8.5 emissions. Results are shown for surface air temperature (left panels, °C) and precipitation (right panels, %). Boxes and whiskers denote the 
5, 10, 25, 50, 75, 90 and 95% probability levels of the Strand 1 probabilistic projections. Orange dots (with STD in red) denote members of 
GC3.05-PPE, and blue dots show those of CMIP5-13 (Strand 2). Pink dots show members of RCM-PPE, with RCM-STD in purple (Strand 3). 

The Strand 3 surface air temperature projections for Scotland and England show similar ranges of change to 
GC3.05-PPE, as is the case for their normalised responses (Fig. 5.2 cf Fig. 5.1). The RCM-PPE changes are 
slightly cooler compared with the 12 driving members of GC3.05-PPE (see Fig. 4.8a,b, discussed in section 
4.5). This is reflected in the envelopes of change for both countries in summer, and for Scotland in winter, 
which show a small shift to cooler responses in Strand 3. Note, however, that in Fig. 5.2 we compare RCM-
PPE against all 15 GC3.05-PPE members, including the three members which were not used to drive 
regional model projections. For precipitation, the ranges of change within the RCM-PPE and GC3.05-PPE 
ensembles are similar, as for surface air temperature. The only exception is winter changes for England, for 
which GC3.05-PPE produces two projections that are outliers with respect to the other ensemble 
members, and also lie respectively below and above the range given by RCM-PPE. The outlier at the low 
end of the range was not downscaled in Strand 3. The outlier at the high end was downscaled, and 
produces the highest response amongst RCM-PPE members, albeit somewhat smaller than the increase in 
the driving global simulation. 

www.metoffice.gov.uk


 Source: Met Office © Crown Copyright 2018www.metoffice.gov.uk Pg 121 of 191

In comparing results from Strands 1-3, it is important to bear in mind the differing nature of the products. 
The Strand 1 results are derived from large samples of potential outcomes and are formally constrained by 
a set of observables. This allows them to be interpreted as probabilistic estimates conditional on the 
climate modelling inputs and expert assumptions used in their construction (see section 2.1, also discussion 
in 5.2 below). On the other hand, Strands 2 and 3 provide limited sets of individual projections with full 
spatial and temporal coherence. They are intended to be useful for impacts assessments and development 
of storylines (section 1.3), but not to support a probabilistic interpretation. For example, it would not be 
appropriate to simply count the number of Strand 2 simulations lying above or below a given level of 
response in Fig 5.2, and ascribe a likelihood of exceeding that response for comparison with the 
corresponding probability from Strand 1.

Figure 5.3a. Maps of changes in winter surface air temperature for 2061-2080 relative to 1981-2000 under RCP8.5 emissions, from individual 
projections selected from Strands 2 and 3. The projections are selected by ranking the UK-average changes, and selecting those giving the lowest, 
central and highest values within the set of 28 Strand 2 members or 12 Strand 3 members. The central members correspond to those ranked 15th 
and 7th lowest respectively. For Strand 2, the UK average changes are 1.4°C, 2.6°C and 3.6°C for the low, central and high members. The low UK 
average response is from the CESM1-BGC model, and the others from GC3.05-PPE members. For Strand 3, the UK average changes from 
RCM-PPE members are 1.8°C, 3.2°C and 3.6°C. 
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Figure 5.3b. As Fig. 5.3a for changes in summer surface air temperature for 2061-2080 relative to 1981-2000 under RCP8.5 emissions, from 
individual projections selected from Strands 2 and 3. The central members correspond to those ranked 15th and 7th lowest respectively. For Strand 
2, the UK average changes are 1.7°C, 4.2°C and 5.4°C for the low, central and high members. The low UK average response is from the GFDL-
ESM2G model, the central response from the CanESM2 model, and the high response from a GC3.05-PPE member. For Strand 3, the UK average 
changes from RCM-PPE members are 3.6°C, 4.9°C and 5.2°C.

In addition, it should not be assumed that the set of Strand 2 or Strand 3 projections will necessarily show a 
higher concentration of outcomes close to the middle of their ranked set of responses. See, for example, the 
summer temperature changes from Strand 2 in Fig. 5.2, also Figs. 3.20 and 3.24a discussed in section 3.5, 
and Figs. 5.6a described below. This is another illustration of the non-probabilistic nature of these Strands. 
In contrast, the Strand 1 probability distributions take unimodal forms (e.g. Figs. 2.8 and 2.9) in which the 
highest concentration of outcomes usually lies close to the median. However, the outcome of maximum 
relative probability (the “mode” of the relevant distribution) does not, in general, coincide precisely with the 
median.

In Figure 5.3a-d we show examples of projected surface air temperature and precipitation changes for 
2061-2080 relative to 1981-2000, from individual members of Strands 2 and 3. The maps show regional 
changes from the members of each Strand possessing the lowest, central and highest changes for the 
relevant UK average, for winter and summer. The central member is taken as that with the 15th and 7th 
lowest-ranked UK-average response, for Strands 2 and 3 respectively. Maps showing changes given by each 
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of the 28 Strand 2 projections are available from the UKCP18 User Interface (https://ukclimateprojections-
ui.metoffice.gov.uk/). The individual projections of change in winter surface air temperature show rather 
uniform patterns (Fig. 5.3a). Regional changes lie almost always within 1°C of the relevant UK average 
response. These amount to 1.4°C, 2.6°C and 3.6°C for the low, central and high members of Strand 2, and 
1.8°C, 3.2°C and 3.6°C for those of Strand 3. The maps of change in summer air temperature show larger 
regional variations than their winter counterparts, especially for the central and high projections, with larger 
warming over England and Wales than in Scotland. These spatial variations are discussed further below, in 
the context of Figure 5.4b.

Figure 5.3c. As Fig. 5.3a for changes in winter precipitation (%) for 2061-2080 relative to 1981-2000 under RCP8.5 emissions, from individual 
projections selected from Strands 2 and 3. For Strand 2, the UK average changes are 2%, 14% and 35% for the low, central and high members. The 
low UK average response is from the BCC-CSM1.1 model, and the central and high responses from GC3.05-PPE members. For Strand 3, the UK 
average changes from RCM-PPE members are 8%, 16% and 29%.

The winter precipitation maps (Figs. 5.3c) show examples consistent with different national-scale levels of 
increase. The UK average changes in Strand 2 range from 1.9% (low) through 14% (central) to 35% (high). 
The Strand 3 examples show high resolution spatial details absent from the Strand 2 projections, such as 
enhanced changes near the South Wales and Southern England coasts in the central projection, and in the 
Lake District in the high projection. Generally, the ranking of regional changes follows the ranking in the UK 
average response (as for the surface air temperature changes). However, the central projection from Strand 
3 shows reductions over North East Scotland (exceeding 10%, and 20% in some locations) that are larger 
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than any reductions seen in the low projection. This demonstrates that individual projections possessing 
low, central or high national outcomes cannot necessarily be assumed to give corresponding changes 
locally.

Figure 5.3d. As Fig. 5.3c for changes in summer precipitation (%) for 2061-2080 relative to 1981-2000 under RCP8.5 emissions, from individual 
projections selected from Strands 2 and 3. For Strand 2, the UK average changes are -47%, -21% and 10% for the low, central and high members. 
The low UK average response is from a GC3.05-PPE member, the central response is from the GFDL-ESM2G model and the high response from the 
CNRM-CM5 model. For Strand 3, the UK average changes from RCM-PPE members are -44%, -26% and -16%.

In summer (Fig. 5.3d), the Strand 2 examples range from a substantial drying (a 47.6% reduction in the UK 
average for the low projection) to a modest increase (10.4% increase for the high projection). The low and 
central Strand 3 projections show similar UK average changes to those of Strand 2, which are contributed 
by members of GC3.05-PPE. However, the high projection from Strand 3 gives a drying in the UK average of 
16.4%. This contrasts with the 10.4% increase in the high Strand 2 member, which is provided by a CMIP5-
13 model. As in winter, the Strand 3 maps show examples of detailed spatial variability arising from the 
downscaling capability in RCM-PPE. However, the broader scale patterns in the low and central projections 
are similar to their Strand 2 equivalents, with the strongest reductions in precipitation generally occurring 
over England and Wales. 
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Figure 5.4a. The top row shows 10, 50 and 90% probability levels of changes in surface air temperature in winter from the probabilistic projections, 
for 2061-2080 relative to 1981-2000 under the RCP8.5 emissions scenario. The values represent the chance of an outcome lower than the 
relevant probability level, conditional upon the modelling evidence, methodology choices and assumptions used in Strand 1 (see text). The middle 
and bottom rows show low, central and high local changes selected from the set of 28 global climate model projections of Strand 2 (middle row, 
obtained by combining GC3.05-PPE and CMIP5-13), and the 12 regional climate model projections (RCM-PPE) of Strand 3 (bottom row). The 
Strand 2 and 3 results are obtained by considering each spatial location separately, and ranking the relevant set of local responses (x = 1 → N, where 
N=12 or 28) into ascending order. We then identify “low”, “central” and “high” projections as members close to the 10th, 50th and 90th percentiles of 
a frequency distribution of outcomes defined by the relevant set of N projections, assuming that member x represents percentile (x-1)*100/N. 
Thus, the 4th lowest and 4th highest responses define the range for Strand 2, and the 2nd lowest and 2nd highest for Strand 3. This provides estimates 
of spread which reduce sensitivity to any outliers, in a manner broadly consistent with the Strand 1 maps. Central estimates are provided by the 
15th and 7th ranked members, in Strands 2 and 3 respectively. Although we choose low, central and high members of Strands 2 and 3 by considering 
the relevant set of outcomes as a frequency distribution, the outcomes should not be interpreted probabilistically, as explained in the text. Strand 
1-3 results are all shown on their native spatial grids, of resolution 25, 60 and 12km respectively.         
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In Figure 5.4a-d, we show a different presentation of how projected changes vary across the UK, including 
Strand 1 alongside Strand 2 and 3. As in Fig. 5.3a-d, we consider changes in surface air temperature and 
precipitation for 2061-2080 relative to 1981-2000. However, in Fig. 5.4a-d we compare local ranges of 
response found in Strands 1-3. For the probabilistic projections, the maps show the 10, 50 and 90% 
probability levels of change. These represent the levels of warming or precipitation change for which the 
Strand 1 methodology predicts a 10, 50, or 90% chance that a lower change will occur. The 50% level is the 
median change, and the 10% and 90% levels provide lower and upper estimates of the associated 
uncertainty ranges. For Strands 2 and 3, we consider each spatial location separately, and rank the local 
responses of the relevant (28 or 12 member) set of projections from low to high, plotting the responses 
from members that correspond approximately to the 10th, 50th and 90th percentiles of the ranked set, when 
considered as a frequency distribution of outcomes (details in caption of Fig. 5.4a). These members 
correspond to the 4th lowest, 15th lowest and 4th highest response in Strand 2, and the 2nd lowest, 7th lowest 
and 2nd highest response in Strand 3. 

Our choice of 10-90% probability intervals for Strand 1, and (approximate) 10th-90th percentile intervals for 
Strands 2 and 3, allows us to compare local ranges of change across the Strands using metrics that treat 
extreme outcomes in a consistent fashion. In particular, this choice reduces the sensitivity of the diagnosed 
ranges from Strands 2 and 3 to any outlier responses (e.g. Fig. 5.2). In the discussion of Fig. 5.4a-d below, we 
refer to the 10%, 50% and 90% probability levels from Strand 1 as “low”, “central” and “high” responses, for 
convenient comparison with Strands 2 and 3. We also refer to the difference between the low-end and 
high-end responses as the “range”. However, we emphasise again (noting the earlier discussion of Fig. 5.2) that:

• The Strand 2 and 3 results should not be interpreted probabilistically.

• Since Strand 1 is designed explicitly to provide assessments of uncertainty, the 10 and 90% probability 
levels from Strand 1 should be taken as the primary source of information on ranges of potential future 
change. 

Note also that different Strand 2 or 3 members contribute the low, central or high outcomes in different 
regions in Fig. 5.4a-d, in contrast to Fig. 5.3a-d. Therefore, the maps in Fig. 5.4a-d should not be interpreted 
as examples of spatial patterns that might be simulated in an individual projection. 

In winter, central changes in surface air temperature invariably lie between 2°C and 3°C for Strands 1 and 2. 
Strand 3 central changes are mostly in the range 3-4°C, but below 3°C over Northern Ireland and a few 
(mainly coastal) regions of Great Britain. Averaged over all locations, the values are 2.4°C (Strand 1), 2.7°C 
(Strand 2) and 3.1°C (Strand 3). In Strand 3, the effects of downscaling cause a modest cool shift in the 
distribution of changes in RCM-PPE, compared to the driving GC3.05-PPE simulations (Fig. 4.8a). Despite 
this, central responses in Strand 2 are generally lower than in Strand 3, due to the inclusion of CMIP5 
models in the former. The cooler UK responses in CMIP5-13, compared with GC3.05-PPE, arise mainly from 
the higher levels of GMST warming in GC3.04-PPE (Fig. 3.20). Differences in normalised regional responses 
are not a major influence, because the envelopes of CMIP5-13 values are not shifted lower compared with 
GC3.05-PPE (Fig. 5.1). 

The ranges of response are broadest in Strand 1. These reveal potential outcomes below 1°C at the lower 
end, and above 4°C at the upper end, which are not represented in Strands 2 or 3. The UK averages of the 
low-end changes are 0.7°C, 1.6°C and 1.9°C for Strands 1-3 respectively, and 4.2°C, 3.6°C and 3.4°C for 
the high-end changes. The similarity in the high outcomes for Strands 2 and 3 occurs because these arise in 
both cases from pairs of global and regional PPE projections.
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The winter surface air temperature changes in Fig. 5.4a show only modest spatial contrasts (in some cases 
<1°C across the entire UK), as in Fig. 5.3a. For a given level of response, these are much smaller than the 
regional uncertainty ranges for the relevant Strand. Some downscaling effects are apparent, mainly through 
better resolution of maritime influences in limiting warming in coastal regions. These can be seen in the 
central response map for Strand 3 and the high response map for Strand 1. However, downscaling 
influences precipitation changes (discussed below) more substantially than changes in surface air 
temperature. 

Figure 5.4b. As Figure 5.4a, for surface air temperature changes in summer.
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In summer (Fig. 5.4b), Strand 1 again shows the possibility (at its 10% probability level) of warming below 
1°C nationwide, whereas corresponding low-end outcomes are typically 1-3°C in Strand 2 and 3-5°C in 
Strand 3. However, the high responses in Strands 2 and 3 reach similar levels to Strand 1, which is not the 
case in winter. The UK average values are 5.4°C in Strand 1, 5.1°C in Strands 2 and 5.2°C in Strand 3. This 
reflects the relatively strong normalised regional responses found in GC3.05-PPE and RCM-PPE, which 
exceed the central Strand 1 value in all members for Scotland, and most for England (Fig. 5.1).

The UK averages of central changes are 3.1°C (Strand 1), 4.2°C (Strand 2) and 4.8°C (Strand 3). These 
exceed their winter counterparts, with substantial differences occurring in Strands 2 and 3. In winter, the 
projected changes are reduced by the effects of relatively weak values of normalised change (values are 
well below unity in most Strand 2 and 3 simulations, see Fig. 5.1). However, normalised changes are larger in 
summer than in winter in most CMIP5-13 members, as well as in the GC3.05-PPE and RCM-PPE 
projections. 

In general, the summer surface air temperature changes in Fig. 5.4b show greater spatial contrast than in 
winter, as in the individual projections of Fig. 5.3b. The smallest warming occurs in North West Scotland, 
with progressively larger values to the south and east. In the Strand 2 simulations (McSweeney et al., 
2018b), and in HadCM3-based PPE simulations contributing to Strand 1 (Joshi et al., 2008), continental 
landmasses warm more than the oceans. In Strand 2, for example, the average normalised response 
exceeds 1.25°C per unit rise in GMST over the whole of continental Europe in JJA, for both GC3.05-PPE 
members and CMIP5-13 members. This compares to less than 0.75°C per °C over central parts of the 
North Atlantic Ocean. It is likely, therefore, that the larger summer responses over Southern and Eastern 
England are related to the greater influence of continental Europe on this region, compared to the stronger 
maritime influence to the north and west. In winter, the dominance of the maritime influence extends 
further south and east. This is consistent with the presence of stronger prevailing south-westerly flow in the 
climatological near-surface wind pattern. 

For winter precipitation (Fig. 5.4c), central changes by 2061-2080 show increases everywhere for Strand 2, 
and in all regions except parts of Northern Scotland for Strands 1 and 3. The high-end changes show 
increases of varying magnitude in all Strands, revealing that substantial changes cannot be ruled out. The 
UK average of high responses amounts to 35%, 27% and 28%, in Strands 1-3 respectively. The UK averages 
of the central changes are 16%, 14% and 17%. At the low end of the uncertainty ranges, the results 
demonstrates that modest reductions in precipitation (up to 10%) are plausible, with potential for 
reductions exceeding 10% in parts of Northern Scotland. In Strand 1, the UK average of the low changes is 
a small reduction (-1%). For Strand 2 and 3, the UK averages are positive, amounting to 2% and 5% 
respectively. The 12km RCM simulations in Strand 3 provide enhanced regional detail, which is particularly 
clear in the high response map. This shows sharper definition of enhanced changes in most westward-
facing coastal regions of Great Britain, compared to the Strand 2 results. Evidence of downscaling effects is 
also apparent in the high response map from Strand 1, which includes information from RCM simulations at 
25km resolution (section 2.2, Stage 3). Here, clear coastal enhancements are found in North Eastern 
Scotland and Southern England, with westward facing effects more patchy than in Strand 3.
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Figure 5.4c. As Figure 5.4a, for winter precipitation changes (%). 
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Figure 5.4d. As Figure 5.4b, for summer precipitation changes (%).
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In summer (Fig. 5.4d), the central changes show reductions in precipitation at all locations in all Strands. 
These range from 0-10% to over 40%, with UK average values of -23% (Strand 1), -22% (Strand 2) and 
-26% (Strand 3). The low response maps show that substantial reductions exceeding 50% are possible over 
England and Wales. Values of high-end changes from Strand 1 demonstrate that modest increases in 
summer precipitation are also plausible, in many parts of the UK (average value 2%). Strands 2 and 3 also 
show small high-end increases in parts of Scotland and eastern England, although UK average values are 
negative (-6% and -17% respectively). Differences between the ranges of change reflect the different 
constructions of the Strands. Over much of England and Wales, Strand 3 shows reductions exceeding 20% 
even for the high-end changes, because it is built entirely from a PPE that produces a consistent drying 
signal across its members. The central responses in Strand 3 are 5-10% drier than in Strands 1 and 2 in 
many locations (especially in much of England and Wales), but the spatial contrasts are smaller than for the 
high responses. The broader response ranges in Strands 1 and 2 result from the influence of CMIP5 models, 
particularly over England where CMIP5 provides a few projections showing an increase in summer 
precipitation, whereas the PPEs show only decreases. This is true for Strand 1 (not shown), as well as Strand 
2 (Fig. 5.2 and related discussion). The EuroCordex RCM simulations for RCP8.5 are driven by five CMIP5 
models, four of which are members of CMIP5-13. These also provide a few examples showing small 
increases in summer precipitation (see Racjzak and Schär (2017), discussed in section 4.5).

In Figure 5.5 we investigate the relationship between changes in atmospheric circulation and the changes in 
summer precipitation discussed above. For this we consider the summer North Atlantic Oscillation (SNAO). 
This is identified as the leading observed pattern of interannual variability in July-August sea-level pressure 
(SLP) in the North Atlantic/Europe sector, using empirical orthogonal function (EOF) analysis (Folland and 
Knight, 2009). Following Bladé et al. (2012), we show the SNAO (Fig. 5.5, top left panel) as a map of spatial 
correlations between local SLP variations and those of the principal component of the leading EOF. The 
resulting pattern has a more northerly location and a smaller spatial scale than the winter NAO pattern. The 
SNAO exerts a substantial influence on summer precipitation in North West Europe (including the UK) and 
the Mediterranean (see Fig. 5.5, bottom left panel). Specifically, the positive phase of the SNAO is associated 
with high SLP anomalies over the UK, and lower-than-average seasonal precipitation.

Also shown in Fig. 5.5 are ensemble-mean patterns of the SNAO, and associated precipitation anomalies, 
for GC3.05-PPE and CMIP5-13. Most members of both ensembles simulate an SNAO pattern showing 
positive and negative dipoles in similar locations to observations, with a negative correlation between the 
SNAO phase and July-August precipitation over the UK and NW Europe. Note, however, that this is not the 
case for all the members (not shown in Fig. 5.5): Several members in both ensembles position the southern 
dipole too far west into the Atlantic, and/or fail to represent the observed relationship with UK precipitation. 
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Figure 5.5. Relationship between future changes in UK precipitation and atmospheric circulation in summer, diagnosed from transient climate 
change simulations used in the construction of Strands 1 and 2. The top left panel shows the observed summer North Atlantic Oscillation (SNAO) 
for the period 1950-2010. Following Bladé et al. (2012), it is identified as the leading empirical orthogonal function (EOF) of observed anomalies of 
sea level pressure (SLP, from HadSLP2) for July-August in the region 40-70°N, 90°W-30°E. The EOF pattern is expressed as the spatial pattern of 
correlations between the time series of its principal component (the SNAO time series), and local SLP anomalies. For the GC3.05-PPE and 
CMIP5-13 ensembles, the SNAO is identified separately for each ensemble member, using whichever of the first and second EOFs that corresponds 
most closely to the observed SLP pattern. Spatial correlation patterns are then calculated from the SNAO and SLP time series for each member, 
and these are averaged to give the two ensemble-mean patterns shown in the centre and right panels in the top row. The middle row shows 
patterns of local correlations between the SNAO time series and regional precipitation anomalies during 1950-2010, corresponding to the panels 
above. Observed precipitation is taken from the GPCP dataset. The bottom panel shows the relationship between projected changes in UK average 
precipitation (%) and the SNAO for July-August, for 2061-2080 relative to 1981-2000 under RCP8.5 emissions. In addition to changes from the 
GC3.05-PPE (orange) and CMIP5-13 (blue) projections comprising Strand 2, the panel also provides results from the 57 ESPPE simulations (grey) 
used in Strand 1.
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Most members of GC3.05-PPE and CMIP5-13 project a future shift towards the positive phase of the SNAO 
(bottom panel of Fig. 5.5). Those with larger increases in SNAO tend to display larger reductions in July-
August precipitation. Bladé et al. (2012) found similar results in the CMIP3 multi-model ensemble. Several 
GC3.05-PPE members simulate larger increases in the SNAO than any of the CMIP5-13 members shown in 
Fig. 5.5. This may partially explain the greater summer drying seen in some of the GC3.05-PPE members. 
However, there is considerable scatter in the relationship between the SNAO and precipitation changes, and 
two CMIP5-13 models project an increase in July-August precipitation despite showing little change in the 
SNAO. Such results suggest that other factors may also be important drivers of the precipitation changes. 

For example, in the HadAM3P model Rowell and Jones (2006) found that the increased moisture content of 
maritime air tended to offset circulation-driven reductions in summer precipitation over the UK and 
Southern Scandinavia. They also found that thermodynamic drivers of reduction in soil moisture (arising 
from either an earlier decline during spring due to enhanced snowmelt and evaporation, or from a positive 
feedback between precipitation and soil moisture during summer) were important over continental Europe, 
but less so over the UK. Summer soil moisture content in the UK reduces during the 21st century in the 
GC3.05-PPE simulations, even in ensemble members showing little change in the SNAO. 

The bottom panel of Fig. 5.5 also shows precipitation and SNAO changes in members of the ESPPE used in 
Strand 1. This ensemble gives a wider range of SNAO changes than is found in the Strand 2 simulations, and 
also explores larger reductions in July-August precipitation (of -50% or more). This is consistent with the 
results of Fig. 5.4d, in which the low end of the range of Strand 1 outcomes shows greater levels of drying 
than its Strand 2 counterpart. Overall, the three ensembles of simulations in Fig. 5.5 suggest that projected 
SNAO changes play a significant role in explaining future UK summer precipitation changes. However, there 
is a wide spread of precipitation changes in a subset of the projections that show little change in the 
preferred phase of the SNAO. This motivates further study of the physical mechanisms that drive the 
projected summer hydrological changes and their uncertainties.

The temporal evolution of the Strand 1 and 2 projections is shown in Figure 5.6a. We use spatial averages 
for England as an example of a national-scale overview of the development of changes through the 21st 
century. The use in Fig. 5.6a of annual changes (shown for surface air temperature and precipitation in 
winter and summer) emphasises the combined roles of internal climate variability and forced long-term 
changes in driving the spread of future values (e.g. Sexton and Harris, 2015). 

During the 20th century, long-term climate change signals from the Strand 1 and 2 outputs are relatively 
small. These can be seen, for example, in the ensemble-averages of CMIP5-13 or GC3.05-PPE (thick blue 
and orange curves), or the median (white) curves of the probabilistic projections (the latter are more easily 
visible in Fig. 5.6b, in which the Strand 1 results are repeated). Therefore, the spread of seasonal anomalies 
during the 20th century is likely to be due mainly to internal variability (plus a minor contribution from 
statistical uncertainties in the case of Strand 1, e.g. Fig. 2.5). Observations (black lines) are also shown in Fig. 
5.6a. By comparing the envelope of observed anomalies with the ranges of historical results from Strands 1 
and 2, we can assess how well the amplitude of observed internal variability is represented in the projection 
systems.
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For example, if the Strand 1 results (available for the historical period from 1961) are to provide a 
reasonable basis for estimating seasonal risks, we would expect observed outcomes to fall mostly within 
the grey shaded region, as this represents the 5-95% range of the probability distributions. In the case of 
winter precipitation, fifteen events during 1961-2017 (26% of years) lie outside the 5-95% probability 
range, suggesting that seasonal variability is underestimated in Strand 1. For summer surface air 
temperature, no observed event lies outside the 5-95% range of Strand 1, while six cases lie outside the 
range for both winter surface air temperature and summer precipitation. The latter values are broadly 
consistent with the expectation value of 5.7 years, for a 10% occurrence rate.

Where observations fall outside the grey range, they often relate to well-known events, such as the 
extremely cold winter of 1962-63 (bottom left panel). Encouragingly, the Strand 2 projections produce 
examples of cold winters matching or exceeding 1962-63 in intensity (surface air temperature anomalies < 
-4°C). This provides evidence that Strand 2 can be useful in assessing the characteristics and impacts 
associated with future seasonal anomalies (relative to the future climatological average of the period) of a 
similar magnitude. Similarly, historical seasonal events can be found in Strand 2 that correspond to, or in 
some cases outstrip, all of the observed cool, warm, dry or wet extremes in Fig. 5.6a.

Figure 5.6a. Historical and future anomalies in seasonal surface air temperature (°C, left) and precipitation (%, right) for England. Seasonal 
anomalies are expressed relative to 1981-2000, and are plotted for winter and summer (lower and upper panels respectively), from Strands 1 and 
2. Future changes are based on the RCP8.5 emissions scenario, applied in the projections beyond 2005. The median of the probabilistic projections 
is the white line, and shades of grey show the 5, 10, 25, 75, 90 and 95% probability levels. Orange and blue lines show members of GC3.05-PPE 
and CMIP5-13 respectively. The STD member of GC3.05-PPE is in red. The thicker lines show ensemble means, and the black curves show 
observations from NCIC. The probabilistic projections start from 1960 rather than 1900, as downscaling information (required to produce Strand 1 
projections for UK regions, see section 2.2) is only available from that point onwards.

www.metoffice.gov.uk


 Source: Met Office © Crown Copyright 2018www.metoffice.gov.uk Pg 135 of 191

The Strand 1 future projections show a broad range for all four variables, which essentially covers the 
spread of the combined set of Strand 2 projections throughout. Examples of future seasonal extremes 
beyond 5-95% probability interval of Strand 1 can be found in all cases, but the frequencies of occurrence 
are broadly consistent with the 10% that would be expected if Strand 2 events were sampling the same 
distribution as Strand 1. Note that this was not guaranteed a priori to be the case, since Strand 2 is 
constructed using a different methodology to Strand 1, and includes (in GC3.05-PPE) a new projection 
system unrelated to any of the climate model ensembles used in Strand 1. Nevertheless, the inter-Strand 
comparison is useful on two counts. Firstly, it demonstrates that the uncertainty ranges from Strand 1 are 
sufficiently robust to encompass the results from new climate modelling capability in Strand 2. Secondly, 
the comparison confirms the status of outlying seasonal anomalies in the Strand 2 projections as extreme 
events, in the context of known uncertainties in future climate change. 

For surface air temperature, the two Strand 2 ensembles show a significant degree of overlap in their ranges 
of interannual variability throughout the 21st century. However, the ensemble-mean responses also reveal a 
clear and increasing divergence. This is also seen in the GMST responses (Fig. 3.20), and underlines that 
GMST exerts an important influence on the characteristics of the UK surface air temperature changes. 
Beyond about 2060, the ensemble-mean response of GC3.05-PPE lies between the 75% and 90% 
probability levels of Strand 1 in summer. This indicates that the PPE responses in Strand 2 should form a 
useful source of information for studies of heat-related impacts in summer climate that are plausible, but lie 
near the upper end of the Strand 1 uncertainty ranges. Such studies form part of the evidence base for 
national Climate Change Risk Assessments (Met Office, CEH and University of Reading, 2015). The CMIP5-
13 ensemble-mean generally remains close to, or slightly below, the Strand 1 median response, in both 
winter and summer. CMIP5-13 is therefore particularly useful for providing examples of unusually cool 
future seasons (for example winters below the 5% probability level of Strand 1), since GC3.05-PPE does not 
provide any such events after 2050.

For winter precipitation, Strands 1 and 2 both project a steady shift to wetter distributions of seasonal 
values. The GC3.05-PPE and CMIP5-13 ensemble means stay close to the median of Strand 1 throughout 
the coming century. In addition, both Strand 2 ensembles provide numerous examples of wet and dry 
winter seasons sampling the upper and lower deciles of the evolving Strand 1 distributions. For this variable, 
therefore, there is a good degree of consistency between the Strand 1 and Strand 2 results. In summer, the 
Strand 1 distribution shifts to a drier envelope of outcomes (as expected from Fig. 5.4d), the median drying 
reaching 40% by 2100. The ensemble-mean of CMIP5-13 shows a smaller drying than Strand 1, typically 
~20% during the last decade of the 21st century. In contrast, the ensemble-mean of GC3.05-PPE is drier 
than the Strand 1 median, amounting typically to ~50% during the corresponding period. While the 
projections show a clear shift to higher probabilities of dry summers, they also suggest that individual wet 
summers are still possible. For example, the CMIP5-13 projections suggest that a positive seasonal 
precipitation anomaly of (say) 60% relative to the 1981-2000 average, which occurred only twice in the 
observed record since 1960, remains a plausible event during 2081-2100. However, Strand 1 suggests that 
the risk of wet summers declines during the coming century. For example, the 95% probability level reduces 
from a wet anomaly of ~50% at year 2000 to one of ~ 10% by 2100. This decline is more marked in 
UKCP18 compared with the earlier work of Sexton and Harris (2015), due to the improved statistical 
treatment of internal variability in UKCP18 (Appendix A).
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More generally, an important application of the seasonal projections lies in assessing the changing risks of 
specific high-impact events experienced in the recent historical record. For example, beyond the 2020s the 
Strand 2 projections provide no examples of a winter (measured relative to the 1981-2000 baseline) that 
corresponds to the 1962-63 surface air temperature anomaly in England. In summer, the observed anomaly 
of about 2°C, that was experienced during the 2003 heatwave, becomes a typical event by the 2040s 
according to the Strand 1 median. This is consistent with the results of Christidis et al. (2014). The risk of a 
seasonal precipitation anomaly in excess of 50%, such as that associated with the wet winter of 2013-14 
(Huntingford et al., 2014), is projected to increase. According to Strand 1, for example, the chance of such 
an event increases from about one in forty at 2000, to about one in five by 2100.

Examples of future extreme seasons in Strands 2 and 3 provide potentially fruitful resources for case study 
analysis, to support development of narratives associated with specific high-impact weather or climate 
events. For example, identification of simulated future winters associated with negative NAO conditions 
could support investigation of how the historical impacts of such events (e.g. the cold December of 2010, 
Maidens et al., 2013) might change in future. See also Fig. 5.11 and discussion below.  

Figure 5.6b. As Fig. 5.6a, except that the pink lines show seasonal anomalies from members of the Strand 3 RCM-PPE simulations, with RCM-STD 
in purple. The thicker pink line shows the ensemble-mean. 
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Corresponding seasonal projections for England are shown for Strand 3 in Fig. 5.6b. These show ranges of 
response very similar to the GC3.05-PPE results of Fig. 5.6a. From the middle of the 21st century, seasonal 
surface air temperature anomalies are distributed around an ensemble-mean warming between the 75% 
and 90% probability levels of Strand 1 in summer, and between the 50% and 75% levels in winter. The 
ensemble-mean changes in winter precipitation track the Strand 1 median quite closely (like the Strand 2 
ensembles), and RCM-PPE shares the strong long-term drying signal seen in the GC3.05-PPE simulations. 
This consistency at the national scale between the RCM-PPE and its driving simulations is an expected 
consequence of the design of the RCM simulations, and supports use of RCM-PPE results to add value to 
analysis of detailed impacts at local to regional scales (see section 4). This applies both to multidecadal 
average changes in surface air temperature and precipitation, and to extreme events on daily to seasonal 
time scales. This is likely to be beneficial, for example, in studies of future impacts on the electricity and rail 
networks (McColl et al., 2012; Palin et al., 2013). 

Figure 5.7. As Fig. 5.6a, showing seasonal projections filtered to retain signals of variability and long-term change on time scales of 20 years and longer.

Uncertainties in both internal variability and long-term climate change contribute to the time-dependent 
ranges of seasonal change shown in Figs. 5.6a,b. In Fig. 5.7, we show the results of filtering the projections of 
Fig. 5.6a to remove variability on 1-20 year time scales. This isolates signals on longer time scales, including 
the response to anthropogenic forcing and internal multidecadal variability. Uncertainties in the filtered 
signals increase during the 21st century. This is probably due mainly to growth in the spread of long-term 
climate responses contained in the ensembles of climate model simulations that underpin Strands 1 and 2 
(e.g. Hawkins and Sutton, 2009, 2011). The filtered changes show a clear separation in the surface air 
temperature response between the two component ensembles of Strand 2, to a greater extent than the 
unfiltered changes of Fig. 5.6a. This underlines the advice given in discussion of Fig. 5.4 above, that Strands 
2 and 3 cannot be used to obtain estimates of the relative likelihood of alternative future projections.
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The impact on the future projections of variability on 1-20 year time scales can be seen by comparing the 
spread of outcomes in Figs. 5.6a and 5.7 (see also Fig. 2.9). For surface air temperature, the overall range of 
outcomes is broadened considerably by annual to decadal variability up to the middle of the 21st century. 
By 2100, however, the spread is dominated by uncertainty in forced climate response. This is despite the 
continuing presence of substantial internal variability in individual projections, which can drive year-to-year 
changes of several degrees. For precipitation, variability significantly broadens the spread in seasonal 
anomalies throughout. The low-pass filtered summer precipitation changes demonstrate the benefits of 
combining the CMIP5-13 and GC3.05-PPE ensembles: Beyond about 2050, CMIP5-13 provides all the 
projections showing 20-year outcomes with increases in rainfall, while GC3.05-PPE provides all the 
examples at the dry end of the Strand 1 distribution. This diversity is important for robust assessment of 
impacts and development of storylines (see section 1.2).

During the historical period the spread of results from the projection systems is likely to reflect mainly the 
effects of decadal climate variability. This spread encompasses observations (black lines in Fig. 5.7) in 
almost all cases. The only exceptions are the positive anomalies in summer precipitation that peak around 
1960, and in the recent period since 2010. The occasional occurrence of observed events near, or slightly 
outside, the extremes of the projected ranges is to be expected (see discussion of Fig. 5.6 above). 
Nevertheless, it is important to understand the mechanisms that drive the observed events, and assess 
how well the projection systems reproduce these. The observed decadal wet periods are likely to have been 
driven, at least in part, by warm SST anomalies in the North Atlantic associated with the positive phase of 
the (detrended) AMO. Such events are linked with wet summers in the UK and Northern Europe (Sutton and 
Dong, 2012). In contrast, the AMO was primarily in a negative phase during the baseline period, when 
average UK summer precipitation was relatively low compared to the 20th century as a whole (Kendon et 
al., 2017). The ability of the projection systems to replicate such events depends on the ability of the 
constituent climate models to simulate AMO variability (section 3.4) and capture the observed 
teleconnection link to UK summer rainfall. This discussion also illustrates that observed 20-year averages 
for a given period (such as the UKCP18 baseline of 1981-2000), can be significantly influenced by the 
dominant contemporaneous phases of low frequency climate variability, as well as by the true underlying 
climatological state. 

Figure 5.8a. Grey shading shows joint probability distributions from Strand 1 of projected anomalies (relative to 1981-2000) of surface air 
temperature (°C) and precipitation (%) for individual seasons during 2075-79, under RCP8.5 emissions. Results are shown for England, in winter 
(left) and summer (right). The white diamond denotes the location of maximum relative probability. The shaded regions contain 25% (darkest), 
50%, 75% and 90% (lightest) of the 3000 realisations of which the probabilistic projections are comprised. The 65 blue dots show corresponding 
changes for individual years during 2075-2079 from each of the CMIP5-13 simulations. Orange dots show individual seasons from 14 of the 
GC3.05-PPE members, with results from STD in red.  
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Future impacts are in many cases determined by two or more climate drivers (section 1.2). For example, 
future occurrences of drought (e.g. Burke and Brown, 2008) are (dependent on the choice of index) sensitive 
to changes in both surface air temperature and precipitation, as are changes in crop yields (see Fig. 3.24 and 
discussion in section 3.5). In Figure 5.8a, we compare the joint distributions from Strands 1 and 2 of 
seasonal anomalies for surface air temperature and precipitation in England, during 2075-79. The left and 
right panels show winter and summer anomalies respectively, relative to 1981-2000. In both seasons, 
Strand 1 provides the broadest view of potential combinations of outcomes, emphasising its value in 
providing context for risk assessments.

In winter, the combined set of Strand 2 projections provides seasonal anomalies that cover 75%51 of the 
space of Strand 1 outcomes reasonably well, with the exception of wet winters coupled with a relatively 
small warming (of 1°C or less). Potential wet or dry outcomes paired with higher levels of warming (>3°C) 
are quite well represented. The outer 25% of the Strand 1 distribution is less well sampled, although several 
examples of extreme dry winters coupled with high warming are present in Strand 2. The summer 
distributions show reasonable sampling of dry seasons coupled with warming in the range 1-4°C (from 
CMIP5-13 models), and good representation of very dry and warm seasons with precipitation anomalies of 
-50% to -80% and warming in the range 4-8°C (GC3.05-PPE members). The joint probability distribution 
also includes seasonal outcomes with increased summer precipitation, of which there are several examples 
in Strand 2. Overall, Fig. 5.8a shows that Strand 2 provides a relatively broad range of surface air 
temperature and precipitation changes that shows reasonable correspondence with Strand 1. However, the 
probabilistic projections reveal additional potential outcomes that are not represented in Strand 2. This 
demonstrates the difficulty of covering all combinations of impact-drivers in a limited set of climate model 
simulations.

Figure 5.8b. As Fig. 5.8a, except that the 60 dots show seasonal anomalies from the twelve RCM-PPE members during 2075-79, with RCM-STD in 
purple and other members in pink. 

51  The contours in Figs 5.8a,b represent the smallest regions containing the stated percentage of outcomes that can be found in the relevant joint 
distribution of Strand 1.

www.metoffice.gov.uk


 Source: Met Office © Crown Copyright 2018www.metoffice.gov.uk Pg 140 of 191

Figure 5.8b shows how Strand 3 samples the Strand 1 space of joint outcomes. The winter projections 
include reasonable representation of anomalies ranging from -10 to +60% in precipitation, and 2-5°C of 
warming. However, cooler outcomes (either wet or dry) are not represented. In summer, dry seasons 
coupled with warming of 2-7°C are well covered, but outcomes with warming lower than 3°C are absent, 
and only two wet summers are present in the sample. Therefore, the sampling of outcomes in Strand 3 is 
more limited than in Strand 2. This is not surprising, given that Strand 3 is limited to 12 members, and does 
not include a multi-model counterpart to its PPE component.

Figure 5.9. Historical and future anomalies in seasonal near-surface wind speed (ms-1) for Scotland (left) and England (right), in summer (top) and 
winter (bottom). Seasonal anomalies are expressed relative to 1981-2000, and are plotted for Strand 2 of UKCP18. Future changes are based on 
the RCP8.5 emissions scenario, applied in the projections beyond 2005. Orange and blue lines show members of GC3.05-PPE and CMIP5-13 
respectively. The thicker lines show ensemble means, and the black curves show observations from ERA-Interim reanalyses during 1980-2017. 
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Users wishing to fill such gaps could consider accessing additional climate model simulations. In the case of 
Strand 2, for example, the CMIP5-13 subset is recommended for general use, because its members have 
been shown to simulate key characteristics of European climate reasonably well. However, users could 
consider adding simulations from the wider CMIP5 ensemble in specific applications where including 
projections from other models is useful, and can be justified with further evaluation. In applications where 
information at local scales is essential, users may be able to strengthen their assessments of multiple 
hazards by considering use of multi-model RCM simulations from EuroCordex (see section 4.1). In user 
applications, it will therefore be important to weigh the benefits of better sampling of multivariate 
outcomes that is available from Strand 2, against the benefits of downscaling available from Strand 3 (see 
sections 4.4 and 4.5). In some cases, it may be appropriate to use additional tools such as statistical 
downscaling techniques or impacts models to derive projections of the relevant indicators, rather than 
relying on direct climate model output (see section 5.2 for further discussion). 

Seasonal projections of average near-surface wind speed over England and Scotland are shown in Figure 
5.9, for Strand 252. In winter, there is substantial interannual variability in GC3.05-PPE and CMIP5-13, which 
is broadly consistent with observations (provided from ERA-Interim). In summer, variability is approximately 
half of the winter value, again with reasonable consistency between the simulations and observations. 
During the second half of the 21st century, the ensemble-mean of GC3.05-PPE shows a shift to increased 
winter wind speed over both Scotland and England. The signal of change is larger over England, but in both 
countries the changes are modest compared with interannual variability. No trend is apparent in the CMIP5-
13 ensemble-mean. We note that EuroCordex simulations, driven by different CMIP5 models, show a range 
of changes in winter wind speed including examples of both increases and decreases (Kjellström et al., 
2018). In GC3.05-PPE, the shift to higher seasonal average wind speeds is accompanied by an increase in 
the occurrence of winter storms over the UK and Southern Scandinavia (Fig. 5.10, left panel), with 
reductions to the north and south. The pattern of change implies a strengthening of the southern fork of the 
winter storm track (Fig. 3.17), with a weakening of the core to the north. The right panel shows a 
corresponding ensemble-mean pattern of change for ten of the CMIP5-13 simulations for which storm 
tracking data is available. This shows a similar pattern to that of GC3.05-PPE, but the band of increase in 
the southern fork is weaker. Zappa et al. (2013) find a similar tripolar pattern of change in the future 
response of 19 CMIP5 models to the RCP4.5 emissions scenario.

In winter, GC3.05-PPE also projects increases in the frequency of daily occurrences of WT2 (positive NAO) 
and reductions in WT1 (negative NAO - see Fig. 3.19 and discussion in section 3.4). This leads by the end of 
the century to annual occurrences of WT2 typically exceeding 30%, while WT1 frequencies reduce to 
typically 10-15%. These signals of change are not replicated in the nine CMIP5-13 members for which 
weather typing results are available. In these simulations, average frequencies of WT1 and WT2 remain 
close to historical values. These results are consistent with those of Fig. 5.9, and show the importance of 
including two different ensembles of projections in Strand 2. Doing so helps to avoid an overconfident 
interpretation, for example, of either a shift towards a predominance of positive NAO conditions (suggested 
by GC3.05-PPE), or of a prediction of null response (suggested by available CMIP5 members). 

52  Results from Strand 1 are not provided, because its methodology relies on an assumption that transient climate changes can be estimated from 
simulations of the equilibrium response to doubled CO2 (section 2.2, Stage 1). This assumption was found to be invalid in the case of wind speed 
(Appendix C). 
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Figure 5.10. Projected changes in the density of winter storms (per 106km2 per month), relative to the 1981-2000 values shown in Fig. 3.17. 
Increases and reductions are shown in shades of red and blue respectively, with zero change contoured. Upper panel shows the ensemble-mean 
change in GC3.05-PPE during 2061-2080, lower panel shows the average change for 10 members of CMIP5-13 for 2070-89. A later period is used 
for CMIP5, because future tracking data was only available from 2070. 

In summer, the mean changes in both Strand 2 ensembles show gradual reductions in wind speed during 
the coming century, for both England and Scotland. In GC3.05-PPE, the reductions in average summer wind 
speed are accompanied by reductions in the frequency of WT1 and increases in that of WT2. This is the 
opposite of the winter changes, and indicates fewer episodes of strong westerly flow. However, in the nine 
available CMIP5 results there is no significant change in the occurrences of WT1 or WT2. Ensemble-mean 
changes in Strand 3 (not shown) are similar to those of GC3.05-PPE.
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Figure 5.11. Anomalies in surface air temperature (°C) on winter days during which the simulated atmospheric circulation in the North Atlantic/
Europe sector corresponds to weather type 1 of Fig 3.19. Results are shown for the 1990s (left) and 2080s (right), expressed in both cases as 
anomalies relative to the 1981-2000 baseline. Top panels show composite anomalies averaged over all 15 members of GC3.05-PPE, with 
corresponding results averaged over nine members of CMIP5-13 shown in lower panels.

In addition to identifying potential changes in the occurrence of specific circulation patterns, the Strand 2 
simulations can be used to understand how other indicators might change on typical days associated with 
the relevant flow regimes. This can be useful in placing the future projections in the context of recent 
observed events, and understanding potential future changes in impacts and vulnerability. For example, 
Figure 5.11 shows composite surface air temperature anomalies associated with WT1 during the 1990s 
and 2080s, expressed in both cases with respect to the 1981-2000 baseline. Under historical conditions, 
WT1 days in both the GC3.05-PPE and CMIP5 ensembles show cold anomalies of 2-4°C over the UK in 
winter, associated with occurrences of anomalous easterly flow. By the 2080s, such days are associated 
with temperatures warmer (by 0-2°C) than the baseline climatology, albeit that they are cooler than the 
projected average conditions for the 2080s. Under these projections, a reduction in cold-weather disruption 
would therefore be expected during winters featuring a high frequency of WT1 days, compared to recent 
experience (e.g. Prior and Kendon, 2011). A caveat is that the magnitude of the change could potentially be 
enhanced by the winter cold bias in the GC3.05-PPE simulations, given that it leads to a stronger surface 
albedo feedback than is seen in CMIP5-13 (see Figure 3.22). Nevertheless, such results illustrate the 
importance of understanding both changes in circulation (driven by regional dynamical responses to large-
scale patterns of climate change, e.g. Zappa and Shepherd, 2017), and thermodynamic responses that alter 
the associated temperature and precipitation characteristics (e.g. Clark and Brown, 2013). 
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5.2. Interpretation and use of the projections

The three projection systems of Strands 1-3 provide the most extensive range of information delivered to 
date in a coordinated set of UK land scenarios. To understand how to use the Strands, either separately or in 
combination, it is important to recall the stakeholder drivers (section 1.2) that motivated their 
development.

The primary purpose of the probabilistic projections is to ensure that UKCP18 includes a product focused 
on expressing known uncertainties in future changes, in order to reduce risks of overconfident decision-
making in user applications. For example, extensive use of the UKCP09 probabilistic projections was made 
in CCRA2 (Humphrey and Murphy, 2016). Strand 1 attempts to provide ranges of outcomes consistent with, 
and limited by, the knowledge incorporated in existing ensembles of climate model projections (see section 
2.1). It is based on a much larger set (of ~350) climate model simulations than Strands 2 or 3, augmented 
by use of emulation techniques to estimate results for climate model variants for which no simulation is 
available. Its projections are available as 3000 realisations, sampled from distributions that are formally 
constrained by observations (section 2.2, Stage 2), in order to ensure that the uncertainty ranges of Strand 
1 are not broadened excessively through inclusion of outcomes of low credibility. However, results are only 
available for a limited set of key climate variables (Fung et al., 2018), and the realisations do not possess the 
full spatial and temporal coherence available directly from climate model output, due to the extensive 
statistical processing required to create the results53.

Strands 2 and 3 were developed primarily to support user requirements for more flexible datasets that 
provide specific examples of physically plausible climate outcomes. These: 

• Allow a wide range of climate indicators to be derived (including at fine spatial scales and short 
timescales).

• Support case studies related to particular meteorological events and impacts studies requiring data with 
full spatial and temporal coherence.

• Provide a dataset useful for the development of narratives that support decision-making and build 
confidence in the results through improved scientific understanding (e.g. Hazeleger et al., 2015). 

Serving these purposes requires data provided directly from climate model projections, rather than 
following the statistical postprocessing used in Strand 1. The sets of Strand 2 and 3 projections are intended 
to provide simulations of the best quality attainable given current modelling capabilities, both globally and 
in the North Atlantic and European regions. The aim is to provide, as far as possible, credible representations 
of phenomena (such as the Atlantic storm track) likely to be important drivers of future change, in order to 
improve the utility of impacts assessments and narratives. In addition, the numbers of projections are 
limited in size (28 and 12 in Strands 2 and 3 respectively). This choice is influenced by the heavy 
computational cost of developing and running ensembles of high-resolution global and regional 
configurations of the GC3.05 climate model, but also reflects an aim to limit the data-processing burden 
placed on users. 

53  Users requiring Strand 1 data for aggregated river-basin, administrative or country regions (Fung et al., 2018) can obtain this from the User 
Interface at https://ukclimateprojections-ui.metoffice.gov.uk/. Users requiring aggregated data for other regions can create this from Strand 2 or 
3 results, but should not attempt to form spatial averages from the gridded 25km Strand 1 data. However, it is acceptable to form time averages 
of monthly or seasonal Strand 1 values for a specific location, as these have been created using a method that preserves temporal correlations 
present in the climate model simulations used to construct the probabilistic projections (see Appendix A). 
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The results of section 5.1 generally reflect the distinct purposes of the Strands, and provide pointers for 
how their outputs can be combined to improve assessments of impacts, risks and decision options. For 
example, Strand 1 (as explained above) is intended to provide the main source of information for estimates 
of uncertainty in UKCP18, and its 10-90% probability ranges duly reveal (in general) a wider range of 
regional outcomes than ranges derived from the more limited sets of projections included in Strands 2 and 
3 (Figs. 5.4a-d). 

However, the projections in Strands 2 and 3 provide specific illustrations of plausible outcomes that lie 
towards the lower or upper ends of the Strand 1 distributions. For example, GC3.05-PPE produces 
simulations featuring consistently strong positive cloud feedbacks that contribute to a set of projections 
with strong future warming, both globally and regionally (Figs. 3.20, 3.24, 5.4 and 5.6). For the UK, this 
results in projections of surface air temperature that sometimes exceed the 90% probability level of Strand 
1. Similarly, the GC3.05 projections explore future reductions in summer precipitation close to the lower 
end of the Strand 1 distributions. For risk assessments, such results emphasise the importance of 
considering some of the more extreme outcomes shown in Strand 1. This is because a climate model 
derived from the latest UK capability (Williams et al., 2018), and developed more recently than those 
included in Strand 1, provides support for some of these. 

Here, it is worth emphasising that the results from each Strand are conditional upon the climate modelling 
information and methodological choices used to produce it. In particular, the probability distributions of 
Strand 1, whilst generally successful in providing a broad view of uncertainties, are inevitably reflections of 
the evidence and expert assumptions upon which they are based. Therefore, they should be viewed as 
conditional probabilities, providing ranges of potential outcomes (characterised typically by the 10% and 
90% probability levels) that are useful uncertainty estimates likely to encompass the observed outcome, 
based on recent climate models and the knowledge incorporated in them. 

In UKCP09, Sexton and Murphy (2012) showed that the relative probabilities of different outcomes varied to a 
degree, in response to exploring plausible alternatives for expert choices such as the prior distributions for 
uncertain model parameters, the choice of observational constraints or the estimates of structural model 
uncertainties. None of these alternatives questioned the basic shapes of the distributions, and changes in the 
ranges of outcomes were modest. However, the results illustrate that Strand 1 users should consider the 
sensitivity of their application to reasonable variations in the probabilities provided, such as those outlined above. 

More generally, the presence of systematic biases common to all climate models, and the incomplete 
nature of current understanding of earth system processes, underlines the importance of exploring the 
sensitivity of potential adaptation decisions or impact assessments to other sources of information beyond 
the scope of UKCP18. This might include, for example, idealised studies of possible “climate surprises” 
arising from events or processes that are either not typically simulated by, or not yet included in, current 
climate models. Such events might include a future collapse of the AMOC, or a substantial release of carbon 
from permafrost, or of methane from ocean sediments (Collins et al., 2013). 
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For assessments of impacts and extreme events, Strands 2 and/or 3 are expected to provide the primary 
source of information in many applications, as explained above. The global simulations of Strand 2 should be 
useful for the development of storylines, as the investigation of processes driving UK or European changes 
can be extended to consider large-scale patterns of climate change remote to the region. Regarding UK 
impacts, a key choice will be between the broader set of projections (including the CMIP5-13 contributions) 
available from Strand 2, versus the enhanced spatial detail54 and improved simulation of extremes available 
from Strand 3. The appropriate choice is likely to be application-dependent. As noted in section 4.1, for 
example, UKCP09 users found the spatial detail available from its 25km ensemble of HadRM3-PPE 
simulations useful for studies of impacts on infrastructure networks, flood risk and water resources. The 
provision in UKCP18 of 12km simulations from Strand 3 (and forthcoming 2.2km simulations) is likely to 
offer further benefits in studies of this nature. 

Users of Strands 2 and 3 will also need to consider use of bias correction techniques (Fung, 2018), for 
example in cases where the requirement for adaptation depends on the exceedance of absolute thresholds. 
Note, however, that bias correction cannot remove the effects of large model errors on projected changes, 
and needs to be accompanied by a good understanding of relevant earth system phenomena, and how well 
they are represented in climate models (Maraun et al., 2017). Here, the availability of model simulations 
with a range of historical error characteristics (e.g. Figs. 3.15, 3.16 and 4.4) will allow users to explore the 
benefits of alternative approaches, and understand how variations in historical bias are related to projected 
future changes in variables of interest (e.g. Sørland et al., 2018). 

The examples of joint distributions of surface air temperature and precipitation changes, provided in Fig. 5.8, 
demonstrate that Strand 1 can be used to guide impact studies based on the other Strands. In particular, 
comparison with Strand 1 can reveal deficiencies in the sampling of potential responses. Strategies to 
address such limitations could include sourcing additional climate model simulations, as discussed in 
section 5.1.

Other methods can also be considered for improving sampling of potential multivariate changes. One 
possibility is to apply statistical methods such as scaling or time-shifting to the existing Strand 2 or Strand 3 
projections (Herger et al., 2015), in order to provide additional “derived” projections in sparsely populated 
regions of the Strand 1 distribution. Such approaches (see Gohar et al., 2018) are worth considering in 
applications where the full flexibility available from time series of climate model output is required. 
Examples would include extreme event analysis, or assessment of changes in vulnerability arising from 
multiple hazards affecting different locations simultaneously (e.g. McColl et al., 2012).

However, in applications focused on a specific impact in a specific region, or in a set of locations for which 
the risk of simultaneous events is not a major concern, weather generators (Jones et al., 2010)55 or other 
statistical downscaling tools could be used to derive additional estimates of future daily climate 
characteristics for particular locations, conditioned on changes in climatological average conditions 
sampled from Strand 1. However, such methods do not include information on climate changes at fine 
spatial and temporal scales.

54  Note that the size of the datasets available for download (https://ukclimateprojections-ui.metoffice.gov.uk/ ) increases considerably with 
resolution.

55 UKCP18 does not include a specific weather generator as UKCP09 did, so interested users would need to source a suitable tool independently. 
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Another option is to use an impacts modelling system capable of sampling a wide range of potential 
changes in primary climate variables such as surface air temperature and precipitation. For example, a 
“response surfaces” approach (Fronzek et al., 2010) can be used to predict impacts such as crop production 
(e.g. Ferrise et al., 2011), by combining an impacts model with a statistical emulator to convert probabilistic 
climate projections (such as Strand 1) into probabilistic projections of yields. Such methods have 
advantages of computational efficiency, and of direct calibration of the downscaling or impacts tool against 
historical observations. However, they typically rely on assumptions of temporal stationarity in the 
characteristics of internal climate variability, or in relationships between the climate variables prescribed as 
inputs and other variables upon which the derived impact or weather sequence may depend. In some 
applications, it may be advantageous to combine approaches based on direct use of climate model output 
with methods involving impacts models or statistical downscaling methods, given that each approach 
possesses specific strengths and limitations (Kay and Jones, 2012). 

In CCRA2, increased use was made of the “H++” concept, originally developed in the sea level and storm 
surge component of UKCP09 (Lowe et al., 2009). An H++ scenario is an unlikely but possible high-end 
outcome that is useful for contingency planning. It may be derived from a range of sources including model 
projections, idealised sensitivity studies, theoretical insight or past observations, One of the CCRA2 
research projects (Met Office, CEH and University of Reading, 2015) used this approach to develop advice 
on limits for heatwaves, cold extremes, rainfall and river flow events, droughts, windstorms and wildfires. 
The GC3.05-PPE and RCM-PPE results in Strands 2 and 3 are likely to be particularly useful in future H++ 
studies. This is because their emergent properties include levels of warming, increases in winter 
precipitation and reductions in summer precipitation that are plausible, but relatively extreme in the context 
of other evidence, including Strand 1 and CMIP5 models.

6. Summary
The UKCP18 land projections include three Strands of evidence, each motivated by a combination of user 
requirements and recent developments in scientific capabilities.

Strand 1 

Strand 1 is an update to the probabilistic projections that formed the core component of the previous 
UKCP09 land scenarios (Jenkins et al., 2009). This provides continuity, by ensuring that a product focused 
on uncertainties remains available for use in risk assessments (https://www.theccc.org.uk/tackling-
climate-change/preparing-for-climate-change/uk-climate-change-risk-assessment-2017/ ), and wider 
impacts and adaptation activities. The new probabilistic projections are provided for five emissions 
scenarios. The SRES A1B scenario is included to support comparison against UKCP09 results (in which it 
was the “medium” scenario). Also included are the Representative Concentration Pathway scenarios 
(RCP2.5, 4.5, 6.0 and 8.5) considered in the IPCC Fifth Assessment Report (Collins et al., 2013). These range 
from a scenario assuming aggressive mitigation measures (RCP2.6) to one in which carbon emissions are 
assumed to rise substantially (RCP8.5).

Strand 1 quantifies uncertainties consistent with the knowledge incorporated in several pre-existing 
ensembles of climate model projections, plus the effects of internal climate variability. The probability 
distributions express ranges of outcomes, and estimates of the relative likelihood of alternative outcomes 
within these ranges, consistent with the relative strength of evidence behind alternative future changes. 
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As in UKCP09 (Murphy et al., 2009), the probabilistic projections are based on global and regional perturbed 
parameter ensembles (PPEs) derived from the HadCM3 climate model, an alternative multi-model 
ensemble of international climate models and a set of formal observational constraints. These three lines of 
evidence are combined using a Bayesian statistical framework based on, and updated from, that used in 
UKCP09 (Sexton et al., 2012; Harris et al., 2013). An “emissions-driven” approach is used, in order to 
account for uncertainties in modelling the earth’s carbon cycle alongside those associated with the physical 
response of the climate system to changing greenhouse gas concentrations. The probabilities are 
conditional on the climate modelling information used to produce them, and also upon various subjective 
choices required to implement the methodology, such as expert prior distributions for uncertain model 
parameters, the selection of observational constraints, and the design and calibration of statistical 
techniques needed to combine the information. 

Key developments from UKCP09 include use of the recent CMIP5 generation of international climate 
models (instead of CMIP3) to estimate the contribution of structural modelling choices to uncertainties in 
projections, and expansion of the set of observational constraints to improve identification and down-
weighting of low credibility outcomes. In UKCP18, the probabilistic projections are presented at the annual 
time scale, rather than as the 30-year average changes of UKCP09. This broadens their utility by accounting 
for climate variability on interannual to decadal time scales, thus supporting analysis of the changing risks 
of extreme seasonal anomalies (Sexton and Harris, 2015). This presentation also allows users to choose 
their own historical baseline period, if they wish to explore alternatives to the standard period of 1981-
2000 (or the alternatives of 1961-1990 and 1981-2010) provided from the UKCP18 User Interface at 
https://ukclimateprojections-ui.metoffice.gov.uk/. 

In comparison to UKCP09, the projected changes in global mean and UK surface temperatures (under A1B 
emissions) are slightly lower in UKCP18. This is partly due to the inclusion in UKCP18 of a new constraint on 
projected atmospheric CO2 concentrations, which rules out outcomes with the highest future values. 
However, there is considerable overlap between the two sets of projections, because uncertainty ranges are 
broad in both cases. For summer precipitation, the median of the Strand 1 projections shows progressive 
reductions during the 21st century, which are largest over Southern England and South Wales, as was also 
the case in UKCP09.

Strand 2    

Following publication of UKCP09, a considerable body of user feedback accumulated. In addition to 
confirming the value of uncertainty estimates from the probabilistic projections, this feedback also stressed 
the importance of access to flexible datasets consisting of raw climate model output. This stems from a 
requirement for time series of meteorological data with full spatial and temporal coherence, and capable of 
supporting derivation of a wide range of climate change indicators. During this period, climate model 
development has also continued worldwide. Recent global models developed in the UK have demonstrated 
improved representation of the dynamics of regional climate variability in the North Atlantic and European 
region (Scaife al., 2012, 2014), due at least in part to improvements in their horizontal and vertical 
resolution. Such improvements in capability can help to justify use of such models to provide information 
useful for development of “storylines”: The development of physically realistic narratives of how large-scale 
climate responses might drive changes experienced in the UK (Zappa and Shepherd, 2017), or case studies 
of how specific types of high-impact event might change (Hazeleger et al., 2015). 
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Strand 2 was conceived in response to these user and scientific drivers. A new PPE was developed, using a 
coupled-ocean atmosphere model (GC3.05) configured at a higher resolution (~60km horizontally, with 85 
vertical levels) than all CMIP5 models used in climate scenario simulations. It contains all the major 
developments in scientific formulation included in HadGEM3-GC3.1 (Williams et al., 2018), the UK model 
that will form part of the next generation of international climate models (CMIP6, Eyring et al., 2016).

The identification of model variants for the new PPE (GC3.05-PPE) involved three main stages of selection. 
These considered short-range retrospective weather forecasts, followed by five-year climate simulations (both 
using the atmosphere component with prescribed sea surface temperatures), and finally multidecadal coupled 
ocean-atmosphere simulations. During this process, a pool of 2800 candidate model variants was reduced to a 
final set of fifteen GC3.05-PPE members, using a range of criteria. These included global performance metrics 
for a set of standard climate variables (in the atmosphere-only simulations), evaluation of simulated climate in 
the North Atlantic/Europe sector (in both the atmosphere-only and coupled simulations), and historical climate 
changes simulated during the 20th century (coupled simulations). The selection also involved consideration of 
idealised climate change experiments, with the aim of choosing as diverse a set of GC3.05-PPE members as 
possible, subject to achievement of credible simulations of historical climate.

A set of thirteen CMIP5 models (CMIP5-13) were added to GC3.05-PPE, creating a combined set of 28 
simulations of historical and future climate from 1900-2100, using the RCP8.5 scenario during the 21st 
century. CMIP5 models were selected using a set of global and regional assessment criteria drawn mainly 
from published literature, in order to identify models suitable for general use in climate impacts applications 
focused on the UK and Europe. Including CMIP5-13 adds sampling of structural diversity in model 
formulation, and broadens the range of future climate changes included in Strand 2.

In addition to providing a new resource for understanding future climate change in the UK and Europe, the 
Strand 2 projections can be used to assess potential impacts in other international regions. This includes 
assessment of inward risks to the UK arising from issues such as security of food or water supplies.  

The Strand 2 simulations were made using models without an interactive carbon cycle, and hence used 
prescribed time series of CO2 concentration. All CMIP5-13 members used the standard RCP8.5 
concentration pathway. In GC3.05-PPE, a range of concentration pathways was used, in order to consider a 
range of outcomes consistent with those projected in Strand 1. 

Although Strand 2 considers only a single emissions scenario (due to the computational expense of the 
GC3.05-PPE simulations), a set of derived results is also available for the RCP2.6 scenario. These were 
generated by applying statistical scaling and time-shifting techniques to the RCP8.5 results (Gohar et al., 
2018). Some key results from the RCP8.5 simulations are summarised in the final section below.
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Strand 3    

Information from regional climate models (RCMs) has formed an important component of UK climate 
scenarios since the release of UKCIP02 (Hulme et al., 2002). Such dynamical downscaling experiments add 
value to the output of global climate simulations by accounting for local effects of surface forcing from 
mountains, coastlines and inland water bodies, while also offering better resolution of mesoscale 
circulations in the atmosphere. 

In UKCP18, a 12-member PPE of RCM simulations (RCM-PPE) was run from 1980-2080, using the 
European domain of the international EuroCordex experiment (http://www.euro-cordex.net/). Each 
member was driven at its lower and lateral boundaries by a time series of SSTs, sea-ice extents and 
atmospheric variables taken from a member of GC3.05-PPE, and used an identical set of parameter 
perturbations to the driving simulation. The RCM was configured at 12km horizontal resolution. It provides 
the most detailed simulations available in UK national scenarios to date, following the 50km simulations of 
UKCIP02 and the 25km PPE (derived from HadCM3) that formed part of UKCP09. The new RCM-PPE is 
expected to be an important resource for regional impacts assessments, in cases where these are 
dependent on credible information at scales finer than those resolved effectively by global models. These 
include, for example, hydrological impacts such as river flows, flood and drought risks, and changing hazards 
to infrastructure networks such as electricity and rail.

Evaluation of RCM-PPE demonstrates substantial skill in simulating costal and orographic effects on UK 
precipitation, in both the long-term climatological average and extreme heavy daily events. Other impacts 
of enhanced resolution include improvements in the simulation of cold winter days, and a general increase 
in cloud cover and precipitation. 

Projected changes under the RCP8.5 scenario

This report compares a selection of changes from Strands 1-3 for the RCP8.5 scenario. More examples are 
given in Lowe et al. (2018), alongside further examples of results for the other emissions scenarios included 
in Strand 1.

Strand 1 gives the broadest uncertainty ranges, which generally encompass the spread of projections from 
Strands 2 and 3. This reflects the design criteria explained above, and underlines that the probabilistic 
projections provide the primary source of information for use in defining low- and high-end mainstream 
outcomes to frame adaptation studies and risk assessments.

We also use central changes to illustrate intermediate outcomes in each Strand. For Strand 1 this is the 
median of the relevant probability distribution. For Strands 2 and 3 we use results from specific projections 
in the middle of the relevant ranked set of changes. However, for Strands 2 and 3 users should not assume 
that the future projections are distributed around the central change in a unimodal format resembling, for 
example, a Gaussian distribution. This is because these Strands are not designed to support estimates of 
the relative likelihood of alternative outcomes within their ranges of response.
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For changes in surface air temperature over the UK, the Strand 2 projections evolve into two semi-distinct 
clusters during the second half of the 21st century. This is due in part to the influence of a high level of 
simulated global warming in GC3.05-PPE. Overall, the Strand 2 projections explore much of the spread of 
potential UK temperature changes defined by Strand 1, with GC3.05-PPE members providing most of the 
warmest outcomes, particularly after 2050. This indicates that GC3.05-PPE members will be particularly 
useful in investigations of plausible high-end scenarios of heat-related impacts. By 2061-2080, median 
changes in Strand 1 (averaged over the UK) amount to 2.4°C in winter and 3.1°C in summer, with 
corresponding 10-90% ranges of 0.7 to 4.2°C and 0.9 to 5.4°C, respectively.

Changes in summer precipitation also show evidence of clustering in Strand 2. The GC3.05-PPE simulations 
project reductions, which are strongest over England and Wales. The ensemble-average drying for England 
reaches 50% by the end of the 21st century, compared with a median reduction of about 40% in Strand 1. 
The corresponding ensemble-average of CMIP5-13 shows a smaller drying of ~20%. A few members of 
CMIP5-13 show little change or a small increase, consistent with the upper end of the Strand 1 range. For 
winter precipitation changes this separation does not occur, ensemble-mean changes in GC3.05-PPE and 
CMIP5-13 showing similar trends of gradual increase. 

 Projected changes in Strand 3 follow those of the driving Strand 2 simulations at national scales, but add 
detail to the changes in surface air temperature and precipitation. This applies both to long-term averages 
and changes in the intensity of extreme events. For example, in many coastal regions the winter 
precipitation changes are enhanced in the regional model projections, indicating that they will be useful for 
contingency planning activities associated with potential coastal flooding events.

GC3.05-PPE projects an ensemble-mean increase in the occurrence of winter storms over the UK, with 
reductions to the north and south. Storm track diagnostics are also available for ten members of CMIP5-13. 
These show a similar ensemble-mean pattern, but with a weaker increase over the UK. GC3.05-PPE also 
predicts an increase in the frequency of daily circulation patterns associated with the positive (westerly) 
phase of the North Atlantic Oscillation (NAO). These changes are associated with ensemble-mean 
increases in wind speed at the national scale. However, CMIP5-13 shows no signal of change in wind speed, 
and the nine members for which daily weather typing information is available do not show the shift to 
positive NAO conditions projected in GC3.05-PPE.

In summer, reductions in wind speed are found in the ensemble-means of both GC3.05-PPE and CMIP5-13. 
In GC3.05-PPE, the changes are accompanied by a shift to fewer days characterised by strong westerly 
flow, although this is not seen in the nine CMIP5-13 members referred to above. 

In general, the results show evidence of realistic levels of climate variability at seasonal time scales, in 
surface air temperature, wind and precipitation over the UK. This helps to justify using the results to assess 
the future risks of recent high-impact events such as the 2003 summer heatwave, the cold winter of 
2009-10 or the wet summer of 2012. However, the Strand 1 distributions of winter precipitation anomalies 
underestimate the risks of extreme wet or dry seasons found in historical observations. 
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Many impacts are dependent on changes in multiple climate variables. In this regard, it is instructive to 
compare the projections of Strands 2 and 3 against corresponding joint distributions from Strand 1. This 
provides useful context for studies based on Strands 2 or 3, by highlighting potential combinations of 
outcomes that may not be represented in their projections. Considering joint temperature and precipitation 
changes during 2075-79 as an example, the Strand 2 projections sample much of the Strand 1 distribution, 
although some gaps are apparent. The sampling available from the Strand 3 projections is more limited, 
particularly in summer when potential wet seasons are largely absent. This is due to the consistent drying 
signal discussed above. 

Concluding remarks

The UKCP18 land projections are built from a range of climate modelling inputs beyond that of any previous 
UK scenarios. This includes global and regional perturbed parameter ensembles derived from two UK 
models (HadCM3 and GC3.05), plus CMIP5 ensembles of earth system models (used in Strand 1) and 
physical atmosphere-ocean models (used in Strand 2). The specific sets of models (or model variants) used 
in each Strand, and the techniques used to create projection systems from them, are determined by various 
methodological choices.

The results that emerge from each of the three projection systems are conditional on these specific choices, 
and are inevitably somewhat different. In some applications, it may be appropriate to consider results from 
only one Strand, whereas in others it is likely to be beneficial to combine information from multiple Strands. 
For example, a case study of a future wet winter might use Strand 2 to select a broad-scale atmospheric 
circulation pattern from a GC3.05-PPE member analogous to a past event such as the winter of 2013-14, 
and then use the corresponding RCM-PPE simulation to analyse the regional flood risks associated with the 
event. 

Another example might be use of Strand 1 distributions to identify limitations in the sampling of multiple 
drivers of impacts, as discussed above. In such cases, users could consider addressing such gaps by sourcing 
additional climate model simulations from other projects, or using statistical techniques or impacts models 
to derive additional impacts scenarios from the UKCP18 outputs.

Finally, we emphasise that the information in the UKCP18 projections reflects current modelling 
technologies and the knowledge incorporated in them. It is therefore liable to be updated in future, as 
capabilities evolve. The changes in the UKCP18 probabilistic projections, relative to their UKCP09 
counterparts, are one illustration of this. Developments in capability may also lead to extensions in the type 
of information that can be provided. One example is the recent first use in climate research of kilometre-
scale regional modelling that explicitly represents the dynamics of large convective storms (Kendon et al., 
2014). An ensemble of UK projections using a 2.2km convective-permitting model is under production, and 
will be published in a second phase of UKCP18.This will provide new information on potential changes in 
sub-daily rainfall extremes, and will be helpful in applications such as urban planning and flash flooding.             
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Appendix A (Strand 1)

Representation of uncertainties on 1-20 year time scales in the probabilistic projections

Modification to timescaling in volcano years

Following Sexton and Harris (2015), the timescaling method is designed to exclude the near-term historical 
response to major volcanic eruptions from the scaled regional predictions derived from NTR. This is because 
volcanic forcing may give rise to different characteristic response patterns than those driven by changes in 
greenhouse gas concentrations. This is achieved by smoothing SCM predictions of GMST(t) from one year 
before till four years after each eruption. Since calibration of the timescaling bias term involves comparing 
SCM outputs against the response of ESPPE members (which simulate the combined response to 
anthropogenic and natural forcing agents), the volcanic response appears as a contribution to the bias term. 
If the response is found to be statistically significant for the variable of interest, low-pass filtering of the 
calibrated bias term (see section 2.2) is withheld in volcano years, to avoid attenuating the response. In 
practice the volcanic response is found to be significant for GMST itself, but not for the UK_GCM variables. 

Sampling seasonal and annual residuals 

The timescaling and downscaling calculations described in section 2.2 both require calibration and 
subsequent sampling of scaling residuals for individual years, which represent the combined effects of 
uncertainties due to interannual variability and scaling assumptions. The method, AUTOVAR, is updated 
from that used by Sexton and Harris (2015), and is described below.

a. Calibration

• This involves comparing time series of scaled predictions against outcomes simulated by 57 ESPPE 
members (in the case of timescaling) or 11 HadRM3-PPE members (downscaling). In the case of 
timescaling (Stage 2 in section 2.2), residuals are calculated from 1861-2100 for annual mean GMST, 
CO2 and OHC, and the UK_GCM variables. In the downscaling case (Stage 3 in section 2.2), the 
calibration uses residuals from 1961-2099 for climate variables defined on the four sets of target 
regions for Strand 1 (Fung et al., 2018). 

• The methodology is the same in both cases. The residuals for each variable in each year are first 
standardised, by dividing by their standard deviation (calculated across the available ensemble 
members). Note that the standard deviations are calculated separately for each year, and typically 
vary significantly with time (e.g. Sexton and Harris 2015, Supplementary Figs. 1 and 2). We return to 
this point below. 
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• For each set of target regions, predictions are made for monthly, seasonal and annual means for each 
of the 12 climate variables. UK_GCM comprises five HadCM3 grid points, while the 25km grid and 
regional (country, river-basin and administrative) definitions (Fung et al., 2018) contain 437 and 43 
values respectively. This gives a total of 1020 variables for UK_GCM, and a combined total of 97920 
variables for the 25km grid and regional data. The datasets of standardised residuals therefore consist 
of 57 members x 240 years x 1020 variables for timescaling, and 11 members x 139 years x 97920 
variables for downscaling. 

• For each ensemble member, the set of years and variables is concatenated into a long vector, and a 
Singular Value Decomposition is then performed on the resulting 2-dimensional data matrix. This 
yields two sets of orthonormal eigenvectors which, when scaled by the corresponding eigenvalues, 
describe the characteristic inter-variable and temporal relationships found in the relevant array of 
residuals (hereafter VAR), and the projections of these onto each ensemble member. 

b. Generating sampled outcomes

• When applying timescaling or downscaling during the creation of a realisation of past and future 
climate, uncertainties relating to 1-20 year time scales are added by sampling the calibrated 
residuals. The first step is to generate a multi-variable, multi-year sample of standardised residuals. 
This is done by multiplying VAR by a random number sampled from a normal distribution of zero mean 
and unit variance.

• For each variable and year in the realisation, the standardised residual is then rescaled by the relevant 
residual standard deviation. The calibrated standard deviations are low-pass filtered prior to rescaling. 
This removes high frequency noise due to the limited set of ensemble simulations available for 
calibration, while retaining any longer term trends (Sexton and Harris, 2015).

• This procedure generates realisations consistent with the time-varying spread of the calibrated 
residual distributions, as well as their temporal and inter-variable covariances. These properties 
mainly reflect the characteristics of simulated climate variability in either the ESPPE or HadRM3-PPE, 
as these are the dominant contributor to the residuals (e.g. Fig. 2.5).   
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Modifying AUTOVAR distributions to correct for non-gaussian residuals

The distributions of AUTOVAR residuals are assumed Gaussian. However, for some variables corrections are 
needed to remove errors arising from non-Gaussian characteristics. An example is precipitation, for which 
changes are provided as percentage anomalies. For the 25km grid box containing Edinburgh, Figure A.1 
(green curve, left panel) shows a distribution of seasonal precipitation residuals for summer, for the period 
2080-2099. This was obtained by predicting the response of HadRM3-PPE members from their driving 
AO-PPE-A global simulations (Collins et al., 2011), using the relevant downscaling relationship. This 
distribution, which largely reflects internal variability in the HadRM3 data, has a positive skew of 0.60. The 
red curve (left panel) shows the distribution of seasonal percentage anomalies in precipitation in a sample 
of 3000 downscaled realisations obtained by applying the calibrated downscaling relationships and 
resampling residuals as described in (b) above. Use of the Gaussian assumption results in significant 
differences from the green curve. 

Figure A.1. Left panel shows relative probability of Strand 1 downscaling residuals obtained during calibration (green curve), for seasonal anomalies 
(%) in summer precipitation during 2080-2099. The example shown is for the box on the UKCP18 25km grid (see Fung et al., 2018) containing 
Edinburgh. The red curve shows the distribution of residuals for a pooled sample from 2080-99, obtained during creation of a set of 3000 
realisations in which the green distribution is resampled by the AUTOVAR procedure of Appendix A, using its standard Gaussian assumption. The 
blue curve shows residuals obtained when Gaussian AUTOVAR quantiles are remapped to match those of the original distribution of downscaling 
residuals, using a sliding 21-year window to account for time-dependencies (not shown) in the adjustments. Vertical lines show the 2.5th and 97.5th 
quantiles from each distribution, noting that the green lines are not visible because they coincide with the blue lines. The middle panel shows 
probabilistic projections of precipitation changes (%) for 2080-2099 relative to 1981-2000 under the RCP8.5 scenario, generated using AUTOVAR 
with Gaussian (red) and quantile-mapped resampling (blue) of residuals. The right panel shows the quantile-dependent differences between the 
blue and red curves of the middle panel. 

We address this using a quantile mapping approach. For a given target year, we create a distribution of 3000 
sampled realisations, consistent with the Gaussian assumption. These are then adjusted by mapping them 
from quantiles of the Gaussian cumulative distribution function onto quantiles of the original, positively 
skewed distribution of percentage precipitation residuals, for a window (of length 21 years) centred on the 
target year. The new set of 3000 realisations (Fig. A.1, blue curve, left panel) matches the original 
distribution of residuals (green curve) much more closely. Projected anomalies are generated by adding the 
sampled residuals to the relevant downscaled climate changes, relative to the 1981-2000 baseline. The 
results show a substantial increase in the upper tail of projected changes, compared to that generated in 
the absence of quantile corrections (Fig. A.1, middle panel, blue cf red curves). The differences in 
precipitation response can exceed 15% for the upper quantiles (Fig. A.1, right panel), demonstrating that 
application of quantile mapping reproduces better the wet extremes in summer precipitation found in the 
HadRM3 simulations.       
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Appendix B (Strand 1)

Observables used as constraints in the probabilistic projections

Table B.1 Data sources for seasonal climate variables used in CLIM, the observational constraint arising from recent climatological averages that is 
applied in Strand 1.

Mean climate constraint variables

Dataset Variable(s) Reference

HadISST1 SST (ts) Rayner et al. (2003)

HadCRUT3 Screen temperature (tas) Brohan et al. (2006)

CMAP Precipitation (pr) Xie and Arkin (1996)

GPCP Precipitation (pr) Adler et al. (2003)

CERES TOA outgoing shortwave flux (rsut),  
TOA outgoing longwave flux (rlut),  

TOA SW cloud radiative effect (cresw) 
TOA LW cloud radiative effect (crelw)

Wielicki et al. (1996)

ISCCP FD TOA outgoing shortwave flux (rsut) 
TOA outgoing longwave flux (rlut) 

TOA SW cloud radiative effect (cresw) 
TOA LW cloud radiative effect (crelw)

Rossow and Zhang (1995)

ERBE TOA outgoing shortwave flux (rsut) 
TOA outgoing longwave flux (rlut) 

TOA SW cloud radiative effect (cresw) 
TOA LW cloud radiative effect (crelw)

Harrison et al. (1990)

HadSLP2 Sea-level pressure (psl) Allan and Ansell (2006)

ERA40 Sea-level pressure (psl) 
Relative humidity (hur)

Uppala et al. (2005)

AIRS Relative humidity (hur)  Aumann et al. (2003)

ISCCP D2 Total cloud (clt) Rossow and Zhang (1995)

HIRS Total cloud (clt) Wylie and Menzel (1999)

da Silva Surface sensible heat flux (hfss) 
Surface latent heat flux (hfls)

da Silva et al. (1994)

SOC Surface sensible heat flux (hfss) 
Surface latent heat flux (hfls)

Josey et al. (1996)

New SOC Surface sensible heat flux (hfss) 
Surface latent heat flux (hfls)

Berry and Kent (2009)
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Table B.2. Data sources, variable definitions and time periods used in the historical trend constraint variables applied in Strand 1.

Historical trend constraint variables

Dataset Variables Trend period(s) References

HadCRUT4 1. Global MST (Mean Surface 
Temperature).

2. Land MST minus Ocean MST.

3. Northern Hemisphere minus 
Southern Hemisphere MST.

4. Meridional Temperature 
Gradient: 52.5°N:67.5°N minus 

22.5°N:37.5°N, zonal means.

1958:1987 average minus 
1910:1939 average. 

1988:2017 minus 1958:1987.

Morice et al. (2012)

Braganza et al. (2003).

CO2: RCP Hist, 
and ESRL

Global mean CO2 concentration 2005:2014 minus 1960:1969. Meinshausen et al. (2011).

Dlugokencky and Tans.

Booth et al. (2017)

Ballantyne et al. (2012) 
(uncertainty estimates 1958 to 

1980).

Etheridge et al. (1996) 
(uncertainty estimates prior to 

1958)

EN4 Global ocean heat content to 
700m (OHC)

1993:2012 minus 1955:1974 Good et al. (2013)

Domingues OHC 1993:2012 minus 1955:1974 Domingues et al. (2008)

Levitus OHC 1993:2012 minus 1955:1974 Levitus et al (2012).

Ishii OHC 1993:2012 minus 1955:1974 Ishii et al. (2003).
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Appendix C (Strand 1)

Credibility checks for the probabilistic projections

The Bayesian methodology used to construct the probabilistic projections requires specification of several 
sources of statistical uncertainty that broaden the posterior distributions. These include uncertainty in 
emulation of the equilibrium response to doubled CO2, discrepancy associated with structural uncertainty 
(obtained by finding best-analogues of CMIP5-ESM responses in the parameter space of HadCM3), and 
uncertainty associated with timescaling and downscaling (see section 2.2 for details). It is therefore 
important to compare the projections with the input climate model data, to test whether any failure in the 
validity of the methodological assumptions might leads to excessive statistical uncertainty, and hence 
create inconsistency between the projections and the climate model inputs implying a lack of credibility in 
the probability distributions. We assess this question by comparing our posterior pdfs with climate model 
data from the 12 CMIP5-ESM, 57 ESPPE and 280 SLAB simulations that provide inputs to the projections. 

For eight different climate variables, Figures C.1 and C.2 compare the pdfs (derived from a sample of 3000 
realisations as described in section 2.2) with equivalent changes from the 349 model simulations 
mentioned above. The figures show 20 year mean changes in response to emissions-driven RCP8.5 forcing 
for the period 2080-2099 relative to 1981-2000. In order to facilitate the comparison, the 280 SLAB 
responses are converted to a synthetic ensemble of time-dependent simulations. First, the normalised 
equilibrium responses to doubled CO2 (NER, see section 2.2, Stage 1a) are adjusted to allow for the effects 
of coupled earth system processes omitted from the SLAB ensemble (NTR, section 2.2, Stage 1b). Secondly, 
NTR is scaled using a projected time series of the transient response of global mean temperature. This is 
obtained using the simple climate model (SCM) of Stage 2a, by prescribing the physical climate feedback 
values simulated by the relevant SLAB member, and sampling other required earth system parameters 
randomly from the 57 sets of calibrated values used by the SCM to replicate ESPPE results. 

As a measure of credibility, we estimate the fraction of realisations in the pdf (represented by blue area F in 
Figs. C.1 and C.2) that lie beyond the most extreme response across all three GCM ensembles. For each 
variable, we use the larger of the two tail probabilities from either end of the pdf. A high value for F indicates 
possible statistical inflation, potentially unjustified by the GCM data. Note, however, that we do expect the 
statistical processing to generate some outcomes beyond the modelled results. This is expected to happen, 
for example, through emulation of a broader set of possible responses through fuller sampling of parameter 
space. Finding modest cumulative probabilities for outcomes outside the model range does not, therefore, 
indicate a lack of credibility. For a given variable, finding larger probabilities (e.g. F>15%) is likely to indicate a 
general credibility issue if it occurs regularly (across different months, seasons or regions), though this is not 
necessarily the case if the occurrence is limited to a small minority of cases.
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Figure C.1 Blue curves show posterior probability distributions from Strand 1 for 20-year mean changes for 2080-2099 relative to 1981-2000, 
under the RCP8.5 scenario. These are compared with the responses of the 57 ESPPE, 12 CMIP5-ESM and 280 SLAB ensemble members. Variables 
are daily maximum surface air temperature (°C) for Southern England (top left), daily average surface air temperature (°C) for Northern England in 
spring (top right), net surface shortwave radiation (Wm-2) for Wales in summer in August (bottom left), and relative humidity (%) for Scotland in 
spring (bottom right). In order to enable the comparison, the SLAB equilibrium climate change responses are converted to a synthetic ensemble of 
time-dependent simulations, as described in Appendix C. These comparisons are made at GCM scales, excluding the final downscaling step. The 
shaded area represents the cumulative probability for outcomes beyond the most extreme GCM response. A high value for this ‘tail probability’ 
(denoted by F), indicates that the extremes of the probability distribution may be influenced by an unrealistic level of statistical inflation. Such cases 
are flagged as demonstrating a potential lack of credibility.

For example, in Fig C.1 (top left panel) we consider monthly mean daily maximum temperature change for 
August, for the Southern England grid-point. The large spread in the pdf (5-95% range of about 1 to 13°C) 
is representative of the underlying GCM responses. Just 3% of the realisations are cooler than the coolest 
of the GCM responses, and the pdf appears consistent with the input data, and credible.
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Fig C.1 (top right panel) makes a similar comparison for daily average surface temperature change in spring, 
for Northern England. In this case, 15% of the realisations comprising the probabilistic projections are cooler 
than the coolest GCM response. This is mainly due to the CMIP5-ESM response being, on average, cooler 
than the response in the SLAB ensemble. The resulting discrepancy distribution of best-analogue 
differences therefore imparts an adjustment toward a cooler response, and inflates the posterior 
distribution somewhat. For mean surface temperature change in general, tail-probabilities of this magnitude 
are typically limited to the winter and spring seasons. Similar discrepancy adjustments were obtained in the 
UKCP09 projections (Murphy et al., 2009), and the same underlying reason applies: a bias towards high 
climatological regional snow cover in the HadCM3 simulations leads to larger relative warming under 
climate forcing, compared to the corresponding multi-model ensemble simulations. The discrepancy 
adjustment is therefore acting as designed, although the GCM results suggest that less confidence should 
be placed in relative or cumulative probabilities associated with the cool tail of the probability distribution, 
compared with warmer outcomes. At the other end of the distribution a fraction of the GCM responses 
(those above ~6°C) lie outside the pdf. This is not surprising, as such high-end responses lie within the prior 
distribution for this variable (not shown), but are down-weighted when observational constraints are 
applied to form the posterior distribution.

Fig. C.1 (bottom left panel) compares the posterior pdf with the GCM responses for the change in net 
surface shortwave radiation during summer for Wales. There is a consistent signal across all three 
ensembles for an increase, and this is reflected in the pdf. The probabilistic projections suggest a 5% chance 
of a lower outcome than the smallest predicted change in the GCM ensembles.

Finally, Fig C.1 (bottom right panel) considers percentage change in spring relative humidity (RH) in Scotland. 
For this variable, almost 23% of the Strand 1 realisations project a higher outcome than the most extreme 
GCM response. In this case, there is a strong signal in both the ESPPE and SLAB ensembles for a reduction in 
RH, in contrast to the CMIP5-ESM responses which on average predict an increase. Indeed, the distributions 
of ESPPE and CMIP5-ESM changes do not overlap at all. The resulting discrepancy distribution provides a 
substantial mean adjustment towards a smaller reduction in RH, and contributes to an inflation in spread of 
the posterior distribution. This violates a basic assumption of the method, namely that the HadCM3 
parameter space can provide a range of outcomes that is sufficiently consistent with alternative multi-
model results to prevent the discrepancy term from playing too dominant a role in the final pdf. In this 
example, the method produces a pdf that is not a credible representation of the knowledge incorporated in 
the climate model simulations.

Fig C.1 (bottom right panel) illustrated a single instance of limited credibility for RH in just one region and 
season, so we need to look more widely to assess whether multiple issues occur. Identical analysis has been 
performed for all five HadCM3 UK grid-points, and for 17 monthly, seasonal or annual periods. The results of 
this are summarized in the second row of Table C.1, which gives the fraction of these 85 variables whose 
tail-probability F is greater than a particular threshold. For example, 31% of the 85 RH pdfs predict F >15%. 
The high tail-probability in Fig C.1 (bottom right) is more widely obtained for a large proportion of the RH 
variables, for the same reasons: a mismatch between HadCM3 and CMIP5 leading to a high structural error 
component. For this reason, probabilistic projections for RH are not found to be credible, and are not 
provided in UKCP18.
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Figure C.2 As Fig. C.1, but for four different variables, consisting of near surface wind speed (ms-1) for Northern England in winter (top left), 
precipitation (%) for Wales in winter (top right), precipitation (%) for Southern England in August (bottom right), and total cloud cover (%) for Ireland 
in summer (bottom right). 

Figure C.2 continues the analysis in Fig C.1, for four additional variables. Firstly we look at change in winter 
wind-speed for Northern England (Fig. C.2, top left panel). For this variable, the probabilistic projections 
suggest a 31% chance of an increase greater than the largest predicted in the GCM simulations. In this 
case, there are no large differences in the responses for the ESPPE, CMIP5-ESM and SLAB ensembles, so 
unlike RH, it is not discrepancy driving the inflation of uncertainty. For wind-speed, it is the timescaling 
errors that are large, leading to large spread and lack of credibility. The reason is that timescaling can 
sometimes fail for wind-speed, since the equilibrium response is often not representative of the response 
when the same perturbed atmosphere variant is coupled with a dynamic ocean and used to simulate 
transient climate change. This violates another basic assumption of the methodology. The issue is 
illustrated in Fig. C.3 for four typical ESPPE simulations. In the first two panels the equilibrium response is 
representative of the response in the coupled simulations, and scaling performs well. In the second two 
panels, the substantial scaled equilibrium responses are not reproduced in the coupled response, leading to 
a large error. Table C.1 confirms that this problem occurs in a large fraction of cases: 36% of the wind-speed 
pdfs give a cumulative probability of more than 15% of an outcome beyond the most extreme GCM 
response. Due to the poor performance of time scaling, and high tail probabilities, pdfs for wind-speed are 
not provided in UKCP18.
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Figure C.3 Surface wind-speed response (ms-1) to RCP8.5 forcing (relative to 1981-2000) in winter for Northern England, from four typical ESPPE 
simulations (blue). These are compared to scaled time-dependent changes (red), derived from the corresponding simulation of the equilibrium 
response to doubled CO2 in the SLAB ensemble.

Figure C.2 (top right) looks at the credibility of the pdf for winter precipitation response for Wales, a case for 
which a substantial increase is predicted. Amongst the Strand 1 realisations, 10% are lower than the lowest 
GCM response. Some of this can be attributed to the discrepancy between the CMIP5 and SLAB response, 
which gives a slight adjustment toward a smaller increase in precipitation. Figure C.2 (bottom left) looks at 
the pdf for a precipitation variable with strong predicted drying: Southern England in August. Almost all 
members in the ESPPE and SLAB ensembles predict strong drying, but the picture is more mixed for the 
CMIP5-ESM ensemble. A majority of these simulations predict drying, although typically more modest than 
in the PPE, while a minority of simulations predict a small increase. The discrepancy distribution, which 
results from finding best HadCM3 analogues for these CMIP5 responses, adjusts the posterior towards a 
less dry response. It also inflates the spread, leading to a cumulative probability of 8% for a larger change 
than the response of the wettest CMIP5 simulation. The precipitation pdfs are judged to be credible, on the 
basis that the degree of overlap between the SLAB and CMIP-ESM results is large enough to give credence 
to the discrepancy estimate. However, there is less confidence in the upper tail of wet responses in the pdf, 
compared with the bulk of the distribution.

Finally, Fig. C.2 (bottom right) considers percentage change in summer total cloud amount for the Ireland 
grid-point. As in the summer precipitation case, the HadCM3 simulations predict larger reductions than the 
CMIP5-ESM simulations, resulting in adjustment of the posterior toward a smaller reduction. For this 
example, 16% of the Strand 1 realisations give a change greater than the most extreme GCM response.
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Table C.1 summarizes the tail-probabilities for different thresholds, for all twelve of the core UKCP18 
climate variables identified in Fung et al. (2018). The fractions of occurrence of high tail probabilities are a 
useful summary measure to indicate potential credibility issues. However, they are not the sole criterion. For 
relative humidity and wind-speed we find widespread evidence of high structural error or poor timescaling 
performance (similar to the specific examples discussed above). It is this, in conjunction with the high 
frequency of large F values, which confirms the methodology cannot produce credible pdfs for these 
variables. In Table C.1 there is a clear gap between the tail-probability statistics for these two variables, and 
the others. For the other variables we assess that the methodological assumptions are generally satisfied, 
hence we provide the probabilistic projections.

Table C.1 Fraction of regional, monthly and seasonal 20-year mean probabilistic projections of changes for 2080-2099 relative to 1981-2000 
(under the RCP8.5 scenario) for which the ‘tail-probability’ (F, see Fig. C.1) is greater than a specified threshold. The rows representing the 12 
candidate climate variables are ordered by the fraction of exceedances for the 15% threshold. For example, 9% of the 85 surface air temperature 
projections (comprised of five UK regions times 17 monthly, seasonal, or annual variables) show F >15%, indicating a cumulative probability of more 
than 0.15 of an outcome beyond the most extreme response across the ESPPE, SLAB and CMIP5-ESM simulations. A relatively large fraction of the 
relative humidity and wind-speed variables have tail-probabilities greater than 15 or 20%, indicating reduced credibility. Therefore, UKCP18 does 
not provide probabilistic projections for these variables, shown in red.

Variable Acronym F > 10% F > 15% F > 20%

Wind speed at 10m sfcWind 0.64 0.36 0.20

Relative humidity hurs 0.64 0.31 0.07

Cloud area fraction clt 0.49 0.19 0.01

Pressure at mean 
sea level

psl 0.33 0.11 0.06

Specific humidity huss 0.31 0.11 0.05

Diurnal maximum air 
temperature

tasmax 0.18 0.11 0.01

Net surface short 
wave flux

rss 0.29 0.09 0.01

Diurnal average air 
temperature

tas 0.25 0.09 0.05

Net surface long 
wave flux

rls 0.38 0.08 0.01

Downward surface 
shortwave flux

rsds 0.29 0.08 0.01

Precipitation rate pr 0.26 0.07 0.01

Diurnal minimum air 
temperature

tasmin 0.13 0.06 0.00
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Having examined the credibility of the projections at GCM scales, we move on to compare the downscaled 
projections with the HadRM3-PPE output used to calibrate the downscaling relationships. In this case, our 
focus is placed specifically on variability in precipitation in the probabilistic projections. This is because 
precipitation is a bounded variable (negative values are impossible), which creates challenges in 
representing its variability statistically. The example in Fig. C.4 (left panel) shows selected probability levels 
(grey plume) for annual precipitation anomalies (in %) for London in August, in response to A1B forcing. Also 
shown are 50 randomly-selected realisations from the pdfs. These are compared to the responses of the 11 
HadRM3-PPE members. 

In UKCP18, the statistical calculations are applied to precipitation data expressed as percentage anomalies 
relative to the baseline period, consistent with the units used in the final projections. Figure C.4 (right panel) 
makes the same comparison, but this time using the UKCP09 approach. In UKCP09, projections of negative 
precipitation were avoided by applying a logarithmic transformation prior to all statistical processing in the 
methodology, followed by application of the inverse transform to recover projections expressed as 
percentage changes. In Fig C.4 the five highest monthly anomalies in the HadRM3-PPE data are of the order 
of 300%, whereas the highest projected anomalies are over 1000% when the log transform is used. These 
are clearly not credible. The higher probability levels of the projected time-evolving distribution are also 
substantially inflated relative to the underlying HadRM3-PPE data, when the log transform is used. 

Figure C.4 Annual change in precipitation (%) for London in August for the A1B scenario, relative to 1981-2000. The white line shows the median 
of the probabilistic projections, and grey shading shows the 5%, 10%, 25%, 75%, 90% and 95% probability levels. Blue lines show 50 randomly 
selected realisations from the pdfs. These are compared with the response of the 11 HadRM3-PPE simulations for this variable. The solid orange 
curve shows the median of the 11 simulations, and the dashed lines the 5th and 95th percentiles of their time-evolving frequency distribution of 
anomalies. The red and blue dots show the five highest instances of wet months from HadRM3-PPE and the probabilistic projections, respectively. 
The left panel shows the UKCP18 results, in which the statistical calculations in the Bayesian methodology are performed on precipitation data 
expressed as percentage anomalies. The right panel shows results obtained using the UKCP09 approach, in which a logarithmic transformation is 
applied before the statistical processing, with the inverse transform applied at the end to obtain projections expressed as percentage changes. 
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There are several factors that combine to produce these effects. Firstly, we find that it is only at the annual 
time scale, and in the presence of strong drying that this inflation of the wet tail becomes substantial. 
Secondly, the method used to sample residual uncertainties in the downscaling (Appendix A), the dominant 
component of which is due to internal variability, is assumed to be independent of the magnitude of the 
projected climate change signal. This assumption is necessary because HadRM3-PPE is not large enough to 
allow the residual uncertainty to be predicted as a function of location in parameter space. In cases of 
strong summer drying, however, this assumption does not hold well, contributing to inflation of statistical 
uncertainties at the wet end of the distribution when the log transform is used. The impact of this is 
increased by a third factor, which is that the discrepancy adjustment for summer precipitation changes 
invariably gives projections that are on average less dry. Following application of the inverse exponential 
transform, the net result is to inflate the accumulated statistical uncertainty in the wet tail, leading to 
unrealistically wet months during summer (e.g. over 1000% of the baseline value) that are not supported 
by the HadRM3-PPE data. As noted above, this sensitivity to use of the log transform only arises when 
strong drying is present. For example, there is little difference between projections made with or without a 
log transform for winter precipitation, when strong drying is not predicted. 

Direct scaling of percentage change as in Fig C.4a results in probabilistic projections that are consistent with 
the HadRM3-PPE simulations, due to elimination of the excessive statistical uncertainty found in the wet 
tail using the UKCP09 approach. For all variables to which log transforms were applied in UKCP09 
(precipitation, total cloud amount and specific humidity, noting that relative humidity was eliminated by the 
credibility check at GCM scales), the probabilistic projections in UKCP18 are produced by processing the 
data as percentage change throughout the calculations.

Note, however, that dropping use of the log transform has the disadvantage that precipitation anomalies 
projected in UKCP18 are not automatically bounded to be above -100%. Therefore, clipping at this value is 
applied to the 3000 realisations comprising the final projections. This would lead to apparent ‘spikes’ near 
-100% in pdfs calculated from the realisations. Therefore, the pdfs are also clipped, as in Fig C.2 (bottom 
left panel). For the 20-year mean changes shown in this example, fewer than 0.25% of the sampled 
realisations are clipped.

In addition to clipping variables expressed as percentage changes at -100%, a second level of clipping is 
applied to all variables, in order to ensure physically credible changes. For each year from 1961 to 2099, the 
3000 realisations are clipped at the 1% and 99% probability levels of the distribution. Therefore, 
distributions calculated from the realisations will present ‘spikes’ at the lower and upper extremes, in all 
cases. Similar clipping of realisations (usually at 1% and 99%) was also applied in the UKCP09 projections. 
We do this to avoid provision of implausible extremes in which we have reduced confidence. In general, 
users should not place confidence in relative probabilities of specific outcomes in the extreme tails of the 
distributions, because these are typically where limitations in the statistical assumptions in the method will 
have their greatest impact. More confidence can be placed on cumulative probabilities for thresholds away 
from the extreme tails. For example, the 10% to 90% probability range of the cumulative distribution 
function can normally be taken as trustworthy. More guidance on interpretation of the probabilities is 
available from the UKCP18 website (see https://ukclimateprojections-ui.metoffice.gov.uk/).
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Appendix D (Strand 2)

Supporting information

Table D.1. Parameters in the atmosphere, land and aerosol components of the GC3.05 climate model, perturbed in the Strand 2 GC3.05-PPE 
simulations. Middle and right columns describe the physical role of each parameter, and the main effects of varying its value.

Parameter Role Signature effect

CONVECTION

Deep entrainment 
amplitude (ent_fac_dp)

Controls the shape of the mass flux and the 
sensitivity of deep  convection to relative 
humidity to deep entrainment.

Increased values lead to the reduction of 
convection depth and to some extent 
suppression of active precipitating convection.

Mid entrainment amplitude 
(ent_fac_md)

Controls the shape of the mass flux and the 
sensitivity of mid-level convection to relative 
humidity to mid-level entrainment.

Increased values lead to the reduction of 
convection depth and to some extent 
suppression of active precipitating convection.

Mixing detrainment 
(amdet_fac)

Controls the rate of humidification of the 
atmosphere, and the shape of convective 
heating profile.

Increases large-scale humidity and 
temperature profiles.

Coefficient for adaptive 
detrainment (r_det)

Decrease of mass flux with height under 
decreasing parcel buoyancy. Tends to oppose 
this buoyancy reduction and thus raises the 
termination height of the convection.

Larger rdet gives deeper convection but also 
changes the height distribution.

Convective core radiative 
effects (cca_md_knob, 
cca_dp_knob). These two 
parameters are set equal 
to each other in the model, 
so the same perturbations 
are applied to both.

Control how much deep and mid-level 
convective core gets seen by radiation. 

Increasing the values will mean convective 
cores have more of a radiative impact (i.e. 
more reflection of shortwave (SW) radiation 
and more longwave (LW) emission from a cold 
cloud top).

Shallow convective core 
radiative effects (cca_sh_
knob)

Control how much shallow convective core 
gets seen by radiation.

Increasing the values will mean convective 
cores have more of a radiative impact (i.e. 
more reflection of SW and more LW emission 
from a cold cloud top).

Maximum condensate 
(mparwtr)

The maximum condensate a  convective 
parcel can hold before it is converted to 
precipitation.

See left.

Minimum critical cloud 
condensate (qlmin)

The minimum value of the function that 
defines the maximum amount of condensate 
a convective parcel can hold before it is 
converted to precipitation.

Reducing it cools the troposphere, increasing it 
warms the troposphere, by decreasing/
increasing the amount of high cloud.

GRAVITY WAVE DRAG (GWD)
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Parameter Role Signature effect

Critical Froude number 
(gwd_frc)

Determines the cut-off mountain height and 
the depth of the blocked flow layer around 
sub-grid mountains.

Affects tropospheric and stratospheric winds 
and mean sea-level pressure (MSLP). Increases 
in gwd_frc will slow low-level winds and 
increase MSLP.

Flow blocking drag 
coefficient (fbcd)

Determines the size of the low-level drag 
associated with flow blocking effects by 
sub-grid mountains.

Affects tropospheric winds and MSLP.

Inverse critical Froude 
number for wave 
saturation (gwd_fsat)

Determines the amplitude at which mountain 
waves generated by sub-grid orography will 
break, and exert a drag on the flow. As gwd_
fsat is reduced, smaller amplitude waves will 
break, typically leading to wave breaking (and 
drag) at lower altitudes.

Affects tropospheric and stratospheric winds 
and MSLP.

Mountain wave amplitude 
(gsharp)

Determines the amplitude of the mountain 
waves generated by sub-grid orography, and 
hence the size of the orographic gravity wave 
stress.

Affects tropospheric and stratospheric winds 
and MSLP. Increases in Gsharp will lead to 
slower winds in the upper troposphere and 
above, and changes to temperature biases 
(through thermal wind balance).

Drag coefficient for 
turbulent form drag 
(orog_drag_param)

Determines the size of the form drag exerted 
on flow by small-scale sub-grid hills.

Affects boundary-layer winds and MSLP. 
Larger values of the drag coefficient will gives 
lower boundary layer winds.

Scaling factor applied to 
sigma, the standard 
deviation of sub-grid 
mountain heights (nsigma)

Multiplies sigma(x, y) to determine the local 
assumed sub-grid orography height which is 
used in the GWD scheme. This effects the 
calculation of the Froude number, which then 
influences the magnitude of the 
parameterized flow blocking and mountain 
wave drag.

Larger (smaller) values of nsigma will result in 
increases (decreases) in the drag. The relative 
changes in flow blocking and mountain wave 
drag will be regionally dependent.

BOUNDARY LAYER (BL)

Flux profile parameter (g0) Used in the definition of stability functions. Increasing implies smaller stability function, 
less BL mixing, e.g. less wind turning, shallower 
BL.

Critical Richardson number 
(ricrit = 10.0 / g0)

Value of Richardson number below which air 
becomes dynamically unstable and turbulent.

Reducing lowers stable BL top, smaller mixing 
length, less BL mixing.

Cloud-top entrainment 
rate (a_ent_1)

Parameter used in entrainment rate 
calculation.

Increasing gives larger entrainment rate at 
boundary layer top, deeper and warmer mixed 
layer, potentially quicker break up of cloud.
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Parameter Role Signature effect

Cloud-top diffusion (g1 = 
0.85 * a_ent_1 / 0.23

Parameter in cloud top diffusion coefficient 
calculation.

Increasing gives larger top-down diffusivity 
profile, better mixed cloud layer, possibly less 
decoupling and more stratocumulus (Sc).

Threshold fraction of the 
cloud layer depth (zhloc_
depth_fac)

Fractional height into cloud layer for which 
Ri-based BL depth can diagnose shear 
dominated layer.

Higher value leads to more cumulus capped 
BLs and fewer shear dominated BLs, lower 
cloud fraction in cold air outbreaks.

Neutral mixing length 
(par_mezcla)

Mixing length for fluid parcels under neutral 
stability conditions.

Reducing implies smaller stability function, less 
BL mixing, e.g. less wind turning, shallower BL.

Minimum value of mixing 
length (lambda_min = 40 * 
par_mezcla / 0.15)

Minimum mixing length. Reducing implies smaller stability function, less 
BL mixing, e.g. less wind turning, shallower BL.

Decoupling threshold for 
cloudy BLs (dec_thres cld, 
dec_thres_cloud2cu = 0.5 * 
dec_thres_cld)

Decoupling threshold for cloudy BLs. Larger value makes decoupling less likely, 
shifts to more well-mixed boundary layers

Mixing factor applied to 
the in-cloud water content 
of forced cumulus clouds 
(forced_cub_fac)

Determines the fraction of the diagnosed 
adiabatic water content of forced cumulus 
clouds which is allowed to remain. 0 means no 
forced cumulus clouds, 1 means maximum 
possible water content based on an adiabatic 
parcel ascent, within 0-1 means mixing 
between clear and cloudy air.

Increasing the value will give more water in 
shallow convective regions, increased 
reflected shortwave radiation.

CLOUD AND CLOUD RADIATION

Cloud erosion rate 
(dbsdtbs_turb_0)

Determines the rate with which un-resolved 
sub-grid motions mix clear and cloudy air and 
hence remove liquid condensate and 
evaporate liquid cloud fraction.

Modifies the radiative properties of the cloud 
(especially in regions of liquid only cloud e.g. 
sub-tropical maritime Sc) and also affects the 
in-cloud liquid water content and hence how 
the precipitation formation processes will 
evolve.

Scaling to make sub-grid 
cloud condensate variance 
to cloud cover and 
convective activity two 
dimensional. (two_d_fsd_
factor)

Makes the cloud water variability around the 
grid box average a two dimensional 
relationship, based on a 1-d empirical 
relationship derived from CloudSat 
observations (see http://cloudsat.atmos.
colostate.edu/)

This changes the cloud-radiation interaction 
and hence the LW/SW radiative balance. 
Increasing this parameter from 1.4 to 1.5 
reduces the amount of outgoing SW at the top 
of the atmosphere by around 1.2 Wm-2, and 
increases the outgoing LW radiation by 0.4 
Wm-2.

Decorrelation scale 
pressure. (dp_corr_strat)

Determines the vertical overlap between 
clouds in the sub-column in the cloud 
generator used to calculate the radiative 
impact of clouds.

Alters the cloud radiative effect. High values 
mean the cloud is more maximally overlapped 
and its radiative effect reduced. Impacts are 
seen most clearly in convective regions.
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Parameter Role Signature effect

Ice width (ice_width) Determines the amount of ice water content 
(as a fraction of qsat-liquid) that corresponds 
to a factor of two reduction in the width of the 
vapour distribution in the liquid-free part of 
the grid box.

Changes the ice water content and ice cloud 
fraction, hence impacting SW and LW 
properties and modifying the radiative 
balance.

CLOUD MICROPHYSICS

Cloud-rain correlation 
coefficient (c_r_correl)

Determines the sub-grid correlation between 
cloud and precipitation. A high value means 
that regions of high cloud water are correlated 
with regions of high precipitation, a small or 
negative number means they are un- or 
anti-correlated

Increasing the value will result in more warm 
rain, reducing the water content of 
stratocumulus clouds and the reflected SW.

Ice fall speed (m_ci) Scaling factor for the ice fall speed Increasing fall speed will decrease ice water 
content.

Precursor coefficient in the 
mass-diameter 
relationship for ice (m = ai 
× Dbi ) (ai)

Changing ai has the effect of changing the 
density of the ice.

Increasing ai will produce a narrower particle 
size distribution (PSD) and so the mass 
weighted fall speed will be lower and hence 
the cloud ice content should increase.

x1r Controls shape of PSD for raindrops. Increasing x1r will decrease rain rate

Aspect ratio of ice 
particles (ar)

Used to calculate the depositional capacitance 
of ice crystals which affects how efficiently 
they grow by depleting water vapour. Ice 
particles are assumed to be spheroidal for the 
purposes of calculating deposition rates. 
Capacitance is maximal for spheres (ar=1) and 
reduces for oblate (ar<1) and prolate (ar>1) 
spheroids.

Higher capacitance will lead to a lower relative 
humidity. The ice water contents will only be 
weakly affected. In mixed-phase regions, the 
liquid water contents will increase.

Vertical scale in mixed 
phase turbulent production 
of supercooled liquid water 
(mp_dz_scal)

Vertical length scale over which 

the turbulence acts to produce 

supercooled water.

Increasing mp_dz_scal will lead to an

increase in liquid water path.

AEROSOLS

Anthropogenic SO2 
emission flux (ps_anth_
so2_emiss)

Direct scaling of emissions flux. Increasing this leads to higher aerosol 
concentrations in source regions.

Dry deposition rate of SO2 
(ps_dry_so2_veloc)

Scaling factor for dry deposition rate 
calculated in the model, which removes SO2 
from lowest levels through deposition 
according to land surface type and prevailing 
wind speed.

Increasing this will reduce low level SO2 
concentrations
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Parameter Role Signature effect

Scaling of the standard 
deviation used to define 
the pdf of updraught 
velocity (ps_sigma_
updraught)

Relates the activation of aerosols to cloud 
droplets to the standard deviation used to 
define the pdf of updraught velocity.

Increasing this produces higher cloud droplet 
number concentration.

Scaling of emission flux 
from biomass burning 
(biom_aer_ems_scaling)

Direct scaling of emissions flux. Increasing this directly affects black carbon/
organic carbon aerosol concentrations 
proportionately.

Scaling of emission flux 
from sea spray (ps_natl_
ss_emiss)

Direct scaling of emissions flux. Increasing this directly affects hygroscopic 
aerosol concentrations.

Dimethyl-sulphide 
emission flux (ps_natl_
dms_emiss)

Direct scaling of emissions flux. DMS is a precursor gas for sulphate production 
via oxidisation.

Scavenging rate in the 
coarse and accumulation 
modes (ps_acc_cor_scav)

Scaling of the scavenging rate calculated in 
the model.

Increasing this will reduce concentrations of 
aerosols in coarse and accumulation mode.

pH of cloud drops (ps_
cloud-ph)

This controls in-cloud SO4 production 
dependent on SO2 availability.

An increase in cloud pH leads to faster SO2 
oxidation by ozone in cloud water, so more SO4 
production.

LAND SURFACE AND SNOW

Maximum wind speed used 
in Coupled Ocean-
Atmosphere Response 
Experiment (COARE) 
algorithm (u10_max_
coare)

This is the highest wind speed used in 
calculating the Charnock coefficient in the 
COARE algorithm.

Higher values allow the sea surface to become 
rougher in strong winds.

Grain size of fresh snow 
(r0)

The grain size of fresh snow is set to this value, 
which affects the albedo of snow.

Higher values make the snow less reflective.

Fresh snow density (rho-
snow_fresh)

The density of fresh snow. Lower densities reduce the thermal 
conductivity of snow, leading to colder surface 
temperatures.
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Parameter Role Signature effect

Upper value about 4K 
above Topt, the optimal 
temperature 

for photosynthesis 

(tupp io)

Topt determines the turn-over point for 
temperature, above which further increases in 
temperature will drive a decline in 
photosynthesis.

In tropical and sub-tropical regions the optimal 
temperature would be expected to have the 
biggest impact on plant functioning, with low 
values for this parameter leading to greater 
temperature dependence of photosynthesis.

Maximum ratio of internal 
to external CO2 (f0_io)

Controls the gradient of CO2 between plant 
stomata and the ambient air.

See left.

Top leaf Nitrogen 
concentration in kg N per 
kg C (nl0-io)

Defines the top leaf ratio of nitrogen to carbon. 
Plant photosynthesis (Vcmax) is defined in the 
model to be proportional to the leaf nitrogen 
concentration.

Higher ratios are associated with higher 
photosynthesis.

Root depth (rootd_ft_io) Controls the depth (in model soil levels) to 
which soil moisture is available.

Larger values equate to greater depths in the 
soil, and more resilience to short timescale 
droughts.

Scaling factor for critical 
and saturation levels for 
soil moisture towards wilt 
level (psm)

This pair of parameters control the critical and 
saturated volumetric soil moisture thresholds. 
The critical threshold controls the level above 
which evapotranspiration is no longer soil 
moisture dependent.

Higher values lead to larger soil moisture 
regimes where soil moisture limits this 
evapotranspiration, with its consequent 
implications for moisture and surface energy 
fluxes.
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Differences between GC3.05 and GC3.1 coupled ocean-atmosphere model configurations

As noted in section 3.2, a number of changes were included in GC3.1 to reduce the strong negative forcing 
due to anthropogenic aerosol emissions found in GC3.0 (Williams et al., 2018). Changes were made to the 
atmosphere model (Walters et al., 2017) and the sea-ice component (Williams et al., 2018). The main 
change was inclusion of the Liu et al. (2008) paramaterisation of the impact of cloud droplet number on the 
droplet size distribution. This was included in GC3.05, as was an update to the refractive index of black 
carbon (Bond and Bergstrom, 2006). 

In GC3.1, changes were made to the values of three parameters (see Table D.1) that are amongst those 
perturbed in GC3.05-PPE: 

• The scaling factor for natural marine emissions of dimethylsulphide (parameter ps_natl_dms_emiss) was 
increased from 1.0 to 1.7, to account for the omission in GLOMAP-mode of natural emissions of organic 
aerosol. The altered value of 1.7 lies near the upper end of the expert prior distribution of values explored 
in development of GC3.05-PPE (Fig. 3.2).

• The value of mp_dz_scal, the vertical length scale for turbulent production of supercooled liquid in mixed 
phase clouds, was increased from 1.0 in GC3.0 to 2.0 in GC3.1. The latter value is close to the median of 
the prior distribution for GC3.05-PPE (Fig. 3.2).

• The value of cca_sh_knob was increased from 0.2 to 0.5, increasing the radiative effects of shallow 
convective cores. The altered value lies close to the upper end of the prior distribution for this parameter 
(Fig. 3.2).

Additional changes introduced in GC3.1 were not included in GC3.05, because they were not available at 
the time the GC3.05 configuration was finalised. These were:

• Inclusion of more detailed look-up tables for aerosol optical properties, allowing more accurate spectral 
resolution of solar absorption by aerosols.

• Improvements to the calculation of turbulent kinetic energy (TKE) in the parameterisation of boundary 
layer processes. These included correction of an error in the indexing of vertical levels, a reduction in the 
minimum value of TKE and introduction of an explicit estimate of TKE in cumulus clouds. The net effect 
of these changes is to reduce cloud droplet number concentrations.

• The specification of emissions of sulphur dioxide from continuously degassing volcanoes and explosive 
eruptions was updated to use the dataset of Dentener et al. (2006).

• The coefficient controlling the drag exerted by the ocean on sea ice was doubled in GC3.1, improving the 
simulation of ice thicknesses by increasing values along the North Greenland coast and reducing values 
in central regions of the Arctic Ocean. An increase was implemented to the thickness of ice within which 
the bare-ice albedo is reduced to account for the visibility of the underlying darker ocean. 
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Appendix E (Observational datasets, Strands 2 and 3)
Table E.1 gives acronyms for some of the key variables evaluated in the report, and Table E.2 shows the 
sources of observational data used for evaluation in Strands 2 and 3. Datasets used as formal observational 
constraints in Strand 1 are shown separately, in Tables B.1 and B.2. These Tables give an overarching view of 
the variables and periods considered across the project as a whole, with specific uses, periods and time 
sampling explained in the main text and figures. For example, Strand 3 uses 6-hourly atmospheric wind, 
temperature and specific humidity fields from ERA-Interim throughout the atmosphere, whereas Strand 2 
uses daily or seasonal fields on selected pressure levels to screen potential GC3.05-PPE members. In some 
cases evaluation diagnostics are derived by further processing of the data listed below, for example by 
usage of clear- and all-sky radiative fluxes to obtain values of cloud radiative effect in Figure 3.3. The 
periods listed in Table E.2 are those used in this report. 

Table E.1. Data acronyms (following CMIP5, or as defined in main text) used in Table E.2. 

Variable Acronym

Surface air temperature tas

Precipitation rate pr

Eastward wind on atmospheric pressure levels ua

Northward wind on atmospheric pressure levels va

Air temperature on atmospheric pressure levels ta

Relative humidity on atmospheric pressure levels hur

Specific humidity on atmospheric pressure levels hus

 Geopotential height on atmospheric pressure levels za

Air pressure at sea level psl

Outgoing short- and long-wave radiative flux at the top of the atmosphere rsut, rlut

Outgoing short- and long-wave radiative flux at the top of the atmosphere under clear-
sky conditions

rsutcs, rlutcs

Surface downwelling short- and long-wave radiative flux rsds, rlds

Surface downwelling short- and long-wave radiative flux under clear-sky conditions rsdscs, rldscs

Cloud radiative effect, and its shortwave and longwave components cre, cresw, 
crelw 

Global mean surface temperature GMST

Sea surface temperature SST
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Table E.2. Observational datasets used to evaluate projections in Strands 2 and 3.

Dataset Period Variable(s) Reference Strand(s)

ERA-Interim 1980-2009 ua, va, za, ta, tas, hur, hus, psl, 
cre, cresw, crelw

Dee et al. (2011) 2,3

CERES 2000-2009 rlut, rsut, rlutcs, rsutcs, rsds, 
rlds

Loeb et al. (2009) 2

ERBE 2000-2009 rlut, rsut Harrison et al. (1990) 2

ISCCP D2 2005-2009 Cloud cover in thin, medium-
thick and thick categories at 
low, middle and high levels of 

the atmosphere

Rossow and Schiffer (1999) 2

GPCP 1980-2009 pr Adler et al. (2003) 2

CMAP 1980-2009 pr Xie and Arkin (1996) 2

HadSLP2 1900-2005 psl Allan and Ansell (2006) 2

HadCRUT4 1900-2017 GMST Morice et al. (2012) 2

NCIC 1910-2017 tas and pr, UK Perry et al. (2009) 2,3

E-OBS 1981-2000 tas and pr, Europe. Version 
15 is used for pr and version 

14 for tas. 

Haylock et al. (2008) 2,3

HadISST1 1900-2005 SST Rayner et al. (2003) 2

HadISST2 2005-2009 SST Titchner and Rayner (2014) 2

Reynolds 1982-2001 SST Reynolds et al. (2002) 3
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